FILTER SYNTAX

Check whether a field or protocol exists

The simplest filter allows you to check for the existence of a protocol or field. If you want to see all packets which contain the IPX protocol, the filter would be ``ipx'' (without the quotation marks). To see all packets that contain a Token-Ring RIF field, use ``tr.rif''.

Think of a protocol or field in a filter as implicitly having the ``exists'' operator.

Note: all protocol and field names that are available in Ethereal and Tethereal filters are listed in the FILTER PROTOCOL REFERENCE (see below).

Comparison operators

Fields can also be compared against values. The comparison operators can be expressed either through C-like symbols or through English-like abbreviations:

 eq, == Equal

 ne, != Not Equal

 gt, > Greater Than

 lt, < Less Than

 ge, >= Greater than or Equal to

 le, <= Less than or Equal to

Search and match operators

Additional operators exist expressed only in English, not punctuation:

 contains Does the protocol, field or slice contain a value

 matches Does the text string match the given Perl regular expression

The ``contains'' operator allows a filter to search for a sequence of characters or bytes. For example, to search for a given HTTP URL in a capture, the following filter can be used:

 http contains "http://www.ethereal.com";

The ``contains'' operator cannot be used on atomic fields, such as numbers or IP addresses.

The ``matches'' operator allows a filter to apply to a specified Perl-compatible regular expression (PCRE). The ``matches'' operator is only implemented for protocols and for protocol fields with a text string representation. For example, to search for a given WAP WSP User-Agent, you can write:

 wsp.user_agent matches "(?i)cldc"

This example shows an interesting PCRE feature: pattern match options have to be specified with the (?option) construct. For instance, (?i) performs a case-insensitive pattern match. More information on PCRE can be found in the pcrepattern(3) man page (Perl Regular Expressions are explained in http://www.perldoc.com/perl5.8.0/pod/perlre.html).

Note: the ``matches'' operator is only available if Ethereal or Tethereal have been compiled with the PCRE library. This can be checked by running:

 ethereal -v

 tethereal -v

or selecting the ``About Ethereal'' item from the ``Help'' menu in Ethereal.

Protocol field types

Each protocol field is typed. The types are:

 Unsigned integer (8-bit, 16-bit, 24-bit, or 32-bit)

 Signed integer (8-bit, 16-bit, 24-bit, or 32-bit)

 Boolean

 Ethernet address (6 bytes)

 Byte array

 IPv4 address

 IPv6 address

 IPX network number

 Text string

 Double-precision floating point number

An integer may be expressed in decimal, octal, or hexadecimal notation. The following three display filters are equivalent:

 frame.pkt_len > 10

 frame.pkt_len > 012

 frame.pkt_len > 0xa

Boolean values are either true or false. In a display filter expression testing the value of a Boolean field, ``true'' is expressed as 1 or any other non-zero value, and ``false'' is expressed as zero. For example, a token-ring packet's source route field is Boolean. To find any source-routed packets, a display filter would be:

 tr.sr == 1

Non source-routed packets can be found with:

 tr.sr == 0

Ethernet addresses and byte arrays are represented by hex digits. The hex digits may be separated by colons, periods, or hyphens:

 eth.dst eq ff:ff:ff:ff:ff:ff

 aim.data == 0.1.0.d

 fddi.src == aa-aa-aa-aa-aa-aa

 echo.data == 7a

IPv4 addresses can be represented in either dotted decimal notation or by using the hostname:

 ip.dst eq www.mit.edu

 ip.src == 192.168.1.1

IPv4 addresses can be compared with the same logical relations as numbers: eq, ne, gt, ge, lt, and le. The IPv4 address is stored in host order, so you do not have to worry about the endianness of an IPv4 address when using it in a display filter.

Classless InterDomain Routing (CIDR) notation can be used to test if an IPv4 address is in a certain subnet. For example, this display filter will find all packets in the 129.111 Class-B network:

 ip.addr == 129.111.0.0/16

Remember, the number after the slash represents the number of bits used to represent the network. CIDR notation can also be used with hostnames, as in this example of finding IP addresses on the same Class C network as 'sneezy':

 ip.addr eq sneezy/24

The CIDR notation can only be used on IP addresses or hostnames, not in variable names. So, a display filter like ``ip.src/24 == ip.dst/24'' is not valid (yet).

IPX networks are represented by unsigned 32-bit integers. Most likely you will be using hexadecimal when testing IPX network values:

 ipx.src.net == 0xc0a82c00

Strings are enclosed in double quotes:

 http.request.method == "POST"

Inside double quotes, you may use a backslash to embed a double quote or an arbitrary byte represented in either octal or hexadecimal.

 browser.comment == "An embedded \" double-quote"

Use of hexadecimal to look for ``HEAD'':

 http.request.method == "\x48EAD"

Use of octal to look for ``HEAD'':

 http.request.method == "\110EAD"

This means that you must escape backslashes with backslashes inside double quotes.

 smb.path contains "\\\\SERVER\\SHARE"

looks for \\SERVER\SHARE in ``smb.path''.

The slice operator

You can take a slice of a field if the field is a text string or a byte array. For example, you can filter on the vendor portion of an ethernet address (the first three bytes) like this:

 eth.src[0:3] == 00:00:83

Another example is:

 http.content_type[0:4] == "text"

You can use the slice operator on a protocol name, too. The ``frame'' protocol can be useful, encompassing all the data captured by Ethereal or Tethereal.

 token[0:5] ne 0.0.0.1.1

 llc[0] eq aa

 frame[100-199] contains "ethereal"

The following syntax governs slices:

 [i:j] i = start_offset, j = length

 [i-j] i = start_offset, j = end_offset, inclusive.

 [i] i = start_offset, length = 1

 [:j] start_offset = 0, length = j

 [i:] start_offset = i, end_offset = end_of_field

Offsets can be negative, in which case they indicate the offset from the end of the field. The last byte of the field is at offset -1, the last but one byte is at offset -2, and so on. Here's how to check the last four bytes of a frame:

 frame[-4:4] == 0.1.2.3

or

 frame[-4:] == 0.1.2.3

You can concatenate slices using the comma operator:

 ftp[1,3-5,9:] == 01:03:04:05:09:0a:0b

This concatenates offset 1, offsets 3-5, and offset 9 to the end of the ftp data.

Type conversions

If a field is a text string or a byte array, it can be expressed in whichever way is most convenient.

So, for instance, the following filters are equivalent:

 http.request.method == "GET"

 http.request.method == 47.45.54

A range can also be expressed in either way:

 frame[60:2] gt 50.51

 frame[60:2] gt "PQ"

Bit field operations

It is also possible to define tests with bit field operations. Currently the following bit field operation is supported:

 bitwise_and, & Bitwise AND

The bitwise AND operation allows testing to see if one or more bits are set. Bitwise AND operates on integer protocol fields and slices.

When testing for TCP SYN packets, you can write:

 tcp.flags & 0x02

Similarly, filtering for all WSP GET and extended GET methods is achieved with:

 wsp.pdu_type & 0x40

When using slices, the bit mask must be specified as a byte string, and it must have the same number of bytes as the slice itself, as in:

 ip[42:2] & 40:ff

Logical expressions

Tests can be combined using logical expressions. These too are expressable in C-like syntax or with English-like abbreviations:

 and, && Logical AND

 or, || Logical OR

 not, ! Logical NOT

Expressions can be grouped by parentheses as well. The following are all valid display filter expressions:

 tcp.port == 80 and ip.src == 192.168.2.1

 not llc

 http and frame[100-199] contains "ethereal"

 (ipx.src.net == 0xbad && ipx.src.node == 0.0.0.0.0.1) || ip

Remember that whenever a protocol or field name occurs in an expression, the ``exists'' operator is implicitly called. The ``exists'' operator has the highest priority. This means that the first filter expression must be read as ``show me the packets for which tcp.port exists and equals 80, and ip.src exists and equals 192.168.2.1''. The second filter expression means ``show me the packets where not (llc exists)'', or in other words ``where llc does not exist'' and hence will match all packets that do not contain the llc protocol. The third filter expression includes the constraint that offset 199 in the frame exists, in other words the length of the frame is at least 200.

A special caveat must be given regarding fields that occur more than once per packet. ``ip.addr'' occurs twice per IP packet, once for the source address, and once for the destination address. Likewise, ``tr.rif.ring'' fields can occur more than once per packet. The following two expressions are not equivalent:

 ip.addr ne 192.168.4.1

 not ip.addr eq 192.168.4.1

The first filter says ``show me packets where an ip.addr exists that does not equal 192.168.4.1''. That is, as long as one ip.addr in the packet does not equal 192.168.4.1, the packet passes the display filter. The other ip.addr could equal 192.168.4.1 and the packet would still be displayed. The second filter says ``don't show me any packets that have an ip.addr field equal to 192.168.4.1''. If one ip.addr is 192.168.4.1, the packet does not pass. If neither ip.addr field is 192.168.4.1, then the packet is displayed.

It is easy to think of the 'ne' and 'eq' operators as having an implict ``exists'' modifier when dealing with multiply-recurring fields. ``ip.addr ne 192.168.4.1'' can be thought of as ``there exists an ip.addr that does not equal 192.168.4.1''. ``not ip.addr eq 192.168.4.1'' can be thought of as ``there does not exist an ip.addr equal to 192.168.4.1''.

Be careful with multiply-recurring fields; they can be confusing.

Care must also be taken when using the display filter to remove noise from the packet trace. If, for example, you want to filter out all IP multicast packets to address 224.1.2.3, then using:

 ip.dst ne 224.1.2.3

may be too restrictive. Filtering with ``ip.dst'' selects only those IP packets that satisfy the rule. Any other packets, including all non-IP packets, will not be displayed. To display the non-IP packets as well, you can use one of the following two expressions:

 not ip or ip.dst ne 224.1.2.3

 not ip.addr eq 224.1.2.3

The first filter uses ``not ip'' to include all non-IP packets and then lets ``ip.dst ne 224.1.2.3'' filter out the unwanted IP packets. The second filter has already been explained above where filtering with multiply occuring fields was discussed.

