ORM in Detail

ORM

Modeling
Issues

Conceptual
Queries

UML and ORM

Resources

ORM IN DETAIL

This section provides a
basic overview of
Object Role Modeling
(ORM), through white
papers, articles and a
slide presentation. The
relationship between

ORM and the Entity
Relationship (ER)

approach is also
discussed.

For an in-depth treatment of ORM, see Halpin, T.A. 2001, Information
Modeling and Relational Databases, published by Morgan Kaufmann

Publishers (ISBN 1-55860-672-6). Details on this book are available at
the book's website.

Business Rules and Object Role Modeling
This paper was published in the October 1996 issue of Database
Programming & Design, vol. 9, no. 10, pp. 66-72.

This article provides a gentle introduction to Object Role Modeling

(ORM), explaining its advantages over entity relationship and object
oriented approaches for capturing and validating business rules with
subject matter experts. The ORM attribute-free, mixfix predicate approach
simplifies verbalization, multiple instantiation and schema evolution, and
its rich constraint language enables many rules to be captured graphically
and easily validated. The article includes simple examples to illustrate
these advantages.

Business Rules and Object Role Modeling (407K)

http://www.orm.net/overview.html (1 of 4) [27/09/04 19:17:16]

http://www.orm.net/index.html
http://www.mkp.com/
http://www.mkp.com/
http://www.mkp.com/books_catalog/catalog.asp?ISBN=1-55860-672-6

ORM in Detail

Object Role Modeling: An Overview

This white paper provides an overview of Object Role Modeling (ORM),
using a case study to illustrate the main ideas. The steps used to design
a conceptual schema for an information system are first explained in
some detail. To help communicate the ideas, some mistakes are
deliberately made. Checking procedures within the design method are
later used to remove these errors. A simple example is included to show
how the conceptual design may be "optimized" for relational database
systems by applying a transformation. An algorithm for mapping this
design to a normalized, relational database schema is then outlined.
Finally, the paper gives a brief sketch of how ORM can be used as a
sound basis for conceptual queries, object oriented modeling, and
process/event modeling.

Object Role Modeling: An Overview (405K)

Microsoft has also published a Revised version of the above ORM
overview as well as a Quick overview of ORM.

Object Role Modeling (ORM/NIAM)

This paper first appeared as chapter 4 of the following book: Bernus, P.,
Mertins, K. & Schmidt, G. (eds.) 1998, Handbook on Architectures of
Information Systems, Springer. Details on this publication are available
from Springer's website

Object Role Modeling (ORM) is a method for modeling and querying an
information system at the conceptual level, and mapping between
conceptual and logical (e.g. relational) levels. ORM comes in various
flavors, including NIAM (Natural language Information Analysis Method).
This article provides an overview of ORM, and notes its advantages over
entity relationship and traditional object oriented modeling.

This paper and the Object Role Modeling Overview paper overlap
substantially; however, the historical details, symbol summary, and
references provide additional material.

Object Role Modeling (ORM/NIAM) (125K)

http://www.orm.net/overview.html (2 of 4) [27/09/04 19:17:16]

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vstechart/html/vstchvsea_ormoverview.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vstechart/html/vstchvsea_ormoverview.asp
http://msdn.microsoft.com/vstudio/techinfo/articles/developerproductivity/orm.asp
http://www.springer.de/cgi-bin/search_book.pl?isbn=3-540-64453-9

ORM in Detail

Entity Relationship modeling from an ORM

perspective: Part 1
This is a revised version of an article that first appeared in the December
1999 issue of the Journal of Conceptual Modeling.

This paper is the first in a series of articles examining data modeling in
the Entity relationship (ER) approach from the perspective of Object Role
Modeing (ORM). After a brief historical introduction, this article examines
basic aspects of the Barker notation for ER.

Entity Relationship modeling from an ORM perspective: Part 1

(sdk)

Entity Relationship modeling from an ORM

perspective: Part 2
This article first appeared in the February 2000 issue of the Journal of

Conceptual Modeling.

It is the second in a series of articles examining data modeling in the
Entity relationship (ER) approach from the perspective of Object Role
Modeing (ORM). This paper completes a basic review of the Barker
notation for ER.

Entity Relationship modeling from an ORM perspective: Part 2

(Sék)

Entity Relationship modeling from an ORM

perspective: Part 3
This article first appeared in the April 2000 issue of the Journal of

Conceptual Modeling.

http://www.orm.net/overview.html (3 of 4) [27/09/04 19:17:16]

http://www.inconcept.com/JCM/index.html
http://www.inconcept.com/JCM/index.html
http://www.inconcept.com/JCM/index.html
http://www.inconcept.com/JCM/index.html
http://www.inconcept.com/JCM/index.html

ORM in Detail

It is the third in a series of articles examining data modeling in the Entity
relationship (ER) approach from the perspective of Object Role Modeing
(ORM). This paper discusses the Information Engineering (IE) notation
for ER.

Entity Relationship modeling from an ORM perspective: Part 3

(55K)

Modeling business rules using fact-orientation and

object-orientation

This PowerPoint presentation was delivered at the Business Rules
Conference hosted by the Data Resource Management Association in
May, 1999. The original DRMA99.pps file (926kb) has been zipped for
downloading (still a hefty 798kb), and needs to be unzipped (e.g. using
Winzip) before it can be viewed.

DRMA99 slide presentation (798Kk)

ORM Home ORM in Detail Modeling Issues
Conceptual Queries UML and ORM Resources

All diagrams on this site were created with Microsoft Visio.

http://www.orm.net/overview.html (4 of 4) [27/09/04 19:17:16]

http://www.halcyon.com/drma/
http://www.orm.net/pdf/drma99.zip
http://www.orm.net/index.html

Modeling Issues

ORM

ORM in Detail

Conceptual
Queries

UML and ORM

Resources

MODELING ISSUES

These articles address various data modeling concepts such as
higher-order types, objectified associations, join constraints,
elementary fact types, subtyping, conceptual schema
transformation/optimization, schema abstraction, and modeling
with collection types.

Information Modeling and Higher-Order

Types

This paper first appeared in Proc. EMMSAD'04: 8th Int. IFIP
WG8.1 Workshop on Evaluation of Modeling Methods in Systems
Analysis and Design, and is reproduced here by permission.

While some information modeling approaches (e.g. the
Relational Model, and Object-Role Modeling) are typically
formalized using first-order logic, other approaches to
information modeling include support for higher-order types.
There appear to be three main reasons for requiring higher-
order types: (1) to permit instances of categorization types to
be types themselves (e.g. the Unified Modeling Language
introduced power types for this purpose); (2) to directly support
quantification over sets and general concepts; (3) to specify
business rules that cross levels/metalevels (or ignore level
distinctions) in the same model. As the move to higher-order
logic may add considerable complexity to the task of formalizing
and implementing a modeling approach, it is worth investigating
whether the same practical modeling objectives can be met
while staying within a first-order framework. This paper
examines some key issues involved, suggests techniques for
retaining a first-order formalization, and also makes some
suggestions for adopting a higher-order semantics

Information Modeling and Higher-Order Types (538K)

Unigqueness Constraints on Objectifed
Associations

http://www.orm.net/issues.html (1 of 7) [27/09/04 19:17:51]

http://www.orm.net/index.html

Modeling Issues

This article first appeared in the October 2003 issue of the
Journal of Conceptual Modeling.

Unlike UML and some ER versions, ORM currently allows a fact
type to be objectified only if it either has a spanning uniqueness
constraint or is a 1:1 binary fact type. This article argues that
this restriction should be relaxed, and replaced by a modeling
guideline that allows some n-ary associations to be objectified
even if their longest uniqueness constraint spans n-1 roles. The
pros and cons of removing this restriction are discussed, and
illustrated with examples.

Unigueness Constraints on Objectifed Associations (341K)

Join Constraints

This paper first appeared in Proc. EMMSAD'02: 7th Int. IFIP
WG8.1 Workshop on Evaluation of Modeling Methods in Systems
Analysis and Design, and is reproduced here by permission.

Many application domains involve constraints that, at a
conceptual modeling level, apply to one or more schema paths,
each of which involves one or more conceptual joins (where the
same conceptual object plays roles in two relationships).
Popular information modeling approaches typically provide only
weak support for such join constraints. This paper contrasts how
join constraints are catered for in Object-Role Modeling (ORM),
the Unified Modeling Language (UML), the Object-oriented
Systems Model (OSM), and some popular versions of Entity-
Relationship modeling (ER). Three main problems for rich
support for join constraints are identified: disambiguation of
schema paths; disambiguation of join types; and mapping of
join constraints. To address these problems, some notational,
metamodel, and mapping extensions are proposed.

Join Constraints (364K)

What is an elementary fact?
This paper was presented in 1993 at the first NIAM-1SDM

http://www.orm.net/issues.html (2 of 7) [27/09/04 19:17:51]

http://www.inconcept.com/JCM/index.html
http://www.orm.net/pdf/JCM2003Oct.pdf
http://www.orm.net/pdf/JoinConstraints.pdf

Modeling Issues

conference.
Database schemas are best was BoFn on
designed by mapping from a —

Date

high level, conceptual schema
expressed in human-oriented
concepts. While conceptual weEE horn in

schemas are often specified @
using entity relationship

modeling (ER), a more natural

and expressive formulation is often possible using Object Role
Modeling (ORM). This approach views the world in terms of
objects playing roles, and traditionally expresses all information
in terms of elementary facts, constraints and derivation rules.
Although verbalization in terms of elementary facts has many
practical and theoretical advantages, it is difficult to define the
notion precisely. This paper examines various awkward but
practical cases which challenge the traditional definition. In so
doing, it aims to clarify what elementary facts are and how they
can be best expressed.

What is an elementary fact? (73K)

Subtyping: conceptual and logical issues
This paper first appeared in vol. 23, no. 6 of Database
Newsletter. This newsletter has since been renamed
DataToKnowledge Newsletter and is published by Business

Rules Solutions, Inc.

Subtyping is an important feature of
semantic approaches to conceptual
schema design and, more recently, object-
oriented database design. However the
relational model does not directly support
subtyping, and CASE tools for mapping
conceptual to relational schemas typically
provide only very weak support for
mapping subtypes. This paper surveys
some of the main issues related to
conceptual specification and relational mapping of subtypes, and

http://www.orm.net/issues.html (3 of 7) [27/09/04 19:17:51]

http://www.orm.net/pdf/ElemFact.pdf
http://www.brsolutions.com/
http://www.brsolutions.com/

Modeling Issues

indicates how Object Role Modeling solves the associated
problems.

Subtyping: conceptual and logical issues (132K)

Subtyping and Polymorphism in Object Role
Modeling

This paper, co-authored with H.A. Proper, was first published in
Data & Knowledge Engineering, 15(3), 251-281, 1995, North-

Holland, Amsterdam.

Although entity relationship (ER) modeling techniques are
commonly used for information modeling, Object Role Modeling
(ORM) techniques are becoming increasingly popular, partly
because they include detailed design procedures providing
guidelines for the modeler. As with the ER approach, a number
of different ORM techniques exist. In this paper, we propose an
integration of two theoretically well founded ORM techniques:
FORM and PSM. Our main focus is on a common terminological
framework, and on the notion of subtyping. Subtyping has long
been an important feature of semantic approaches to
conceptual schema design. It is also the concept in which FORM
and PSM differ the most in their formalization. The subtyping
issue is discussed from three different viewpoints covering
syntactical, identification, and population issues. Finally, a wider
comparison of approaches to subtyping is made, which
encompasses other ER-based and ORM-based information
modeling techniques, and highlights how formal subtype
definitions facilitate a comprehensive specification of subtype
constraints.

Subtyping and Polymorphism in Object Role Modeling
(253K)

Database schema transformation and
optimization
This paper first appeared in Proc. OOER’95: Object-Oriented and

http://www.orm.net/issues.html (4 of 7) [27/09/04 19:17:51]

http://www.orm.net/pdf/Subtype.pdf
http://www.elsevier.nl/inca/publications/store/5/0/5/6/0/8/
http://www.orm.net/pdf/SubPoly.pdf

Modeling Issues

An application structure is best

Entity-Relationship Modeling, Springer LNCS, vol. 1021, pp. 191-
modeled first as a conceptual
schema, and then mapped to

203.
(code)
an internal schema for the
target DBMS. Different but
equivalent conceptual schemas
often map to different internal —_—

schemas, so performance may owon medals of in L

be improved by applying

conceptual transformations prior to the standard mapping. This
paper discusses recent advances in the theory of schema
transformation and optimization within the framework of ORM
(Object Role Modeling). New aspects include object relativity,
complex types, a high level transformation language and update
distributivity.

{IGI.ISI.IEI}

Database schema transformation and optimization (115K)

Conceptual Schemas with Abstractions:
Making flat conceptual schemas more

comprehensible

This paper, co-authored with L.J. Campbell and H.A. Proper,
first appeared in Data & Knowledge Engineering, 20(1), 39-85,
1996, North-Holland, Amsterdam.

Flat graphical, conceptual modeling techniques are widely
accepted as visually effective ways in which to specify and
communicate the conceptual data requirements of an
information system. Conceptual schema diagrams provide
modelers with a picture of the salient structures underlying the
modeled universe of discourse, in a form that can readily be
understood by and communicated to users, programmers and
managers. When complexity and size of applications increase,
however, the success of these techniques in terms of
comprehensibility and communicability deteriorates rapidly.

This paper proposes a method to offset this deterioration, by

http://www.orm.net/issues.html (5 of 7) [27/09/04 19:17:51]

http://www.springer.de/comp/lncs/index.html
http://www.orm.net/pdf/ooer95.pdf
http://www.elsevier.nl/inca/publications/store/5/0/5/6/0/8/

Modeling Issues

adding abstraction layers to flat conceptual schemas. We
present an algorithm to recursively derive higher levels of
abstraction from a given (flat) conceptual schema. The driving
force of this algorithm is a hierarchy of conceptual importance
among the elements of the universe of discourse.

Conceptual Schemas with Abstractions (427K)

Modeling Collections in UML and ORM

This paper first appeared in Proc. EMMSAD'00: 5th Int. IFIP
WG8.1 Workshop on Evaluation of Modeling Methods in Systems
Analysis and Design, and is reproduced here by permission.

Collection types such as sets, bags and arrays have been used
as data structures in both traditional and object oriented
programming. Although sets were used as record components in
early database work, this practice was largely discontinued with
the widespread adoption of relational databases. Object-
relational and object databases once again allow database
designers to embed collections as database fields. Should
collections be specified directly on the conceptual schema, as
mapping annotations to the conceptual schema, or only on the
logical database schema?

This paper discusses the pros and cons of different approaches
to modeling collections. Overall it favors the annotation
approach, whereby collection types are specified as adornments
to the pure conceptual schema to guide the mapping process
from conceptual to lower levels. The ideas are illustrated using
notations from both object-oriented (Unified Modeling
Language) and fact-oriented (Object-Role Modeling)
approaches.

Modeling Collections in UML and ORM (106K)

ORM Home ORMin Detail Modeling Issues
Conceptual Queries UML and ORM Resources

All diagrams on this site were created with Microsoft Visio.

http://www.orm.net/issues.html (6 of 7) [27/09/04 19:17:51]

http://www.orm.net/pdf/ConSchAb.pdf
http://www.orm.net/pdf/EMMSAD2000.pdf
http://www.orm.net/index.html

Modeling Issues

http://www.orm.net/issues.html (7 of 7) [27/09/04 19:17:51]

Conceptual Queries

orm) CONCEPTUAL QUERIES

These papers - Department
ORM in Detail describe the L employes Employee
fundamentals of L achieves Rating
building conceptual L mm-u{Hat_ing}for Employee =
Modeling queries within the avg (Rating)for Department
Issues ORM context.

ConQuer, the language on which these queries are based,
makes query building easy for end users and database
administrators.

Conceptual Queries

UML and ORM This paper first appeared in vol. 26, no. 2 of Database
Newsletter. This newsletter has since been renamed Business
Rules Journal and is published by Business Rules Solutions, Inc..

Resources

Formulating non-trivial queries in relational languages such as
SQL or QBE can prove daunting to end users. ConQuer, a new
conceptual query language based on Object Role Modeling
(ORM), enables users to pose complex queries in a readily
understandable way, without needing to know how the
information is stored in the underlying database. This article
highlights the advantages of conceptual query languages such
as ConQuer over traditional query languages for specifying
queries and business rules.

Conceptual Queries (94K)

ConQuer: a Conceptual Query Language

This paper first appeared in Proc. ER’96: 15th International
Conference on Conceptual Modeling, Springer LNCS, no. 1157,
pp. 121-33.

Relational query languages such as SQL and QBE are less than
ideal for end user queries since they require users to work

http://www.orm.net/queries.html (1 of 3) [27/09/04 19:18:12]

http://www.orm.net/index.html
http://www.brsolutions.com/
http://www.springer.de/comp/lncs/index.html

Conceptual Queries

explicitly with structures at the relational level, rather than at
the conceptual level where they naturally communicate.
ConQuer is a new conceptual query language that allows users
to formulate queries naturally in terms of elementary
relationships, and operators such as "and", "not" and "maybe",
thus avoiding the need to deal explicitly with implementation
details such as relational tables, null values, and outer joins.
While most conceptual query languages are based on the entity
relationship approach, ConQuer is based on Object Role
Modeling (ORM), which exposes semantic domains as
conceptual object types, thus allowing queries to be formulated
in terms of paths through the information space. This paper
provides an overview of the ConQuer language.

ConQuer: a Conceptual Query Language (150K)

Conceptual Queries using ConQuer—l11
This paper first appeared in Proc. ER’97: 16th International
Conference on Conceptual Modeling, Springer LNCS, no. 1331,

pp. 113-26.

Formulating non-trivial queries in relational languages such as
SQL and QBE can prove daunting to end users. ConQuer is a
conceptual query language that allows users to formulate
queries naturally in terms of elementary relationships, operators
such as "and", "or", "not" and "maybe", contextual for-clauses
and object-correlation, thus avoiding the need to deal explicitly
with implementation details such as relational tables, null
values, outer joins, group-by clauses and correlated subqueries.
While most conceptual query languages are based on the entity
relationship approach, ConQuer is based on Object Role
Modeling (ORM), which exposes semantic domains as
conceptual object types, allowing gueries to be formulated via
paths through the information space. As a result of experience
with the first implementation of ConQuer, the language has
been substantially revised and extended to become ConQuer—IlI.
ConQuer—II's new features such as arbitrary correlation and
subtyping enable it to be used for a wide range of advanced
conceptual queries.

http://www.orm.net/queries.html (2 of 3) [27/09/04 19:18:12]

http://www.orm.net/pdf/ER96.pdf
http://www.springer.de/comp/lncs/index.html

Conceptual Queries

Conceptual Queries using ConQuer—I1 (99K)

ORM Home ORMin Detail Modeling Issues
Conceptual Queries UML and ORM Resources

All diagrams on this site were created with Microsoft Visio.

http://www.orm.net/queries.html (3 of 3) [27/09/04 19:18:12]

http://www.orm.net/pdf/ER97-final.pdf
http://www.orm.net/index.html

UML and ORM

ORM

ORM in Detail

Modeling
Issues

Conceptual
Queries

Resources

UML AND ORM

Employee
In these articles, Dr. Halpin
discusses the Unified Modeling emphr {PK}
Language within the context of emphlame
Object Role Modeling (ORM) sparts [0..7]

and shows how ORM models
can be used in conjunction with
UML models. — T

has —drEmpNan';s
Ermployet
[ermpldr)

- 4
-\-'\--FF

Sport
I

UML data models from an ORM perspective:
Part 1

This article first appeared in the April 1998 issue of the Journal
of Conceptual Modeling.

Although the Unified Modeling Language (UML) facilitates
software modeling, its object-oriented approach is arguably less
than ideal for developing and validating conceptual data models
with domain experts. Object Role Modeling (ORM) is a fact-
oriented approach specifically designed to facilitate conceptual
analysis and to minimize the impact on change. Since ORM
models can be used to derive UML class diagrams, ORM offers
benefits even to UML data modelers. This 10-part series
provides a comparative overview of both approaches.

Part 1 provides some historical background on both approaches,
identifies several design criteria for modeling languages, and
discusses how object reference and single-valued attributes are
modeled in both.

UML data models from an ORM perspective: Part 1 (66K)

http://www.orm.net/uml_orm.html (1 of 7) [27/09/04 19:18:17]

http://www.orm.net/index.html
http://www.inconcept.com/JCM/index.html
http://www.inconcept.com/JCM/index.html

UML and ORM

UML data models from an ORM perspective:

Part 2
This article first appeared in the May 1998 issue of the Journal

of Conceptual Modeling.

Second in a series of articles examining data modeling in UML
from the perspective of ORM. This paper compares UML multi-
valued attributes with ORM relationship types, including basic
constraints on both. As part of this discussion, we also consider
how these structures may be instantiated, using UML object
diagrams or ORM fact tables.

UML data models from an ORM perspective: Part 2 (50K)

UML data models from an ORM perspective:
Part 3

This article first appeared in the June 1998 issue of the Journal
of Conceptual Modeling.

Third in a series of articles examining data modeling in UML
from the perspective of ORM. This paper compares UML
associations and related multiplicity constraints with ORM
relationship types and related uniqueness, mandatory role and
frequency constraints. It also contrasts instantiation of
associations using UML object diagrams and ORM fact tables.

UML data models from an ORM perspective: Part 3 (55K)

UML data models from an ORM perspective:
Part 4

http://www.orm.net/uml_orm.html (2 of 7) [27/09/04 19:18:17]

http://www.inconcept.com/JCM/index.html
http://www.inconcept.com/JCM/index.html
http://www.inconcept.com/JCM/index.html
http://www.inconcept.com/JCM/index.html

UML and ORM

This article first appeared in the August 1998 issue of the
Journal of Conceptual Modeling.

Fourth in a series of articles examining data modeling in UML
from the perspective of ORM, this paper examines associations
in more detail, contrasting ORM nesting with UML association
classes, and ORM co-referencing with UML qualified
associations, then discusses exclusion constraints, and
summarizes how the two methods compare with respect to
terms and notations for data structures and instances.

UML data models from an ORM perspective: Part 4 (53K)

UML data models from an ORM perspective:

Part 5

This article first appeared in the October 1998 issue of the
Journal of Conceptual Modeling.

Fifth in a series of articles examining data modeling in the UML
from the perspective of ORM, this paper discusses ORM subset
and equality constraints, and how these may be specified in
UML.

UML data models from an ORM perspective: Part 5 (51K)

UML data models from an ORM perspective:
Part 6

This article first appeared in the December 1998 issue of the
Journal of Conceptual Modeling.

Sixth in a series of articles examining data modeling in the UML
from the perspective of ORM, this paper examines subtyping in
ORM and in UML.

http://www.orm.net/uml_orm.html (3 of 7) [27/09/04 19:18:17]

http://www.inconcept.com/JCM/index.html
http://www.inconcept.com/JCM/index.html
http://www.inconcept.com/JCM/index.html

UML and ORM

UML data models from an ORM perspective: Part 6 (56K)

UML data models from an ORM perspective:

Part 7

This article first appeared in the February 1999 issue of the
Journal of Conceptual Modeling.

Seventh in a series of articles examining data modeling in the
UML from the perspective of ORM, this paper discusses some
other graphic constraints (value, ring and join constraints.)

UML data models from an ORM perspective: Part 7 (47K)

UML data models from an ORM perspective:
Part 8

This article first appeared in the April 1999 issue of the Journal
of Conceptual Modeling.

Eighth in a series of articles examining data modeling in the
UML from the perspective of ORM, this paper covers some
recent updates to the UML standard, then discusses
aggregation.

UML data models from an ORM perspective: Part 8 (54K)

UML data models from an ORM perspective:
Part 9

This article first appeared in the June 1999 issue of the Journal
of Conceptual Modeling.

http://www.orm.net/uml_orm.html (4 of 7) [27/09/04 19:18:17]

http://www.inconcept.com/JCM/index.html
http://www.inconcept.com/JCM/index.html
http://www.inconcept.com/JCM/index.html
http://www.inconcept.com/JCM/index.html
http://www.inconcept.com/JCM/index.html

UML and ORM

Ninth in a series of articles examining data modeling in the UML
from the perspective of ORM, this paper examines initial values
and derived data in ORM and UML.

UML data models from an ORM perspective: Part 9 (51K)

UML data models from an ORM perspective:

Part 10

This article first appeared in the August 1999 issue of the
Journal of Conceptual Modeling.

Tenth in a series of articles examining data modeling in the UML
from the perspective of ORM, this paper discusses changeability
and collection types in UML and ORM.

UML data models from an ORM perspective: Part 10 (55K)

A comparison of UML and ORM for data

modeling

This paper appeared in Proc. EMMSAD'98 3rd IFIP WGS8.1
International Workshop on Evaluation of Modeling Methods in
Systems Analysis and Design, Pisa, Italy, in June, 1998.

Although facilitating the transition to object-oriented code,
UML's implementation concerns render it less suitable for
developing and validating a conceptual model with domain
experts. This can be remedied by using a fact-oriented approach
for the conceptual modeling, from which UML class diagrams
may be derived. This paper examines the relative strengths and
weaknesses of UML and Object Role Modeling (ORM) for data
modeling, and indicates how models in one notation can be
translated into the other.

http://www.orm.net/uml_orm.html (5 of 7) [27/09/04 19:18:17]

http://www.inconcept.com/JCM/index.html

UML and ORM

A comparison of UML and ORM for data modeling (138K)

Data modeling in UML and ORM revisited
This paper appeared in Proc. EMMSAD'99: 4th IFIP WGS8.1
International Workshop on Evaluation of Modeling Methods in
Systems Analysis and Design, Heidelberg, Germany in June,
1999.

This paper further examines the relative strengths and
weaknesses of ORM and UML for data modeling, focusing on
attribute multiplicity, association arity, advanced constraints
and subtyping. This analysis is given wider generality by
addressing various language design principles (e.g. parsimony,
orthogonality, convenience, expressibility) and illustrating how
metamodel extensibility can be used to capture some features
of one approach within the other.

Data modeling in UML and ORM revisited (99K)

Data modeling in UML and ORM: a

comparison
This paper appeared in the Journal of Database Management,

vol. 10, no. 4 (Oct-Dec, 1999), Idea Group Publishing, Hershey
PA, USA.

This paper presents a detailed comparison of the conceptual
data modeling capabilties of UML and ORM. It is based on the
EMMSAD'98 conference paper listed above, but has been
revised and extended for journal publication.

Data modeling in UML and ORM: a comparison (159K)

http://www.orm.net/uml_orm.html (6 of 7) [27/09/04 19:18:17]

http://www.idea-group.com/
http://www.orm.net/pdf/JDM99.pdf

UML and ORM

Augmenting UML with Fact-orientation
This paper first appeared in the workshop proceedings: UML: a

critical evaluation and suggested future, HICCS-34 conference
(Maui, January 2001), © 2000 IEEE.

This paper discusses various problems with UML (e.g. poor
support for verbalization, weak constraint primitives, and
multiplicity constraints that do not scale properly for n-aries)
and shows how ORM can compensate for these deficiencies.

Augmenting UML with Fact-orientation (119K)

Evolving UML: Opportunities and Challenges

This slide presentation was included in the panel session

"Research Issues for the Unified Modeling Language and Unified
Process", at the IRMA-2002 Conference held in Seattle May
2002. It includes links to several proposals for UML 2.0, and
notes some weaknesss of UML class diagrams in comparision
with ORM.

ORM Home ORMin Detail Modeling Issues
Conceptual Queries UML and ORM Resources

All diagrams on this site were created with Microsoft Visio.

http://www.orm.net/uml_orm.html (7 of 7) [27/09/04 19:18:17]

http://www.orm.net/IRMA2002.htm
http://www.orm.net/index.html

Resources

ORM

ORM in Detail

Modeling
Issues

Conceptual
Queries

UML and ORM

RESOURCES

Here you'll find news about ORM tools and courses as well as
links to other web resources featuring ORM-related material.

.NET Show on ORM

The 25th episode of the .NET Show focused on ORM, including
an interview with Terry Halpin, Pat Hallock and Dick Barden,
and demonstrations of the ORM and database modeling features
of Microsoft Visio for Enterprise Architects.

ORM tools

(1) Microsoft Visio Enterprise 2000 includes an ORM drawing
stencil, as well as an ORM source model stencil that can be used
to build database models and generate DDL code. Although
functionally powerful, this ORM source model is capable of
displaying only basic ORM constraints. Microsoft Visio
Professional 2002 includes a basic ORM drawing stencil, but not
the ORM modeling solution. For the Visio 2002 releases, Visio
Enterpise was discontinued as a separate product. Instead it
was significantly enhanced and renamed as Microsoft Visio for
Enterprise Architects (VEA), and is available only as part of
Visual Studio .NET Enterprise Architect (VSEA).

VSEA was released mid-January 2002 to MSDN Universal
subscribers, by download from MSDN. VSEA is now available for
general release in CD or DVD format (see VS .NET pricing

details at MSDN). The VEA component of VSEA includes Visio

Professional 2002 as well as enhanced versions of the database
and software modeling solutions formerly in Visio Enterprise
2000: its database modeling solution provides deep support for
ORM and logical/physical database modeling. Details on a COM
API to the database modeling engine for this tool are accessible
at websites maintained by John Miller (see below), and a free
add-on that uses this API to expose data model details in the
form of an XML document has been released by Scot Becker
(see below). Microsoft has published the following Features

Overview for Visual Studio .NET Enterprise Architect and the

http://www.orm.net/resources.html (1 of 11) [27/09/04 19:18:33]

http://www.orm.net/index.html
http://msdn.microsoft.com/theshow/Episode025/default.asp
http://msdn.microsoft.com/vstudio/prodinfo/purchase/pricing.asp
http://msdn.microsoft.com/vstudio/prodinfo/purchase/pricing.asp
http://msdn.microsoft.com/vstudio/productinfo/features/eafeatures.asp
http://msdn.microsoft.com/vstudio/productinfo/features/eafeatures.asp

Resources

following Feature-by-feature comparison of the database and
software modeling solutions in Visio Professional 2002 and
Visual Studio .NET Enterprise Architect.

In addition to the issues discussed in the ReadMe file for VEA,
workarounds for some known bugs in the original VEA release
are being published as Knowledge Base articles on Microsoft's
technical support site. A draft version of those KB articles is
accessible below.

Knowledge base articles for database modeling solution in

Microsoft Visio for Enterprise Architects (146K)

Microsoft Visio for Enterprise Architects 2002 Service Release 1,
which is now available as a free download. If you have installed
the official first release of VEA, you can install this patch right
over the top. The download is large (about 37 MB) since it also
incorporates all the bug fixes and new features in the underlying
Visio Professional 2002 SR1. As an alternative to download, it is
expected that the VEA SR1 patch will also be available later on
CD within MSDN upgrades.

Fixes for all the bugs mentioned in the draft version of the KB
articles are included in the latest release of Microsoft Visio for
Enterprise Architects, which shipped on 2003, April 24 as part of
Microsoft Visual Studio .NET 2003 Enterprise Architect edition.

VEA is built on top of Visio Standard 2002 and Visio Professional
2002, for which a Software Development Kit for Visio 2002 and

a Visio Viewer are now available. The free Visio Viewer enables

users without Visio installed to view (but not edit) your Visio
diagrams.

The first eight of a series of articles on how to use the database
modeling solution within Visio for Enterprise Architects were first
published in the Journal of Conceptual Modeling (see InConcept
entry below). Here are slightly revised versions of these

articles:

Microsoft's new database modeling tool: Part 1 (598K)

http://www.orm.net/resources.html (2 of 11) [27/09/04 19:18:33]

http://msdn.microsoft.com/library/en-us/dnvisio02/html/visdbcomp.asp
http://msdn.microsoft.com/library/en-us/dnvisio02/html/visdbcomp.asp
http://msdn.microsoft.com/library/en-us/dnvisio02/html/visdbcomp.asp
http://www.orm.net/pdf/KBarticles.pdf
http://www.orm.net/pdf/KBarticles.pdf
http://msdn.microsoft.com/downloads/default.asp?URL=/downloads/sample.asp?url=/msdn-files/027/001/894/MsdnCompositeDoc.xml
http://www.microsoft.com/downloads/details.aspx?FamilyID=8fad9237-c0a7-4b80-a5df-46ce54dad2df&DisplayLang=en
http://www.orm.net/pdf/JCM2001June.pdf

Resources

Microsoft's new database

modeling tool:

Part 2 (447K)

Microsoft's new database

modeling tool:

Part 3 (231K)

Microsoft's new database

modeling tool:

Part 4 (252K)

Microsoft's new database

modeling tool:

Part 5 (255K)

Microsoft's new database

modeling tool:

Part 6 (228K)

Microsoft's new database

modeling tool:

Part 7 (290K)

Microsoft's new database

modeling tool:

Part 8 (505K)

rYYYYYTY

Microsoft has also published revised versions of five of these
articles on its MSDN website: Visio-Based Database Modeling in

Visual Studio .NET Enterprise Architect: Part 1; Part 2; Part 3;
Part 4; Part 5.

Visio for Enterprise Architects is built on top of Visio Professional
2002, which itself is built on top of Visio Standard 2002. A
Software Development Kit for Visio 2002 to assist users to
customize their own Visio solutions is now available for
download.

A free Visio Viewer to enable users who have not purchased
Visio to view Visio files is now available for download.

(2) The former ORM tool known as VisioModeler is now freely
available as an unsupported product from Microsoft Corporation
(as a 25 MB download). Models developed in VisioModeler may
be exported to Microsoft's current and future ORM solutions. To
obtain the free VisioModeler download, go to
http://download.microsoft.com, search by selecting Keyword
Search, enter the keyword "VisioModeler", select your operating
system (e.g. Windows XP, Windows 2000, Windows 95,

http://www.orm.net/resources.html (3 of 11) [27/09/04 19:18:33]

http://www.orm.net/pdf/JCM2001Aug.pdf
http://www.orm.net/pdf/JCM2001Oct.pdf
http://www.orm.net/pdf/jcm2002jan.pdf
http://www.orm.net/pdf/jcm2002mar.pdf
http://www.orm.net/pdf/jcm2002may.pdf
http://www.orm.net/pdf/jcm2002july.pdf
http://www.orm.net/pdf/jcm2002dec.pdf
http://msdn.microsoft.com/library/en-us/dv_vstechart/html/vstchvseamodelingp1.asp
http://msdn.microsoft.com/library/en-us/dv_vstechart/html/vstchvseamodelingp1.asp
http://msdn.microsoft.com/library/en-us/dv_vstechart/html/vstchvseamodelingp2.asp
http://msdn.microsoft.com/library/en-us/dv_vstechart/html/vstchvseamodelingp3.asp
http://msdn.microsoft.com/library/en-us/dv_vstechart/html/vstchVisio-BasedDatabaseModelingInVisualStudioNETEnterpriseArchitectPart4.asp
http://msdn.microsoft.com/library/en-us/dv_vstechart/html/vstchVisio-BasedDatabaseModelingInVisualStudioNETEnterpriseArchitectPart5.asp
http://msdn.microsoft.com/downloads/default.asp?URL=/downloads/sample.asp?url=/msdn-files/027/001/894/MsdnCompositeDoc.xml
http://www.microsoft.com/downloads/details.aspx?FamilyID=8fad9237-c0a7-4b80-a5df-46ce54dad2df&DisplayLang=en

Resources

Windows 98 or NT 4.0), change the setting for "Show Results
for" to "All Downloads", and hit the "Find It!" button. This
should bring up a download page that includes the title
"VisioModeler (Unsupported Product Edition)". Clicking on this
will take you to the link for the download file MSVM31.exe. Click
on this to do the download. The 25 MB file takes just over 2
hours to download on a 28.8 k modem. Here is the general
download page. VisioModeler includes an online manual to

explain its use. In addition, you may download this basic tutorial
on how to use VisioModeler (381k).

(3) A modeling tool caled CaseTalk based on the ORM-dialect
known as Fully Communication Oriented Information Modeling
(FCO-IM) is available from Bommeljé Crompvoets en partners
b.v., headquartered in Utrecht, The Netherlands. To find out
more about this tool, click this CaseTalk news page.

Books

(1) For an in-depth treatment of ORM, see Halpin, T.A. 2001,
Information Modeling and Relational Databases, published by
Morgan Kaufmann Publishers (ISBN 1-55860-672-6). Details on

this book are available at the book's website, which includes a

link to a Companion Website that includes additional
appendices, answers to odd numbered questions etc. for
download. The book can be ordered online at the publisher's
website (above) or at various other sites, for example at
Barnes&Noble or at Amazon.

The April 2001 issue of the Journal of Conceptual Modeling ran
an article of mine that overviewed the contents of the above
book, including an excerpt from the data warehousing section.
Here is a slightly revised version of this article:

Book overview, and data warehousing (253K)

The first and second printings of the book included a number of
errors, as detailed in the Book Errata.

http://www.orm.net/resources.html (4 of 11) [27/09/04 19:18:33]

http://download.microsoft.com/
http://www.orm.net/pdf/VMuse.doc
http://www.orm.net/pdf/VMuse.doc
http://www.casetalk.com/news.html
http://www.mkp.com/
http://www.mkp.com/books_catalog/catalog.asp?ISBN=1-55860-672-6
http://btobshop.barnesandnoble.com/textbooks/booksearch/isbninquiry.asp?userid=68W63957LO&mscssid=PGUFW4HF4C4C9LKE9P65NWSV1QNH72A5&btob=Y&isbn=1558606726
http://www.amazon.com/exec/obidos/ASIN/1558606726/o/qid%3D987864198/sr%3D2-1/002-1938724-2527255
http://www.orm.net/pdf/JCM2001Apr.pdf
http://www.orm.net/Errata.htm

Resources

(2) The following book was published on 2003 August 28:

Halpin, T., Evans, K., Hallock, P. & MacLean B. 2003, Database
Modeling with Microsoft Visio for Enterprise Architects, Morgan
Kaufmann Publishers: San Francisco, ISBN 1-55860-919-9.

This is the first book to provide a detailed, authoritative
coverage of how to use Microsoft's high end Visio tool to design
databases. The book may be ordered online from various
booksellers, including this Amazon website and this Barnes &

Noble website.

The first printing of the book included a number of errors, as
detailed in the Book Errata.

(3) For a discussion of research topics on UML, see Siau, K. &
Halpin, T.A. (eds), UML: Systems Analysis, Design and
Development Issues published by Idea Group Publishing. This
book includes a chapter providing an in-depth comparision of
ORM and UML. Details on this book are available at the book's

website.

ORM courses

Microsoft recently added Course 2090 to its official curriculum.
This 3-day, instructor-led course is titled "Modeling Business
Requirements to Create a Database Using Microsoft Visual
Studio .NET Enterprise Architect". It focuses on the use of ORM
and Visio for Enterprise Architects to perform database
modeling -- see Course 2090 details. Instruction for this course

is available from various qualified ORM instructors and Microsoft
Certified Trainers.

Before its acquisition by Microsoft Corporation, Visio certified a
number of consulting partners to offer training courses in ORM.
One of these partners, InConcept Inc., offers 5-day ORM course

at Alto Consulting & Training in Minneapolis.

http://www.orm.net/resources.html (5 of 11) [27/09/04 19:18:33]

http://www.amazon.com/exec/obidos/tg/detail/-/1558609199/qid=1060838003/sr=1-2/ref=sr_1_2/103-2244301-3920628?v=glance&s=books
http://search.barnesandnoble.com/booksearch/isbnInquiry.asp?userid=68W63957LO&isbn=1558609199&itm=2
http://search.barnesandnoble.com/booksearch/isbnInquiry.asp?userid=68W63957LO&isbn=1558609199&itm=2
http://www.orm.net/ErrataVEA.htm
http://www.idea-group.com/books/details.asp?id=26
http://www.idea-group.com/books/details.asp?id=26
http://www.microsoft.com/TRAINCERT/SYLLABI/2090AFINAL.asp
http://www.altotraining.com/Developer/Courses/orm110.asp

Resources

InConcept, Inc.

InConcept, Inc. is a database consulting

firm dedicated to excellence in data
modeling. Emphasis is placed on the
conceptual model using Object Role
Modeling (ORM). This higher level design
iIs more suitable for review with customers
while the logical and physical models,
derived from the conceptual model, are
more suited to the technical staff.
Modeling a database at the conceptual
level significantly reduces design errors, thus reducing overall
cost. Using ORM enables the designer and the business user to
communicate and capture business rules more readily and
easily.

The Journal of Conceptual Modeling is a free journal produced

by InConcept and dedicated to data modeling, design, and
implementation issues. The goal of this publication is to
promote communication between professionals, share
knowledge, and to educate our readers. The target audience is
large: database professionals and developers, end users and
business professionals, students and teachers, and anyone else
using, developing, or considering development of a database
system.

Business Rules Community

The Business Rules Community is an online vertical community
for business rules professionals. Membership is free, and
includes access to the Business Rules Journal, which includes
regular columns by renowned experts in the business rules
movement, as well as feature articles by leading industry
professionals.

This journal now includes a regular column by Terry Halpin. The
initial series of articles in this column focuses on verbalization of
business rules. Some weeks after the publication of one of these
articles on the business rules community website, a pdf version
of the article is typically made available below. If available, you

http://www.orm.net/resources.html (6 of 11) [27/09/04 19:18:33]

http://www.inconcept.com/
http://www.inconcept.com/JCM/index.html
http://www.brcommunity.com/index.shtml

Resources

may download the pdf version. Otherwise, click the Business
Rules Community (BRC) website link to view it there.

Modeling Concepts: Setting the Scene

‘s, Verbalizing Business Rules (part 1):

PDF file (304K);

¥

~

n

“f~. Verbalizing Business Rules (part 2):

PDF file (304K);

e

=~

n

“fs. Verbalizing Business Rules (part 3):

PDF file (301K);

e

~

n

“fs. Verbalizing Business Rules (part 4):

PDF file (316K);

Ve

=~

n

PDF file (286K);

e

=~

n

“f5. Verbalizing Business Rules (part 6):

“fs. Verbalizing Business Rules (part 5):

PDF file (269K);

e

=~

n

s Verbalizing Business Rules (part 7):

PDF file (279K);

e

P

n

PDF file (330K);

e

~

n

/5 Verbalizing Business Rules (part 8):

BRC

BRC

BRC

BRC

BRC

BRC

BRC

Professor Robert Meersman

Professor Robert Meersman is one of the original ORM pioneers,

http://www.orm.net/resources.html (7 of 11) [27/09/04 19:18:33]

http://www.brcommunity.com/a2002/b126.html
http://www.orm.net/pdf/VBR1.pdf
http://www.brcommunity.com/a2003/b138.html
http://www.brcommunity.com/a2003/b138.html
http://www.orm.net/pdf/VBR2.pdf
http://www.brcommunity.com/a2003/b152.html
http://www.brcommunity.com/a2003/b152.html
http://www.orm.net/pdf/VBR3.pdf
http://www.brcommunity.com/a2003/b163.html
http://www.brcommunity.com/a2003/b163.html
http://www.orm.net/pdf/VBR4.pdf
http://www.brcommunity.com/a2003/b172.html
http://www.brcommunity.com/a2003/b172.html
http://www.orm.net/pdf/VBR5.pdf
http://www.brcommunity.com/a2004/b179.html
http://www.brcommunity.com/a2004/b179.html
http://www.orm.net/pdf/VBR6.pdf
http://www.brcommunity.com/a2004/b183.html
http://www.brcommunity.com/a2004/b183.html
http://www.orm.net/pdf/VBR7.pdf
http://www.brcommunity.com/a2004/b198.html
http://www.brcommunity.com/a2004/b198.html
http://www.orm.net/pdf/VBR8.pdf
http://www.brcommunity.com/a2004/b205.html
http://www.brcommunity.com/a2004/b205.html

Resources

introducing subtyping to the methodology when it was first
developed in the Control Data research institute at the Free
University of Brussels (VUB). He has been an active researcher
in information system semantics and conceptual query
technology ever since, and is currently exploring the use of ORM
as an ontological basis for the semantic web. He is currently a
professor in the department of computer science at the Free
University of Brussels, and is the director of its STARlab
research laboratory. His home page includes teaching and

research information.

Dr. Arthur ter Hofstede

Dr. Arthur ter Hofstede, a prominent ORM researcher, is an
Associate Professor and Leader of the Cooperative Information
Systems Special Interest Group within the Faculty of
Information Technology at the Queensland University of
Technology in Brisbane, Australia. His home page includes
teaching and research information, as well as an extensive list
of publications, most of which address data modeling issues.

Dr. Erik Proper

Dr. H. A. (Erik) Proper, is a lecturer within the informatics

subfaculty at the University of Nijmegen, The Netherlands. His
theoretical and industrial research covers many information
systems topics, including schema evolution, schema
optimization and conceptual query technology. His website
includes an extensive list of downloadable research publications,
many of them directly related to ORM.

John Miller

John Miller is the principal of Perpetual Data Systems, a
consultancy based in California. John maintains "Wikis" with
details about the unsupported COM API to the database
modeling solution in Microsoft Visio for Enterprise Architects.
Here is his ORM Wiki, and here is his Viso Modeling Engine Wiki.

Scot Becker

Scot Becker is the principal of Orthogonal Software, a

http://www.orm.net/resources.html (8 of 11) [27/09/04 19:18:33]

http://www.starlab.vub.ac.be/staff/Robert/default.htm
http://www.fit.qut.edu.au/~terhofst
http://www.cs.kun.nl/~erikp
http://www.pdata.com/jMM
http://www.pdata.com/ORM
http://www.pdata.com/VME
http://www.orthogonalsoftware.com/

Resources

consultancy based in Minneapolis. Scot has released Orthogonal
Toolbox, a free add-on to Visio for Enterprise Architects that

exposes most of the model details stored in an ORM source
model or a logical database model as an XML document. This
information is extracted using the COM API to the modeling
engine mentioned above.

Scot has now added an informative blog site
ObjectRoleModeling.com that includes lots of useful tips and

news about ORM and related database modeling topics.

Ken North

Ken North is a database practitioner and author of several

publications on databases, including the following articles that
discuss ORM: 'Modeling, metadata and XML', 'Modeling, data

semantics and natural language' and 'Database design for prime

time'.

Conferences

The 7th International Business Rules Forum will be held in Las

Vegas on November 7-11, 2004. The conference program
includes many sessions by leading practitioners on state-of-the
art approaches to business rules. The Monday Nov 8 program
includes a half-day tutorial by Terry Halpin on Verbalizing,
Visualizing, and Validating Business Rules.

Recent conferences:

The Data Management Association is an international body of
professionals dedicated to improving the management of data.
The Sixteenth DAMA International Symposium and 8th Meta-
Data Conference was held in Los Angeles, California, May 2 - 6,
2004. The program included over 100 speakers from all over
the world. Terry Halpin presented in a paper session, a night
school, and a panel session.

The Sixteenth International Conference on Advanced

http://www.orm.net/resources.html (9 of 11) [27/09/04 19:18:33]

http://www.orthogonalsoftware.com/products.html
http://www.orthogonalsoftware.com/products.html
http://www.objectrolemodeling.com/
http://ourworld.compuserve.com/homepages/Ken_North
http://www.webtechniques.com/archives/1999/06/data/
http://www.webtechniques.com/archives/1999/07/data/
http://www.webtechniques.com/archives/1999/07/data/
http://ourworld.compuserve.com/homepages/Ken_North/IM_Revwr.htm
http://ourworld.compuserve.com/homepages/Ken_North/IM_Revwr.htm
http://www.businessrulesforum.com/
http://www.dama.org/
http://www.wilshireconferences.com/MD2004/index.htm
http://www.wilshireconferences.com/MD2004/index.htm
http://www.cs.rtu.lv/caise2004/

Resources

Information Systems Engineering was held in Riga, Latvia, June
7 - 11, 2004. In conjunction with this conference, the ninth IFIP
WG 8.1 International Workshop on Evaluation of Modeling
Methods in Systems Analysis and Design was held.

The European Business Rules Conference was held in
Amsterdam, The Netherlands, June 16 - 18, 2004. This
conference included a half day tutorial by Terry Halpin on
Business Rules and ORM.

The 6th International Business Rules Forum was held in
Nashville, TN on November 2-6, 2003. The conference program
included many sessions by leading practitioners on state-of-the
art approaches to business rules.

The Entity Relationship Conference series addresses all forms of
conceptual modeling (ER, ORM, UML etc.). The ER-2003

conference was held in Chicago, USA on October 13-16, 2003.

The program included both academic and industrial
presentations, including two papers on ORM.

The eighth IFIP WG 8.1 International Workshop on Evaluation of
Modeling Methods in Systems Analysis and Design (EMMSAD'03)
was held in Velden, Austria on June 16-17, 2003, in conjunction
with CAISE'03, the 15th Conference on Advanced Information
Systems Engineering. The EMMSAD workshop included two
papers related to ORM.

The Fifteenth DAMA International Symposium and 7th Meta-
Data Conference was held in Orlando, Florida, April 27 - May 1,

2003. The program included 130 speakers from all over the
world. Terry Halpin presented a session on Metamodels for ER,

ORM and UML: a Critical Review, participated in the Data
Modeling Panel: Have Things Really Changed?, and was

awarded the DAMA International Achievement Award for
Education.

The IRMA-2002 Conference (Seattle, 2002 May 19-22) included
a panel session on research issues in UML. For a copy of the
slides presented by Terry Halpin at this panel, see the UML and
ORM section.

http://www.orm.net/resources.html (10 of 11) [27/09/04 19:18:33]

http://www.cs.rtu.lv/caise2004/
http://www.eurobizrules.org/home.htm
http://www.businessrulesforum.com/
http://www.er.byu.edu/er2003/
http://www.er.byu.edu/er2003/
http://www.ait.unl.edu/siau/conference/emmsad03-CFP.htm
http://www.ifi.uni-klu.ac.at/caise03/01_home/
http://www.wilshireconferences.com/MD2003/index.htm
http://www.wilshireconferences.com/MD2003/index.htm
http://www.wilshireconferences.com/MD2003/conf-tues.htm#1130halpin
http://www.wilshireconferences.com/MD2003/conf-tues.htm#1130halpin
http://www.wilshireconferences.com/MD2003/conf-tues.htm#1515berger
http://www.wilshireconferences.com/MD2003/conf-tues.htm#1515berger

Resources

The International DAMA 2002 Symposium, held in San Antonio,

Texas, April 29 - May 2, 2002, included three presentations
related to ORM. Terry Halpin presented an Introduction to ORM,
and participated in a panel discussion on data modeling
approaches, while Chandrika Shankaranayan provided an
overview of the modeling tools in Visual Studio .NET Enterprise
Architect.

Microsoft Tech Ed 2002, held April 9-13 in New Orleans,

included hundreds of in-depth technical sessions on Microsoft
Visual Studio .NET, XML web services, the .NET platform,
building secure applications, and other Microsoft technologies
and related products. The Visio-based modeling solutions in
Visual Studio .NET Enterprise Architect featured in two sessions:
"Conceptual Database Design in Visual Studio .NET" (presented
by Terry Halpin) and "UML modeling in Visual Studio .NET
Enterprise Architect” (presented by Lance Delano).

Microsoft's Professional Developer Conference 2001 (PDC 2001)

held in Los Angeles, October 22-26, 2001, included a session co-
presented by Terry Halpin and John Miller on the database
modeling solution within Visio for Enterprise Architects (included
in Visual Studio .NET Enterprise Architect).

ORM Home ORM in Detail Modeling Issues
Conceptual Queries UML and ORM Resources

All diagrams on this site were created with Microsoft Visio

http://www.orm.net/resources.html (11 of 11) [27/09/04 19:18:33]

http://www.wilshireconferences.com/MD2002/index.htm
http://msdn.microsoft.com/events/teched/
http://msdn.microsoft.com/events/pdc/
http://www.orm.net/index.html

T ERRY H A L P

N

Business Rules and
Object Role Modeling

Database Programming &Design, October 1996, reprinted with permission.

To capture
fast-paced,
complex businesses,
data modelers
must consider
methods that

go beyond
traditional ER

diagramming

0 capture fast-paced, com-
plex businesses, data model-
ers must consider methods
that go beyond traditional
ER diagramming.

In spite of remarkable progress in
computing technology, many businesses
are still struggling with the problem of
modeling and accessing data. Although
faster hardware and graphical interfaces
do help somewhat, they do not address
the problem’s fundamental cause. A
business is basically a complex, evolving
“organism”, about which we need to
communicate efficiently. So our language
for modeling and querying must be clear
yet detailed enough to capture the busi-
nessis complexity and remain easy to
change as the business evolves.

Happily, such a linguistic framework
already exists. It’s called Object Role
Modeling (ORM), and we'll look at
some of the key features that distinguish
ORM from entity relationship (ER) and
object oriented (OO) approaches.

WHAT IS ORM?

ORM is a method for designing and
querying database models at the concep-
tual level, where the application is de-
scribed in terms readily understood by
users, rather than being recast in terms of
implementation data structures. This
high-level approach is philosophically in
tune with the business rules movement
evangelized by such industry leaders as
Barbara von Halle and Ron Ross.

Typically, a modeler develops an in-
formation model by interacting with
others who are collectively familiar with

the application. Because these subject
matter experts need not have technical
modeling skills, reliable communication
occurs by discussing the application at a
conceptual level, using natural language,
analyzing the information in simple
units, and working with instances (sam-
ple populations).

ORM is specifically designed to im-
prove this kind of communication. It
comes in a variety of flavors, including
natural language information analysis
method (NIAM), which is best known
in Europe, where the method originated
in the mid-1970s. Since then, ORM has
been extended and refined by researchers
in Australia, Europe, the U.S., and else-
where.

Unlike ER, which has dozens of dif-
ferent dialects, ORM has only a few di-
alects with only minor differences.

Object Role Modeling got its name
because it views the application world as
a set of objects (entities or values) that
plays roles (parts in relationships). We
sometimes call it fact-based modeling
because ORM verbalizes the relevant
data as elementary facts. These facts
canit be split into smaller facts without
losing information.

Suppose Table 1 includes data about
athletes competing in the recent
Olympic Games. For simplicity, assume
the athletes are identified by their names.
The first row contains two elementary
facts: the Athlete named “Ann Arbor”
represented the Country coded
“USA,"and the Athlete named “Ann Ar-
bor"was born in the Country coded
“USA”.The null value “?"indicates the
absence of a fact to record Bill Abbot’s
birthplace. All conceptual facts are ele-

DATABASE PROGRAMMING & DESIGN

mentary rather than compound, so null
values do not feature in verbalization.

Although Table 1 includes five fact
instances, it has only two fact types: Ath-
lete represents Country; Athlete was
born in Country. Refer to Figure 1 to see
how this table is modeled in ORM. Two
object types, Athlete and Country, are
shown as named ellipses with their ref-
erence schemes in parenthesis: Athletes
are identified by their names, and coun-
tries are identified by codes (for example,
“USA).

A role is a part played by an object in
a relationship and is shown as a box con-
nected to its object type. In the relation-
ship, Athlete represents Country, Ath-
lete plays the role of representing, and
Country plays the role of being repre-
sented.

You can permit the same fact to be
read in different directions (for example,
“Country is birthplace of Athlete”is just
the reverse reading of “Athlete was born
in Country”). ORM allows relationships
with one role (for example, Athlete
runs), two roles, three roles, or as many
roles as you like. Because facts are ele-
mentary, the number of roles rarely ex-
ceeds four.

Each role may be associated with a
column of the associated fact table. Fig-
ure 1 includes fact tables for both fact
types. Although sample populations are
very useful for checking and understand-
ing constraints, they are not part of the
conceptual schema itself.

The black dot is a mandatory role
constraint (each Athlete represents a
Country). The arrow-tipped bars are
uniqueness constraints (for example,
each Athlete represents at most one
Country).

NO ATTRIBUTES

Unlike ER modeling, ORM does not
use attributes. In ER, you might model
two fact types by saying the entity type
Athlete has the attributes “country-Rep-
resented”and “birthplace,”both of which
are based on the domain Country. If
youire used to ER, you might think this
approach is a better way of doing things.
But itis not. Let's see why.

The first problem with using attrib-
utes in the initial model is that they are
often unstable. Suppose we decide to add
the fact type: Country has Population.
This addition would now force us to
show Country as an entity type, so we
would have to replace our attribute por-
trayal by relationship types.

In ORM, all we have to do is add the
new fact type; nothing else changes, and
we have gained the added benefit of re-
vealing the conceptual object types (se-
mantic domains) that bind the schema
together. One major benefit is that con-

Athlete Country Birthplace
Ann Arbor USA USA

Bill Abbot UK g

Chris Lee USA NZ

TABLE 1. Some data about athletes.

ceptual queries may now be formulated
in terms of continuous paths through the
schema. Moving from a role through an
object type to another role amounts to a
conceptual join. ER diagrams typically
omit domains, so you must look them
up in a table.

Another problem with attributes is
that they make it awkward to talk about
fact populations. ER diagrams are simply
too cumbersome for performing the
population checks that are so vital for
validating rules with clients.

Displaying some facts as attributes
and some as relationships leads to the re-
quirement for different notations to ex-
press the same kind of constraint or rule.
Apart from this unnecessary complexity,
some ER notations don't let you express
a constraint on an attribute, even if that
constraint could be expressed with the
fact modeled as a relationship.

So donit agonize over whether to
model a particular feature as an attribute
or relationship. Just model it as a rela-
tionship. Does this mean you should
never use attributes? Not quite. When
designing or transforming a model, you
should avoid attributes. In other words,
you should delay making a commitment
on which features are less important than
others. However, once you have the full
model, it is possible to determine relative
importance; displaying less important
features as attributes can help provide a
compact view of the model.

ORM includes abstraction tech-
niques so that you can display “minor”
fact types as attributes. In fact, the best
way to obtain an ER diagram is by ab-
stracting it from an ORM schema

“MIXFIX N-ARIES”

A relationship with one role (for ex-
ample, runs, smokes) is unary. The rela-
tionships we saw in Figure 1 were binary
(two roles) with the verb phrase written

in “infix” position (between the objects).
Now look at Figure 2. The diagram
shows the ternary (three roles) fact type:
Room at Time is used for Activity. In
ORM, as in logic, a predicate is just a
sentence with object-holes in it. Each
object hole is shown as an ellipsis (“...").

To allow natural expression in Eng-
lish as well as cater to other languages
(such as Japanese, where verbs usually
come at the end rather than in the mid-
dle), ORM allows “mixfix” predicates
(that is, the object holes can be mixed
into the predicate at any position). If you
fill each hole with an object term, you get
a sentence that is a fact instance. For ex-
ample, Room “23” at Time “Mon 9am” is
used for Activity “IM class.”

If a predicate is postfix unary (placed
after the object) or infix binary (inserted
between two objects), then the object
positions are known. In those cases,
predicates may omit the ellipses indicat-
ing object holes.

Ann Arbor| USA
Bill Abbot | UK
Chris Lee

USA

represents

Athlete
(name)

Country
(code)

was born in/is birthplace of

Ann Arbor | USA
Chris Lee |NZ

Figure 1. Populated ORM diagram.

Figure 2 includes a sample popula-
tion for the ternary fact type. If this pop-
ulation is significant, then two unique-
ness constraints (as shown in the ORM
diagram) exist. The left-most constraint
says that the same Room at the same
time is used for at most one activity: This
statement is probably correct. The right-
most constraint says that at most one
room is used at the same time by any
given activity. This statement is possibly
correct.

For checking, you must carefully test
the constraint verbalization. To double

OCTOBER 1996

check, discuss counterexamples (extra
rows that would violate the constraint).
For example, to test the right-most con-
straint, you could add the row: (“50,
Mon 9am, TB demq”). The population
would then indicate that on Monday at 9
a.m. the Toolbook demonstration uses
both rooms 45 and 50. Is this kind of
thing possible? Testing fact instances
makes it easier for the domain expert to
confirm it one way or the other.

Notice how the ternary formulation
simplifies modeling and checking. With
typical ER and OO tools, you must
make the fact type binary by using arti-
ficial entity types (for example, Room-
Time or Time-Activity), which makes it
extremely awkward to populate and per-
haps impossible to express all the con-
straints. For example, using your favorite
ER notation, how would you capture the
Time-Activity uniqueness constraint?

Activity
(name)

. at ... is used for ...

< N
>

<
<

v

23| Mon 9am | IM class
23| Mon 4pm | TB demo
23| Tue 2pm | IM class
45| Mon 9am | TB demo

Figure 2. A ternary fact type.

Making all the facts binary is an un-
wanted burden. Why should you have to
break ternary rules into two stages and
worry about which pair to take first?
ORM lets you model such things natu-
rally without being restricted by infix bi-
nary straightjackets.

EXPRESSIVE RULE NOTATION

ORM has a rich language for ex-
pressing business rules, either graphically
or textually. Consider Figure 3, which
shows an ORM schema. A verbal ver-
sion of the constraints would begin with
three simple (n:1) uniqueness con-
straints: one compound (m:n) unique-
ness constraint and two mandatory role
constraints, as follows:

reports to/supervises

directed/was directed by

Figure 3. Graphical rule notation in ORM.

Each Employee has at most one Empname.
Each Project was directed by at most one
Employee.

Each Employee reports to at most one Em-
ployee.

It is possible that some Employee
assessed more than one Project and that
some Project was assessed by more than
one Employee.

Each Employee has some Empname.

Each Project was directed by some Em-
ployee.

No Employee directed and assessed the
same Project.

If Employee el reports to Employee e2,
then it cannot be that Employee e2 reports
to Employee el.

The circled “X” in Figure 3 is a pair-
exclusion constraint: No Employee-Pro-
ject pair may occur in both the director
and assessment predicates. This fact is
verbalized as “No Employee directed and
assessed the same Project.” For example,
the constraint is violated if we populate
the fact types with: “e1 directed p1”; “el
assessed pl.”

Finally, the ring symbol with “as” is an
asymmetric constraint. You canit report
to yourself or to someone else who re-
ports to you, which is verbalized as: “If
Employee el reports to Employee €2,
then it cannot be that Employee €2 re-
ports to Employee el.” Because el and
e2 are not necessarily distinct, this in-
cludes the irreflexive case (you can't re-
port to yourself).

The fact type “Employee reports to
Employee” is a ring relationship, in
which both roles are played by the same
object type. ORM includes other ring
constraints such as intransitivity and
acyclicity.

Figure 4 illustrates a few more ORM
constraints. Each employee is either on
contract or tenured but not both, as
shown by the black dot connecting the

two relevant roles and the exclusion con-
straint between them.

The circled “u” is an external unique-
ness constraint, indicating that Emp-
name-Dept combinations are unique
(that is, within the same department,
employees have distinct names). The
dotted arrow is a pair-subset constraint:
Each manager who heads a department
also works for the same department.

The thick arrow indicates that Man-
ager is a subtype of Employee. In ORM,
subtypes should be well defined (for ex-
ample, each Manager is an Employee
who has Rank “mgr”). ORM also sup-
ports multiple inheritance. For example,
we might introduce another subtype
ContractEmployee, and then Contract-
Manager, which is a subtype of both
ContractEmployee and Manager.

ORM conceptual schemas basically
comprise fact types, constraints, and de-

{junior," 'senior,' 'mgr'}

Employee
(empnr)

Figure 4. Further constraint examples.

DATABASE PROGRAMMING & DESIGN

rivation rules. Derivation rules may be
arithmetic or logical. For example, the
fact type “Dept has NrStaff” may be de-
rived by counting instances of “Em-
ployee works for Dept.” The fact type
“Manager manages Employee” may be
derived from the path “Manager heads a
Dept that employs Employee.”

By now you might be getting the feel-
ing that ORM is too complicated. Actu-
ally, it's not. This stuff is taught to school
kids back in my home state, and I've al-
ready shown you most of the graphic
symbols. Because we express all facts in
the same way, using roles, the notation is
both uniform and simple to populate. So
itis easy to illustrate a lot of business
rules that actually apply to your business.

SCHEMA TRANSFORMS

Although the fact-based approach
gives greater schema stability, it is still
possible to describe the same feature in
different ways. For implementation,
ORM schemas are usually mapped to re-
lational database schemas, in which
many fact types may be grouped into a
single table. Different but equivalent
ORM schemas may map to different tar-
get schemas, which differ in efficiency.

Semantic optimization may often be
performed before the mapping takes
place. ORM includes a vast array of
schema transformations as well as opti-
mization heuristics to determine which
transformations to use. For a trivial ex-
ample, see the ORM schema in Figure 5.
This schema deals with teams that are
mixed doubles (one of each sex). The “2”
is a frequency constraint: If a team has
any players recorded, then it must have
two players recorded.

By default, Figure 6 maps to two re-
lational tables, one for Player and one for
Team. For optimization, the original
conceptual schema may be transformed
into Figure 5 before mapping. Here the
Sex object type has been absorbed into
the team membership predicate, special-
izing it into two predicates, one for each
Sex.

This new schema maps to only one
table (Team). If no other facts are
recorded about Players, this new schema
is more efficient, because queries and up-
dates involve just one table, with no need
for a join or referential integrity check.

Note the importance of a rich con-
straint language. To ensure that the
schemas in Figures 5 and 6 actually are
equivalent, we must be able to transform
any constraints in one to constraints in

{M,F)

represents

Figure 5. One way to model.

the other. For example, the frequency
constraint “2” is transformed into an
equality constraint (shown as a dotted
line with arrows at both ends) that says a
team has a male player if and only if it
has a female player.

The uniqueness constraint that each
player is of at most one sex is trans-
formed to an exclusion constraint be-
tween the two roles of Player. The exter-
nal uniqueness constraint (for each sex
and team there is at most one player)
reappears as two simple uniqueness con-
straints on the first roles of the has-male
and has-female predicates.

ORM’s expressive rule language and
rigorous transformation theory provide
a powerful, controlled means to reshape
and semantically optimize data models.

DESIGN METHOD

Like any good modeling method,
ORM is far more than a notation. It in-
cludes various design procedures to help
modelers develop and evolve their con-
ceptual models.

For analysis and design, we divide
large applications into appropriately

has male-

has female-
«—

represents

Figure 6. An equivalent model.

sized modules and then model them us-
ing the conceptual schema design proce-
dure (CSDP). Finally, the various sub-
schemas obtained in this way are merged
into a global schema. The CSDP itself
has seven main steps:

1. Transform familiar examples into
elementary facts, and apply quality
checks.

2. Draw the fact type, and apply a
population check.

3. Check for entity types that should
be combined, and note any arithmetic
derivations.

4. Add uniqueness constraints, and
check arity (number of roles) of fact
types.

5. Add mandatory role constraints,
and check for logical derivations.

6. Add value, set comparison, and
subtyping constraints.

7. Add other constraints, and perform
final checks.

You can find full explanations of this
procedure in the reference section. The
key to the CSDP’s success is that it be-
gins by verbalizing familiar information

EmployeeNr: 203101
Empname: Terry O’Farrell
Supervisor:

Projects Directed: 51, 65, 73, 84
Projects assessed: 70, 76

TABLE 2. An employee form.

examples in terms of simple facts. No
matter how information is presented (ta-
bles, forms, graphs, and so on), it is al-
ways possible to conceptualize it in this
way.

For example, a set of employee forms
like that shown in Table 2 could have
been used as input to the verbalization
that eventually resulted in the schema
shown earlier in Figure 3.

RELATIONAL MAPPING

ORM includes procedures for map-
ping and reverse engineering between
conceptual models and logical models.
By “logical models,” I mean implemen-
tation data models such as relational,
network, hierarchic, nested relational,
and various object-oriented models.

With an ORM tool, ORM models
can be automatically mapped to database
schemas for implementation on most

OCTOBER 1996

popular relational DBMSs. For example,
the ORM schema in Figure 3 maps to a
relational schema that can be specified in
SQL-92. For simplicity, referential ac-
tions are omitted, and the exclusion and
asymmetry constraints are shown as as-
sertions. Depending on the target sys-
tem, these assertions might be coded as
the following insert triggers or stored
procedures:

create table Employee(
empnr smallint not null
primary key,
empname varchar(20) not null,
supervisor smallint
references Employee)

create table Project(
projectnr smallint not null
primary key,
director smallint not null
references Employee)

create table Assessment(
empnr smallintnot null
references Employee,
projectnr smallint not null
references Project,
primary key(empnr, projectnr))
create assertion “Nobody directed and
assessed the same project”
check(not exists(select *
from Project X, Assessment Y
where X.director = Y.empnr
and X.projectnr = Y.projectnr))

create assertion “Reporting is
asymmetric”
check(not exists(select *
from Employee X, Employee Y
where X.empnr = Y.supervisor
and X.supervisor = Y.empnr))

OBJECT ORIENTATION

A lot of people have been discussing
so-called object oriented approaches to
information systems modeling. Al-
though object oriented programming

has advantages over traditional program-
ming, OO techniques do not provide the
best basis for information modeling.

ProjectNr: 51
ProjectTitle: Nuclear Fusion
Director: 203101
Assessors: 105123
107200

TABLE 3. A project form.

OO modeling includes a mixture of
conceptual, external, and internal con-
cepts. Some OO concepts, such as sub-
typing, belong to the conceptual level.
Some other aspects, such as hidden ob-
ject identifiers, are not conceptual be-
cause they are not part of human com-
munications in the application world.

OO models, as well as ER and rela-
tional models, complicate things by
grouping facts into attribute structures
(for example, “objects” and tables). When
validating facts with clients, it is prefer-
able to deal with one fact at a time. A
base ORM schema provides the simplest
way of validating facts.

Suppose our Employee-Project appli-
cation is intended to handle forms or re-
ports like those in Tables 2 and 3.

Some modelers see forms like this
and immediately want to model the in-
formation in the way the form is struc-
tured. This perspective leads to an OO
approach. For example, the application
might be modeled as Employee and Pro-
ject objects (Figure 7):

/" Employee

empnr
empname
[supervisor]
{projectsDirected}
{projectsAssessed}

é Project N

projectnr
projectTitle
director
{assessors}

/

Figure 7. Employee and Project objects.

Here unique attributes are under-
lined, optional attributes are enclosed in
square brackets, and set-valued attributes
are enclosed in curly brackets.

This schema is further away from
natural verbalization and does not facil-
itate sample populations (consider
checking the uniqueness constraints).
Moreover, the director fact type is repre-
sented twice, once as the set-valued {pro-
jectsDirected} attribute of Employee and
again as the director attribute of Project.
The same is true of the assessment fact
type.

Although this fact type redundancy
may be acceptable as a way to implement
the model—for example, in an OO data-
base we might do it this way, with for-

directed/was directed by
«“—>

assessed/was assessed by

Figure 8. A model fragment.

ward pointers kept synchronized with
the inverse pointers—this portrayal is
clearly not conceptual.

The same application may be mod-
eled in ORM as in Figure 3, if we add
the fact type: “Project has ProjectTitle.”
For discussion purposes, part of the
model is reproduced in Figure 8.

Note that the exclusion constraint is
missing from the OO model. Such con-
straints are not supported directly and
must be coded up separately. Even if the
exclusion constraint were added, where
would we put it?

The OO philosophy is to wrap con-
straints up inside objects. We could em-
bed it in just the Employee or the Project
object; however, at least conceptually, we
would forget about it when viewing the
other object.

We could embed it in both objects
and take care to synchronize this con-
straint redundancy. This approach is
quite nasty because the constraint must
be treated differently in the two objects.
In Employee, the constraint is enforced
by ensuring the intersection of projects-
Directed and projectsAssessed is empty.
In Project, it is enforced by ensuring di-
rector is not a member of assessors.
What has this got to do with conceptu-
alizing the application?

Finally, we could fudge by creating
another superobject in which to embed
the constraint, but this is even more of an
implementation issue. Modeling an ap-
plication is hard enough even at the con-
ceptual level. We certainly don't want to
complicate this task by simultaneously
worrying about implementation details.

The solution is using ORM first to
do the conceptual model, getting all the
benefits of its simplicity, populatability,
and richness, and then using it to apply
mapping procedures to generate other
views (such as ER, RM, and OO).

If you're still not convinced, consider

DATABASE PROGRAMMING & DESIGN

the problem of schema evolution. For ex-
ample, we might have originally de-
signed our application to have only one
assessor for each project. In ORM, the
only change is the uniqueness constraint
on the assessment fact type (see Fig-
ure 9).

If mapped to a relational schema, the
change is more dramatic. For example,
the separate Assessment table is elimi-
nated in favor of an assessor column in
the Project table, and the exclusion con-
straint is coded as the clause: “check(as-
sessor <> director).”

directed/was directed by
«—

Employee

«—
assessed/was assessed by

Figure 9. A minor change

In an OO schema, the {assessors} at-
tribute is replaced by a simple assessor
attribute, and the exclusion constraint in
the Project object must be coded as an
inequality instead of nonmembership.
Apart from the constraint change, access
to assessment facts is now quite different.

CONCEPTUAL QUERIES

Apart from conceptual modeling,
ORM s ideal for performing queries at
the conceptual level. Using an ORM
query tool, you can query a database
without any knowledge of how the facts
are grouped into implementation struc-
tures.

Suppose you want to list the titles of
those projects that have an assessor. This
request may be formulated as the follow-
ing ORM query: “List the ProjectTitle
of each Project that was assessed by an
Employee.”

If a project has at most one assessor
(as shown in Figure 9), this query gener-
ates the following SQL.:

select projectTitle from Project
where assessor is not null

Suppose the application evolves to al-
low more than one assessor per project
(as shown in Figure 8). You do not need
to change the ORM query, because con-
straints have nothing to do with the
meaning of our query. Underneath the
covers, however, the relational structures
have changed and the following SQL
query is generated:

select X1.projectTitle
from Project X1, Assessment X2
where X1.projectnr = X2.projectnr

We can easily formulate more sub-
stantial queries as conditioned paths
through ORM space. To sum up, ORM
simplifies modeling and query formula-
tion and minimizes the impact of
schema evolution. With the develop-
ment of ORM tools, the beginning of
the semantic revolution has at last ar-
rived.

REFERENCES

“Black Belt Design,” DBMS, 8(10),
September 1995.

Halpin, T.A. Conceptual Schema and
Relational Database Design, 2nd edition.
Prentice Hall Australia, 1995.

Halpin, T.A. “Object-Role Modeling:
An Overview.”

Terry Halpin, Ph.D, was the head of research
for the Database Division at Asymetrix Corp. and a
senior lecturer in computer science at the Univer-
sity of Queensland at the time of this writing. He
is currently Director of Database Strategy at Visio
Corporation .

MONTH 1996

Object-Role Modeling: an overview

Terry Halpin
Microsoft Corporation

This paper provides an overview of Object-Role Modeling (ORM), a fact-oriented method for
performing information analysis at the conceptual level. The version of ORM discussed here is
supported in Microsoft Visio for Enterprise Architects, part of Visual Studio .NET Enterprise Architect.

Introduction

It is well recognized that the quality of a database application depends critically on its design. To help
ensure correctness, clarity, adaptability and productivity, information systems are best specified first at the
conceptual level, using concepts and language that people can readily understand. The conceptual design
may include data, process and behavioral perspectives, and the actual DBMS used to implement the design
might be based on one of many logical data models (relational, hierarchic, network, object-oriented etc.).
This overview focuses on the data perspective, and assumes the design is to be implemented in a relational
database system.

Designing a database involves building a formal model of the application area or universe of discourse
(UoD). To do this properly requires a good understanding of the UoD and a means of specifying this
understanding in a clear, unambiguous way. Object-Role Modeling (ORM) simplifies the design process by
using natural language, as well as intuitive diagrams which can be populated with examples, and by
examining the information in terms of simple or elementary facts. By expressing the model in terms of
natural concepts, like objects and roles, it provides a conceptual approach to modeling.

Early versions of object-role modeling were developed in Europe in the mid-1970s (e.g. binary
relationship modeling and NIAM). The version discussed here is based on the author's formalization of the
method, and incorporates extensions and refinements arising from research conducted in Australia and the
USA. The associated language FORML (Formal Object-Role Modeling Language) is supported in
Microsoft Visio for Enterprise Architects (VEA), part of Visual Studio .NET Enterprise Architect.

Another conceptual approach is provided by Entity-Relationship (ER) modeling. Although ER models
can be of use once the design process is finished, they are less suitable for formulating, transforming or
evolving a design. ER diagrams are further removed from natural language, cannot be populated with fact
instances, require complex design choices about attributes, lack the expressibility and simplicity of a role-
based notation for constraints, hide information about the semantic domains which glue the model together,
and lack adequate support for formal transformations. Many different ER notations exist that differ in the
concepts they can express and the symbols used to express these concepts. For such reasons we prefer
ORM for conceptual modeling. In addition to ORM, VEA supports IDEF1X (a hybrid of ER and relational
modeling) as a view of ORM.

Although the detailed picture provided by ORM diagrams is often desirable, for summary purposes it
is useful to hide or compress the display of much of this detail. Though not discussed here, various
abstraction mechanisms exist for doing this. If desired, ER diagrams can also be used for providing
compact summaries, and are best developed as views of ORM diagrams.

This overview conveys the main ideas in ORM by discussing a case study. First we explain the steps
used to develop a conceptual design. To help communicate the ideas, we deliberately make some mistakes,
and later show how the design method helps to correct these errors. We also include a simple example to
show how the conceptual design may be “optimized” for relational systems by applying a transformation.

An algorithm for mapping this design to a normalized, relational database schema is then outlined.
With VEA, the conceptual design can be entered in either graphical or textual form, and automatically
mapped to a relational schema for use in a variety of relational DBMSs. Finally, a brief sketch is given of
how ORM may be used as a sound basis for conceptual queries. For a detailed discussion of ORM, see [1].
For a tutorial on how to use the VEA tool to create ORM models and map them to relational models, see [5,
6, 7]. For further resources on ORM, see www.orm.net.

The Conceptual Schema Design Procedure

The information systems life cycle typically involves several stages: feasibility study; requirements
analysis; conceptual design of data and operations; logical design; external design; prototyping; internal
design and implementation; testing and validation; and maintenance. ORM's conceptual schema design
procedure (CSDP) focuses on the analysis and design of data. The conceptual schema specifies the
information structure of the application: the #ypes of fact that are of interest; constraints on these; and
perhaps derivation rules for deriving some facts from others.

With large-scale applications, the UoD is divided into convenient modules, the CSDP is applied to
each, and the resulting subschemas are integrated into the global conceptual schema. The CSDP itself has
seven steps (see Table 1). The rest of this section illustrates the basic working of this design procedure by
means of a simple example.

Table 1 The conceptual schema design procedure (CSDP)

Step | Description

1 Transform familiar information examples into elementary facts, and apply quality checks

Draw the fact types, and apply a population check

Check for entity types that should be combined, and note any arithmetic derivations

Add uniqueness constraints, and check arity of fact types

Add mandatory role constraints, and check for logical derivations

Add value, set comparison and subtyping constraints

N |||

Add other constraints and perform final checks

Step 1 is the most important stage of the CSDP. Examples of the kinds of information required from
the system are verbalized in natural language. Such examples are often available in the form of output
reports or input forms, perhaps from a current manual version of the required system. If not, the modeler
can work with the client to produce examples of output reports expected from the system. To avoid
misinterpretation, it is usually necessary to have a UoD expert (a person familiar with the application)
perform or at least check the verbalization. As an aid to this process, the speaker imagines he/she has to
convey the information contained in the examples to a friend over the telephone.

For our case study, we consider a fragment of an information system used by a university to
maintain details about its academic staff and academic departments. One function of the system is to print
an academic staff directory, as exemplified by the report extract shown in Table 2. Part of the modeling
task is to clarify the meaning of terms used in such reports. The descriptive narrative provided here would
thus normally be derived from a discussion with the UoD expert. The terms “empNr” and “extNr” abbrevi-
ate “employee number” and “extension number”.

Table 2 Extract from a directory of academic staff

Emp Emp Name Dept Room Phone | Phone | Tenure/

Nr Ext. Access | Contract-expiry
715 Adams A Computer Science 69-301 2345 LOC 01/31/95
720 | BrownT Biochemistry 62-406 9642 LOC 01/31/95
139 Cantor G Mathematics 67-301 1221 INT tenured
430 Codd EF Computer Science 69-507 2911 INT tenured
503 Hagar TA Computer Science 69-507 2988 LOC tenured
651 Jones E Biochemistry 69-803 5003 LOC 12/31/96
770 | Jones E Mathematics 67-404 1946 LOC 12/31/95
112 Locke J Philosophy 1-205 6600 INT tenured
223 Mifune K Elec. Engineering 50-215A 1111 LOC tenured
951 Murphy B Elec. Engineering 45-B19 2301 LOC 01/03/95
333 Russell B Philosophy 1-206 6600 INT tenured
654 Wirth N Computer Science 69-603 4321 INT tenured

A phone extension may have access to local calls only (“LOC”), national calls (“NAT”), or
international calls (“INT”). International access includes national access, which includes local access. In
the few cases where different rooms or staff have the same extension, the access level is the same. An
academic is either tenured or on contract. Tenure guarantees employment until retirement, while contracts
have an expiry date.

The information contained in Table 2 is to be stated in terms of elementary facts. Basically, an
elementary fact asserts that a particular object has a property, or that one or more objects participate in a
relationship, where that relationship cannot be expressed as a conjunction of simpler (or shorter) facts. For
example, to say that Bill Clinton jogs and is the president of the USA is to assert two elementary facts. See
if you can read off the elementary facts expressed on the first row of Table 2 before reading on.

As a first attempt, one might read off the information on the first row as the six facts f1-f6. Each
asserts a binary relationship between two objects. For discussion purposes the relationship type, or logical
predicate, is shown in bold between the noun phrases that identify the objects. Object types are displayed
here in italics. For compactness, some obvious abbreviations have been used (“empNr”, “EmpName”,
“Dept”, “extNr”); when read aloud these can be expanded to “employee number”, “Employee name”,
“Department” and “extension number”.

f1 The Academic with empNr 715 has EmpName ‘Adams A’.

f2 The Academic with empNr 715 works for the Dept named ‘Computer Science’.

f3 The Academic with empNr 715 occupies the Room with roomNr ‘69-301".

f4 The Academic with empNr 715 uses the Extension with extNr ‘2345’

f5 The Extension with extNr ‘2345’ provides the AccessLevel with code ‘LOC’.

f6 The Academic with empNr 715 is contracted till the Date with mdy-code ‘01/31/95’.

Row two contains different instances of these six fact types. Row three, because of its final column,
provides an instance of a seventh fact type:

f7 The Academic with empNr 139 is tenured.

This is called a unary fact—it specifies one property of an object. A logical predicate may be regarded
as a sentence with one or more “object-holes” in it—each hole is filled in by a term or noun phrase that
identifies an object. The number of object-holes is called the arity of the predicate. Each of these holes
determines a different role that is played in the predicate. For example, in f4 the academic plays the role of
using, and the extension plays the role of being used. In f7 the academic plays the role of being tenured. On
a diagram, each role is depicted as a separate box (see later).

Object-Role Modeling is so-called because it views the world in terms of objects playing roles. Facts
are assertions that objects play roles. An n-ary fact has n roles. It is not necessary that the roles be played
by different objects. For example, consider the binary fact type: Person voted for Person. This has two roles
(voting, and being voted for), but both could be played by the same object (e.g. Bill Clinton voted for Bill
Clinton).

In FORML a predicate may have any arity (1, 2, 3 ..), but since the predicate is elementary, arities
above 3 or 4 are rare. In typical applications, most predicates are binary. For these, we allow the inverse
predicate to be stated as well, so that the fact can be read in both directions. For example, the inverse of f4
is:

f4' The Extension with extNr ‘2345’ is used by the Academic with empNr 715.

To save writing, both the normal predicate and its inverse are included in the same declaration, with the
inverse predicate preceded by a slash “/”. For example:

f4" The Academic with empNr 715 uses /is used by the Extension with extNr ‘2345’

Typically, predicate names are unique in the conceptual schema. In special cases however (e.g. “has”),
the same name may be used externally for different predicates: internally these are assigned different
identifiers.

As a quality check at Step 1, we ensure that objects are well identified. Basic objects are either values
or entities. Values are character strings or numbers: they are identified by constants (e.g. ‘Adams A’, 715).
Entities are “real world” objects that are identified by a definite description (e.g. the Academic with empNr

715). In simple cases, such a description indicates the entity type (e.g. Academic), a value (e.g. 715) and a
reference mode (e.g. empNr). A reference mode is the manner in which the value refers to the entity.
Entities may be tangible objects (e.g. persons, rooms) or abstract objects (e.g. access levels). Composite
reference schemes are possible (see later).

Fact fl involves a relationship between an entity (a person) and a value (a name is just a character
string). Facts f2-f6 specify relationships between entities. Fact {7 states a property (or unary relationship) of
an entity. In setting out facts f1-f7, the employeeNr is unquoted while both extNr and roomNr are quoted.
This indicates the designer treated employeeNr as a number, but considered extNr and roomNr as character
strings. However unless arithmetic operations are required for empNr it could have been quoted. Unless
extNr and roomNr must permit non-digits (e.g. hyphens or letters), or string operations are needed for
them, they could have been unquoted.

As a second quality check at Step 1, we use our familiarity with the UoD to see if some facts should be
split or recombined (a formal check on this is applied later). For example, suppose facts f1 and f2 were
verbalized as the single fact 8.

f8 The Academic with empNr 715 and empname ‘Adams A' works for the Dept named ‘Computer
Science’.

The presence of the word “and” suggests that f8 may be split without information loss. The repetition of
“Jones E” on different rows of Table 2 shows that academics cannot be identified just by their name.
However the uniqueness of empNr in the sample population suggests that this suffices for reference. Since
the “and-test” is only a heuristic, and sometimes a composite naming scheme is required for identification,
the UoD expert is consulted to verify that empNr by itself is sufficient for identification. With this
assurance obtained, f8 is now split into fl and 2.

As an alternative to specifying complete facts one at a time, the reference schemes may be declared up
front and then assumed in later facts. Simple reference schemes are declared by enclosing the reference
mode in parenthesis. For example, the entity types and their identification schemes may be declared thus:

Reference schemes:
Academic (empNr);
Dept (name);
Room (roomNr);
Extension (extNr);
AccesslLevel (code);
Date (mdy)

Then facts f1-f7 may be stated more briefly as follows. Here the names of object types begin with a capital
letter.

f1 Academic 715 has EmpName ‘Adams A’.

f2 Academic 715 works for Dept ‘Computer Science’.
f3 Academic 715 occupies Room ‘69-301".

f4 Academic 715 uses Extension 2345,

f5 Extension ‘2345' provides AccessLevel ‘LOC’.

f6 Academic 715 is contracted till Date ‘01/31/95'.

f7 Academic 139 is tenured.

These facts are instances of the following fact types:

F1 Academic has EmpName

F2 Academic works for Dept

F3 Academic occupies Room

F4 Academic uses Extension

F5 Extension provides AccessLevel
F6 Academic is contracted till Date
F7 Academic is tenured

Step 2 of the CSDP is to draw a draft diagram of the fact types and apply a population check (see
Figure 1). Entity types are depicted as named ellipses. Predicates are shown as named sequences of one or
more role boxes. Predicate names are read left-to-right and top-to-bottom, unless prepended by “<<” (which

reverses the reading direction). An n-ary predicate has n role boxes. The inverse predicate names have been
omitted in this figure. Value types are displayed as named, broken ellipses. Lines connect object types to
the roles they play. Reference modes are written in parenthesis: this is an abbreviation for the explicit
portrayal of reference types. For example, the notation “Academic (empNr)” indicates an injection (1:1-into
mapping) from the entity type Academic to the value type EmpNr.

In this example there are seven fact types. As a check, each has been populated with at least one
fact, shown as a row of entries in the associated fact table, using the data from rows 1 and 3 of Table 2. The
English sentences listed before as facts f1-f7, as well as other facts from row 3, may be read directly off
this figure. Though useful for validating the model with the client and for understanding constraints, the
sample population is not part of the conceptual schema diagram itself.

aaaaa

iEmpName)
715 Adams A “S=ece-- "
139 Cantor G

provides

AccessLevel
(code)

2345 LOC
1221 INT

Extension
(extNr)

is used by / uses works for

Academic
(empNr)

2345 715
1221 139

715 Computer Science
139 Mathematics

is contracted till

69-301 715
67-301 139

715 01/31/97

is tenured

139

Figure 1 Draft diagram of fact types for Table 2 with sample population

To help illustrate other aspects of the CSDP we now widen our example. Suppose the information
system is also required to assist in the production of departmental handbooks. Perhaps the task of schema
design has been divided up, and another modeler works on the subschema relevant to department
handbooks. Figure 2 shows an extract from a page of one such handbook.

Department:. Computer Science
Home phone of Dept head: 9765432

Chairs Professors (5)

Databases Codd EF BSc (UQ); PhD (UCLA) (Head of Dept)
Algorithms Wirth N BSc (UQ); MSc (ANU); DSc (MIT)
Senior Lecturers (9)

Hagar TA BInfTech (UQ); PhD (UQ)

Lecturers (8)

Adams A MSc (OXON)

Figure 2 Extract from Handbook of Computer Science Department

In this university academic staff are classified as professors, senior lecturers or lecturers, and each
professor holds a “chair” in a research area. To reduce the size of our problem, we have excluded many
details that in practice would also be recorded (e.g. office phone and faxNr). To save space, details are
shown here for only four of the 22 academics in that department. The data are of course, fictitious.

In verbalizing a report, at least one instance of each fact type should be stated. Let us suppose that the
designer for this part of the application suggests the following fact set, after first declaring the following
reference schemes: Dept (name); Professor (name); SeniorLecturer (name); Lecturer (name); Quantity
(nr)+; Chair (name); Degree (code); University (code); HomePhone (phoneNr). The “+” in “Quantity
(nr)+” indicates that Quantity is referenced by a number, not a character string, and hence can be operated
on by numeric operators such as “+”. For discussion purposes, the predicates are shown here in bold.

f9 Dept ‘Computer Science' has professors in Quantity 5.

f10 Professor ‘Codd EF' holds Chair ‘Databases’.

f11 Professor ‘Codd EF' obtained Degree ‘BSc' from University ‘UQ".

f12 Professor ‘Codd EF' heads Dept ‘Computer Science'.

f13 Professor ‘Codd EF' has HomePhone ‘965432'.

f14 Dept ‘Computer Science' has senior lecturers in Quantity 9.

f15 SeniorLecturer ‘Hagar TA' obtained Degree ‘BinfTech’ from University ‘UQ'.
f16 Department ‘Computer Science' has lecturers in Quantity 8.

f17 Lecturer ‘Adams A' obtained Degree ‘MSc' from University ‘OXON'.

As a quality check for Step 1 we again consider whether entities are well identified. It appears from
the handbook example that within a single department, academics may be identified by their name. Let us
assume this is verified by the domain expert. However the complete application requires us to handle all
departments in the same information system, and to integrate this subschema with the directory subschema
considered earlier.

Hence we must replace the academic naming convention used for the handbook example by the global
scheme used earlier (i.e. empNr). Suppose that we can't see anything else wrong with facts 9-17, and
proceed to expand the draft schema diagram to include this new information (this is left as an exercise for
the reader).

This leads us to Step 3 of the CSDP: check for entity types that should be combined, and note any
arithmetic derivations. The first part of this step prompts us to look carefully at the fact types for f11, f15
and f17. Currently these are handled as three ternary fact types: Professor obtained Degree from University;
SeniorLecturer obtained Degree from University; Lecturer obtained Degree from University.

The common predicate suggests that the entity types Professor, SeniorLecturer and Lecturer should be
collapsed to the single entity type Academic, with this predicate now shown only once, as shown in Figure
3.

Degree
(code)

University
(code)

... Obtained ... from ...

works for

- -~

* Dept employs academics of Rank in Quantity iff Quantity =
count each Academic who has Rank and works for Dept

Figure 3 Extra fact types needed to capture the additional information in Figure 2

To preserve the original information about who is a professor, senior lecturer or lecturer we introduce
the fact type: Academic has Rank. Let's use the codes “P”, “SL” and “L” for the ranks of professor, senior
lecturer and lecturer. For example, instead of fact f10 we now have:

f18 Academic 430 has EmpName ‘Codd EF'.
f19 Academic 430 has Rank ‘P’
f20 Academic 430 holds Chair ‘Databases’.

Facts of the kind expressed in 19, f14 and f16 can now all be expressed in terms of the ternary fact type:
Dept employs academics of Rank in Quantity. For example, f9 can be replaced by:

fo' Dept ‘Computer Science’ employs academics of Rank ‘P’ in Quantity 5.

However, this does not tell us which professors work for the Computer Science department. Indeed,
given that many departments exist, the verbalization in f9-f17 failed to capture the information about who
worked for that department. This information is implicit in the listing of the academics in the Computer
Science handbook. To capture this information in our application model, we introduce the following fact
type: Academic works for Dept. For example, one fact of this kind is:

f21 Academic 430 works for Dept ‘Computer Science’

The second aspect of Step 3 is to see if some fact types can be derived from others by arithmetic.
Since we now record the rank of academics as well as their departments, we can compute the number in
each rank in each department simply by counting. So facts like f9' are derivable. If desired, derived fact
types may be included on a schema diagram if they are marked with an asterisk “*” to indicate their
derivability. To simplify the picture, it is usually better to omit derived predicates from the diagram.
However in all cases a derivation rule must be supplied. This may be written below the diagram (see Figure
3). Here “iff” abbreviates “if and only if”.

Step 4 of the CSDP is to add uniqueness constraints and check the arity of the fact types. Uniqueness
constraints are used to assert that entries in one or more roles occur there at most once. A bar across n roles
of a fact type (n > 0) indicates that each corresponding n-tuple in the associated fact table is unique (no
duplicates are allowed for that column combination). Arrow tips at the ends of the bar are needed if the
roles are non-contiguous (otherwise arrow tips are optional). A uniqueness constraint spanning roles of
different predicates is indicated by a circled “u”: this specifies that in the natural join of the predicates, the
combination of connected roles is unique.

For example, a fragment of the conceptual schema under consideration is displayed in Figure 4. While
these constraints are suggested by the original population, the domain expert should normally be consulted
to verify them. It is sometimes helpful to construct a test population for each fact type in this regard, though
simple questions are usually more efficient. The internal uniqueness constraints on the binary fact types
assert that each academic has at most one rank, holds at most one chair (and vice versa), works for at most
one department, and has at most one employee name.

University

+——»
... obtained ... from ...

works for
P

is held by / holds

Figure 4 Some of the fact types, with uniqueness constraints added

The external uniqueness constraint stipulates that each (department, empname) combination applies to
at most one academic. That is, within the same department, academics have distinct names. The constraint
on the ternary says that for each (academic, degree) pair, the award was obtained at only one university.

Once uniqueness constraints have been added, an arity check is performed. A sufficient but not
necessary condition for splittability of an n-ary fact type is that it has a uniqueness constraint that misses
two roles. For example, suppose we tried to use the ternary in Figure 5(a). Since each academic has only
one rank and works for only one department, the uniqueness constraint spans just the first role. This misses
two roles of the ternary; so the fact type must be split on the source of the uniqueness constraint into the
two binaries Academic has Rank and Academic works for Dept as shown in Figure 5(b).

works for

Figure 5 This fact type splits since 2 roles are missed by the uniqueness constraint

If a fact type is elementary all its functional dependencies (FDs) are implied by uniqueness constraints.
For example, each academic has only one rank (hence in the fact table for Academic has Rank, entries in
the rank column are a function of entries in the academic column). If in doubt, one checks for FDs not so
implied; if such an FD is found, the fact type is split on the source of the FD.

Step 5 of the CSDP is to add mandatory role constraints, and check for logical derivations. A role is
mandatory (or total) for an object type if and only if every object of that type which is referenced in the
database must be known to play that role. This is explicitly shown by means of a mandatory role dot where
the role connects with its object type. If two or more roles are connected to a circled mandatory role dot,
this means the disjunction of the roles is mandatory (i.e. each object in the population of the object type
must play at least one of these roles)—an inclusive-or constraint.

works for

Academic
(empNr)

. —
is held by / holds is contracted till

Figure 6 Some of the fact types, with mandatory role constraints added

For example, Figure 6 adds mandatory role constraints to some of the fact types already discussed.
These dots indicate that each academic has a rank and works for a department; moreover each academic
either is tenured or is contracted till some date. Roles that are not mandatory are optional. The role of
having a chair is optional. The roles of being contracted or being tenured are optional too, but their
disjunction is mandatory. If an object type plays only one fact role in the global schema, then by default
this is mandatory, but a dot is not shown (e.g. the role played by Rank is mandatory by implication).

Now that uniqueness and mandatory role constraints have been discussed, reference schemes can be
better understood. Simple reference schemes involve a mandatory 1:1 mapping from entity type to value
type. For example, the notation “Rank (code)” abbreviates the binary reference type: Rank has Rankcode. If
shown explicitly, both roles of this binary have a simple uniqueness constraint, and the reference role
played by Rank has a mandatory role dot.

With composite reference, a combination of two or more values can be used to refer to an entity. For
example, while EmpNr provides a simple primary identifier for Academic, the combination of Dept and
EmpName provides a secondary identification scheme. Sometimes composite schemes are used for primary

reference. For example, suppose that to help students find their way to lectures, departmental handbooks
include a building directory, which lists the names as well as the numbers of buildings. A sample extract of

such a directory is shown in Table 3.

Table 3 Extract from a directory of buildings

BuildingNr Building name
67 Priestly
68 Chemistry
69 Computer Science

Earlier we identified rooms by a single value. For example “69-301” was used to denote the room in
building 69 which has room number “301”. Now that buildings are to be talked about in their own right, we
should replace the simple reference scheme by a composite one that shows the full semantics (see Figure
7). Here RoomNr now means just the number (e.g. “301”’) used to identify the room within its building.
This is used in conjunction with the buildingNr to identify the room within the whole university. To
explicitly indicate that the external uniqueness constraint provides the primary reference for Room, the
circled “u” may be replaced by a circled “P” (not shown here).

isin /includes

~~~~~~

Building
(bldgNr)

______

PldaintalN

_______

has / is of

Figure 7 Room has a composite, primary reference scheme

Knowledge of uniqueness constraints and mandatory roles can assist in deciding when to nest a fact
type. The ternary in Figure 4 could have been modeled by nesting as follows. First declare the binary:
Academic obtained Degree. Now objectify this relationship as “DegreeAcquisition” (graphically this is depicted
as a soft rectangle enveloping the predicate being objectified). Now attach another binary predicate to this
to connect it to University. This yields the nested version: DegreeAcquisition(Academic obtained Degree) was from
University.

In this case, the objectified predicate plays only one role, and this role is mandatory. Whenever this
happens we prefer the flattened version instead of the nested version, since it is more compact and natural,
and it simplifies constraint expression. In all other cases, the nested version is to be preferred (i.e. choose
nesting if the objectified predicate plays an optional role, or plays more than one role).

As an example, suppose the application also has to deal with reports about teaching commitments, an
extract of which is shown in Table 4. Not all academics currently teach. If they do, their teaching in one or
more subjects may be evaluated and given a rating. Some teachers serve on course curriculum committees.

Table 4 Extract of report on teaching commitments

EmpNr | Emp. name Subject | Rating Committees
715 | Adams A CS100 5
CS101
430 | Codd EF
654 | Wirth N CS300 BSc-Hons
CAL Advisory




Here the new fact types may be schematized as shown in Figure 8. By default, an objectified predicate
is fully spanned by a uniqueness constraint, to ensure elementarity (this is implicit in the frame notation,
but may be shown explicitly as in the figure). Since not all (Academic, Subject) pairs involved in Teaching
have a rating, nesting is preferred. To flatten this we would need a binary for teaching subjects, and a
ternary for rating the teaching of subjects, with a pair subset constraint (see later) between them.

The nested object type Teaching plays only one role, and this role is optional. So instances of
Teaching can exist independently without having to play a fact role. This makes teaching an independent
object type. In VEA, the independent status of an object type is set by checking the “Independent” option in
the object type’s properties sheet: this automatically appends “ ! to the graphic display of the object type’s
name.

Academic
(empNr)

Subject
(code)

Figure 8 Example of nesting

The second stage of Step 5 is to check for logical derivations (i.e. can some fact type be derived from
others without the use of arithmetic?). One strategy here is to ask whether there are any relationships
(especially functional relationships) which are of interest but which have been omitted so far.

Another strategy is to look for transitive patterns of functional dependencies. For example, if an
academic has only one phone extension and an extension is in only one room, we could use these to
determine the room of the academic. However, for our application the same extension may be used in many
rooms, so we discard this idea.

Suppose however that our client confirms that the rank of an academic determines the access level
of his/her extension. For example, suppose a current business rule is that professors get international access
while lecturers and senior lecturers get local access. This rule might change in time (e.g. senior lecturers
might be arguing for national access). So to minimize later changes to the schema, we store the rule as data
in a table (see Table 5). The rule can then be updated as required by an authorized user without having to
recompile the schema.

Table 5 A functional connection between rank and access level

Rank Access
P INT
SL LOC
L LOC

Suppose we verbalize the fact type underlying Table 5 as: Rank ensures AccessLevel. These three lines of
data can be used to derive the access level of the hundreds of academic extensions, using the following
derivation rule:

Extension provides AccessLevel iff
Extension is used by an Academic
who has a Rank that ensures AccessLevel

Examination of the related portion of the schema indicates that this rule is safe only if each extension
is used by only one academic, or at least only by academics of the same rank. Let us assume the first,
stronger condition is verified by the client. In the case of the weaker condition, the constraint must be

10



specified textually rather than on the diagram. At any rate, by adding the Rank ensures AccessLevel fact type
and the above derivation rule, we can remove the Extension provides AccessLevel fact type from the diagram.

In Step 6 of the CSDP we add any value, set comparison and subtyping constraints. Value constraints
specify a list of possible values for a value type. These usually take the form of an enumeration or range,
and are displayed in braces besides the value type or its associated entity type. For example, Rankcode is
restricted to {‘P’,SL’,’L’} and AccessLevelcode to {‘INT’,‘NAT’,'LOC’}. These are displayed in the
global conceptual schema (Figure 9).

Set comparison constraints specify subset, equality or exclusion constraints between compatible roles
or sequences of compatible roles. Compatible roles are played by the same object type (or by object types
with a common supertype—see later). A subset constraint from one role sequence to another indicates that
the population of the first must always be a subset of the second, and is denoted by a circled “<” with a
dotted arrow from source to target In Figure 9, a pair-subset constraint runs from the heads predicate to the
works for predicate, indicating that a person who heads a department must work for the same department.

Lo ‘\
- BIdgName ) "Teaching !" gets
<«<isin ' q Subéec;t {1.7}
Building — code
(bldgND) -
- @ @
g ™\ code
{ RoomNe T (¢0de)
N g «<has I University
' L [ [ | (code)
<< occupies . I ...obtained...from...
Extension \ [f—=t—* is tenured
(extNr)
is used by / uses @
,{IP, Rank Academic i Date
SL'(_ (code) 1 (empNr) L[ (mdy)
L} << has is contracted till _
is audited by / audits EmpName ;
ensuresI I — — e »
-- © s head with home-
AccessLevel @ Dept =TT N
(code) (name) ¢ PhoneNr |
{INT''NAT''LOC"} L Seaae- -
heads
has I I has
Committee\ ———1 (Teaching® [ | | research teaching
(name) -- holds budget budget
<< serves on of of
MoneyAmt
(usd) +

each Teacher is an Academic who teaches some Subject
each Professor is an Academic who has Rank 'P'
each TeachingProf is both a Teacher and a Professor

* Dept employs academics of Rank in Quantity iff Quantity =
count each Academic who has Rank and works for Dept

* define Extension provides AccessLevel as

Extension is used by an Academic who has a Rank that ensures AccessLevel

Figure 9 The final conceptual schema

1"



An equality constraint, denoted by a circled “=", is equivalent to a pair of subset constraints (one in
each direction). For example, in this application a person’s home phone is recorded if and only if the person
heads some department. This could be depicted by an equality constraint between the first roles of two fact
types: Professor heads Dept; Professor has HomePhoneNr. However we later choose another way of modeling this.
The constraint that nobody can be tenured and contracted at the same time is shown by an exclusion
constraint, denoted by a circled “X”. In this case, it overlays an inclusive-or constraint (circled dot) so the
combination of both constraints appears as “lifebuoy symbol” (exclusive-or constraint).

Subtyping is determined as follows. Each optional role is inspected: if the role is played only by some
well-defined subtype, a subtype node is introduced with this role attached. Subtype definitions are written
below the diagram and subtype links are shown as directed line segments from subtypes to supertypes.
Figure 9 contains three subtypes: Teacher; Professor; and TeachingProfessor. In this university, each
teacher is audited by another teacher (auditing involves observation and friendly feedback). Moreover, only
professors may be department heads, and only teaching professors can serve on curriculum committees (not
all universities work this way).

Step 7 of the CSDP adds other constraints and performs final checks. We briefly illustrate two other
constraints. The audits fact type has both its roles played by the same object type (this is called a ring fact
type). The °ir notation beside it indicates the predicate is irreflexive (no teacher audits himself/herself).

Suppose we also need to record the teaching and research budgets of the departments. We might
schematize this as in Figure 10. Here the “2” beside the role played by Dept is a frequency constraint
indicating that each department that is included in the population of that role must appear there twice. In
conjunction with the other constraints, this ensures that each department has both its teaching and research

budgets recorded.
Activity
(name)

... has for ... a budget of ...

{'Teaching’,
'Research'}

MoneyAmt

Figure 10 Each department has two budgets

The CSDP ends with some final checks that the schema is consistent with the original examples,
avoids redundancy, and is complete. No changes are needed for our example. There is a minor derived
redundancy, since if someone heads a department, we know from the subset constraint that this person
works for that department; but this is innocuous. Other schematizations are possible (e.g. we can define
works in and heads to be pair-exclusive, or use a unary is head instead of the binary heads) but we ignore these
alternatives here.

Once the global schema is drafted, and the target DBMS decided, various optimizations can usually be
performed to improve the efficiency of the logical schema that results from the mapping. Assuming the
conceptual schema is to be mapped to a relational database schema, the fact type in Figure 10 will map to a
separate table all by itself (because of its composite uniqueness constraint). Since some other information
about departments is mapped to another table, if we want to retrieve all the details about departments in a
single query we will have to perform a table join. Joins tends to slow things down.

Moreover, we probably want to compute the total budget of a department, and with the current schema
this will involve a self-join of the table since the details of the two budgets are on separate rows. We can
avoid all these problems by transforming the ternary fact type in Figure 10 into the following two binaries
before we map: Dept has teaching budget of MoneyAmt; Dept has research budget of MoneyAmt. These binaries have
simple keys, and will map to the “main” department table.

Another optimization may be performed which moves the home phone information to Dept instead of
Professor, but the steps underlying this are a little advanced, so we ignore a detailed discussion of this
move here. Figure 10 includes both these revisions to the conceptual schema. For a detailed discussion on
conceptual schema optimization, see [1, chapter 12].

12



Relational mapping

Once the conceptual schema has been specified, a simple algorithm is used to group these fact types into
normalized tables. If the conceptual fact types are elementary (as they should be), then the mapping is
guaranteed to be free of redundancy, since each fact type is grouped into only one table, and fact types
which map to the same table all have uniqueness constraints based on the same attribute(s).

Before discussing the mapping, we define a few terms. A simple key may be thought of as a
uniqueness constraint spanning exactly one role; a composite key is a uniqueness constraint spanning more
than one role. A compidot (compositely identified object type) is either a nested object type (an objectified
predicate) such as Teaching, or a co-referenced object type (its primary reference scheme is based on an
external uniqueness constraint) such as Room. The basic stages in the mapping algorithm are as follows.

1 Initially treat each compidot as an atomic “black box” by mentally erasing any predicates used in its
identification, and absorb subtypes into their supertype.

2 Map each fact type with a composite key into a separate table, basing the primary key on this key.

3  Group fact types with simple keys attached to a common object type into the same table, basing the
primary key on the identifier of this object type.

4 Unpack each mapped compidot into its component attributes.

With stage 3, a choice may arise with 1:1 binaries. If one role is optional and the other mandatory then
the fact type is grouped with the object type on the mandatory side. For example, the head-of-department
fact type is grouped into the department table. Other refinements to the algorithm have been developed (e.g.
other options for 1:1 cases and subtyping, mapping of independent object types, certain derived fact type
cases, and partially null keys) but we do not consider these here.

Conceptual constraints and derivation rules are also mapped down. An exhaustive treatment of the
mapping procedure is beyond the scope of this paper. The conceptual schema under discussion maps to the
relational schema shown in Figure 11. A generic notation (partly graphical) is used to specify the tables and
constraints of resulting relational schema, and derivation rules are expressed as SQL views.

Keys are underlined. If alternate keys exist, the primary key is doubly-underlined. A mandatory role is
captured by making its corresponding attribute mandatory in its table (not null is assumed by default), by
marking as optional (in square brackets) all optional roles for the same object type which map to the same
table, and by running an equality/subset constraint from those mandatory/optional roles which map to
another table.

Most conceptual constraint notations map down with little change. Constraints on lists of role-lists
(e.g. subset, equality, exclusion) map to corresponding constraints on the attributes to which they map.
Equality constraints may be shown without arrowheads. Subtype constraints map to qualifications on
optional columns or subset constraints (e.g. foreign key constraints).

Conceptual object types are semantic domains: as current relational systems do not support this
feature, domain names are usually omitted. Syntactic domains (data types) may be specified next to the
column names if desired: if the reference mode has a “+”, the default data type is numeric, else the default
is character string; the designer typically chooses more specific data subtypes as appropriate.

The (2,1) in the pair-subset constraint indicates the source pair should be reversed before the
comparison, that is the ordered pairs populating Department(headempNr, deptname) must also occur in the
population of Academic(empNr, deptname).

Derived tables are shown below the base tables. The notation “R(..) ::=" is short for “create view R(..)
as select”. As with conceptual schemas, relational schemas may be displayed with levels of information
hiding (e.g. for a brief overview, some or all of the constraint layers may be suppressed).

13



Building ( bldgnr, bldgname )
==

B TSy

{L,S.P} {INT,NAT,LOC} :
PhoneAccess ( rank, accesslevel ) :
|

|
| |
Department ( deptna%e, headempnrl homephone, teachingbudget,:
= I researchbudget ) 1
| |
| \ _- _
|

5 - -
,_v—d ! PSLL_--" .-~
Academic ( empnr, empname, deptname, extn, rank, bldgnr, roomnr,

hEYY tenured, [enddate] , [chair]?, [auditor]®# )
Jo {Y.N} e
5,0 7
Award /| ( empnr, degree, university ) -
¢ | -
\ \ -

\
\

. N <
Teaching

\ (iw‘m.&bie_d,[rating])
N (1.7}
\\ |

CteeMember  ( empnr, committee )

1 exists iff tenured = 'N'

2 exists iff rank = 'P'

3 <> empnr

4 exists iff empnr in Teaching.empnr
5 only where rank = 'P'

* .
Provides ( extn, accesslevel ) ::= extn, accesslevel from
Academic natural join PhoneAccess

* Employs ( deptname, rank, nrstaff ) ::=  deptname, rank, count(*)
from Academic
group by deptname, rank

Figure 11 The relational schema mapped from Figure 9

Conceptual queries

Besides information modeling, ORM is also ideal for information querying. In 1997, InfoModelers Inc.
released a restricted version of a powerful ORM query tool, named “ActiveQuery”, that enables existing
relational models to be reverse engineered to ORM models, which may then be queried directly. Moreover,
any ORM model developed in InfoModeler (version 2.0a onwards) or VisioModeler can immediately be
queried with ActiveQuery, without the need for any reverse engineering. ActiveQuery enables users to
query an ORM model directly without prior knowledge of either the conceptual schema or the
corresponding relational schema, by dragging object types onto the query pane, selecting predicates of
interest, applying restrictions and functions as desired, and ticking the items to be listed. With the
acquisition of InfoModelers by Visio Corporation, which in turn was acquired by Microsoft Corporation,
the ActiveQuery product is no longer available. However Microsoft has made VisioModeler available as a
free download, and it is possible that the technology underlying ActiveQuery may appear in some later
tool.

As a simple example of a conceptual query, consider the following English query on our academic
database: list the empNr, empname and number of subjects taught for each academic who occupies a room
in the Chemistry building and teaches more than two subjects. In ActiveQuery this may be formulated by
drag-and-drop basically as follows:

14



Academic

| is identified by v EmpNr

|- has vEmpname

|-— occupies Room

| L— is in Building

L has BldgName ‘Chemistry’
L teaches Subject
L_-v'count (Subject) for Academic > 2

A verbalization of the query is automatically generated, as well as SQL code similar to the following:

select X1.empnr, X1.empname, count(*)
from Academic as X1, Building as X2, Teaching as X3
where X1.bldgnr = X2.bldgnr
and X1.empnr = X3.empnr
and X2.bldgname = ‘Chemistry’
group by X1.empnr, X1.empname
having count(*) >2

It should be obvious that formulating queries in terms of objects and predicates is much easier than
deciphering the semantics of the relational schema and coding in SQL or QBE. For further details about
conceptual queries in ORM, see [1, 2, 3].

References

1. Bloesch, A.C. & Halpin, T.A. 1996, ‘ConQuer: a conceptual query language’, Proc. ER’96: 15th Int.
Conf. on conceptual modeling, Springer LNCS, no. 1157, pp. 121-33 (online at www.orm.net).

2. Bloesch, A.C. & Halpin, T.A. 1997, ‘Conceptual queries using ConQuer-II’, Proc. ER’97: 16th Int.
Conf. on conceptual modeling, Springer LNCS, no. 1331, pp. 113-26 (online at www.orm.net).

3. Halpin, T.A. 1998, ‘Conceptual Queries’, Database Newsletter, vol. 26, no. 2, ed. R.G. Ross, Database
Research Group, Inc., Boston MA (March/April 1998) (online at www.orm.net).

4. Halpin, T.A. 2001a, Information Modeling and relational Databases, Morgan Kaufmann Publishers,
San Francisco (www.mkp.com/books_catalog/catalog.asp?ISBN=1-55860-672-6).

5. Halpin, T.A. 2001b, ‘Microsoft’s new database modeling tool: Part 1°, Journal of Conceptual
Modeling, June 2001 issue (online at www.InConcept.com and www.orm.net).

6. Halpin, T.A. 2001c, ‘Microsoft’s new database modeling tool: Part 2’, Journal of Conceptual
Modeling, August 2001 issue (online at www.InConcept.com and www.orm.net).

7. Halpin, T.A. 2001d, ‘Microsoft’s new database modeling tool: Part 3’, Journal of Conceptual

Modeling, August 2001 issue (online at www.InConcept.com and www.orm.net).

15



Object-Role Modeling (ORM/NIAM)

Terry Halpin
Microsoft Corporation, USA

[This paper appeared as ch. 4 of Handbook on Architectures of Information Systems, eds P. Bernus,
K. Mertins & G. Schmidt, Springer-Verlag, Berlin, 1998, and is reproduced here by permission.
Details on the book are online at www.springer.de/cgi-bin/search_book.pl 2isbn=3-540-64453-9.]

Abstract: Object-Role Modeling (ORM) is a method for modeling and querying an information system
at the conceptual level, and mapping between conceptual and logica (e.g. relational) levels. ORM
comes in various flavors, including NIAM (Natural language Information Analysis Method). This
article provides an overview of ORM, and notes its advantages over Entity Relationship and traditional
Object-Oriented modeling.

1 Introduction
1.1 ORM: what isit and why use it?

Object-Role Modeling (ORM) is primarily a method for modeling and querying an information system at
the conceptual level. In Europe, the method is often called NIAM (Natural language Information Analysis
Method). Since information systems are typically implemented on a DBMS that is based on some logical
data model (e.g. relational, object-relational, hierarchic), ORM includes procedures for mapping between
conceptual and logical levels. Although various ORM extensions have been proposed for process and event
modeling, the focus of ORM is on data modeling, since the data perspective is the most stable and it
provides a formal foundation on which operations can be defined.

For correctness, clarity and adaptability, information systems are best specified first at the
conceptual level, using concepts and language that people can readily understand. Analysis and design
involves building a formal model of the application area or universe of discourse (UoD). To do this
properly requires a good understanding of the UoD and a means of specifying this understanding in a clear,
unambiguous way. Object-Role Modeling simplifies this process by using natural language, as well as
intuitive diagrams that can be populated with examples, and by expressing the information in terms of
elementary relationships.

ORM is so-called because it pictures the world in terms of objects (entities or values) that play roles
(parts in relationships). For example, you are now playing the role of reading, and this paper is playing the
role of being read. In contrast to other modeling techniques such as Entity-Relationship (ER) and Object-
Oriented (OO) approaches, ORM makes no explicit use of attributes. For example, instead of using
countryBorn as an attribute of Person, we use the relationship type Person was born in Country. This has many
important advantages. Firstly, ORM models and queries are more stable (attributes may evolve into entities
or relationships). For example, if we decide to later record the population of a country, then our countryBorn
attribute needs to be reformulated as a relationship. Secondly, ORM models may be conveniently populated
with multiple instances (attributes make this too awkward). Thirdly, ORM is more uniform (e.g. we don’t
need a separate notation for applying the same constraint to an attribute rather than a relationship).

ORM is typically more expressive than ER or OO. Its role-based notation makes it easy to specify a
wide variety of constraints, and its object types reveal the semantic domains that bind a schema together.
One benefit of this is that conceptual queries may now be formulated in terms of schema paths, where
moving from one role though an object type to another role amounts to a conceptual join (see later).

Unlike ORM or ER, popular OO models often duplicate information by wrapping facts up into pairs
of inverse attributes in different objects. Moreover, OO notations have weak support for constraints (e.g. a
constraint might have to be duplicated in different objects, or even ignored). Unfortunately, OO models are
less stable than even ER models when the UoD evolves. For such reasons, OO models should be used only
for implementation, not for analysis.

Although the detailed picture provided by ORM is desirable in developing and transforming a
model, for summary purposes it is useful to hide or compress the display of much of this detail. Various
abstraction mechanisms exist for doing this [e.g. CHP96]. If desired, ER and OO diagrams can also be used
for providing compact summaries, and are best developed as views of ORM diagrams. For a simple
discussion illustrating the pointsin this section, see [Hal96].



The rest of this article provides a brief history of ORM, summarizes the ORM notation, illustrates
the conceptual design and relational mapping procedures, and mentions some recent extensions before
concluding.

1.2 Abrief history of ORM

In the 1970s, especially in Europe, substantial research was carried out to provide higher level semantics for
modeling information systems. Abrial [Abr74], Senko [Sen75] and others discussed modeling with binary
relationships. In 1973, Falkenberg generalized their work on binary relationships to n-ary relationships and
decided that attributes should not be used at the conceptual level because they involved “fuzzy” distinctions
and also complicated schema evolution. Later, Falkenberg proposed the fundamental ORM framework,
which he called the “object-role model” [Fal76]. This framework allowed n-ary and nested relationships,
but depicted roles with arrowed lines.

Nijssen [Nij76] adapted this framework by introducing the circle-box notation for objects and roles
that has now become standard, and adding a linguistic orientation and design procedure to provide a
modeling method called ENALIM (Evolving NAtural Language Information Model) [Nij77]. Nijssen led a
group of researchers at Control Data in Belgium who developed the method further, including van Assche
who classified object types into lexical object types (LOTSs) and non-lexical object types (NOLOTS). Today,
LOTs are commonly called “Entity types’ and NOLOTSs are called “Value types’. Kent [Ken77] provided
several semantic insights and clarified many conceptual issues.

Meersman added subtypes, and made major contributions to the RIDL query language [Mee82] with
Falkenberg and Nijssen. The method was renamed “aN Information Analysis Method” (NIAM) and
summarized in a paper by Verheijen and van Bekkum [VB82]. In later years the acronym “NIAM” was
given different expansions, and is now known as “Natural language Information Analysis Method”. Two
matrix methods for subtypes were developed, one (the role-role matrix) by Vermeir [V er83] and another by
Falkenberg and others.

In the 1980s, Falkenberg and Nijssen worked jointly on the design procedure and moved to the
University of Queensland, where the method was further enhanced by various academics. Halpin provided
the first full formalization of the method [Hal89], including schema equivalence proofs, and made several
refinements and extensions to the method. 1n 1989, Halpin and Nijssen co-authored a book on the method.
A second edition of this book, authored by Halpin, was published in 1995 [Hal95]. Another book on the
method, written by Wintraecken, was published in 1990 [Win90].

Many researchers have contributed to the ORM method over the years, and there is no space here to
list them all. Today various versions of the method exist, but all adhere to the fundamental object-role
framework. Although most ORM proponents favor n-ary relationships, some prefer Binary-Relationship
Modeling (BRM), e.g. Shoval [SS93]. Habrias [Hab93] devel oped an object-oriented version called MOON
(Normalized Object-Oriented Method). The Predicator Set Model (PSM) was developed mainly by ter
Hofstede, Proper and van der Weide [HPW93], and includes complex object constructors. De Troyer and
Meersman [DM95] developed another version with constructors called Natural Object-Relationship Model
(NORM). Halpin developed an extended version called Forma ORM (FORM), and with Bloesch and
others at InfoModelers Inc. developed an associated query language called ConQuer [BH97]; this work is
being extended at Visio Corporation. Van der Lek and others [BZL94] allowed entity types to be treated as
nested roles, to produce Fully Communication Oriented NIAM (FCO-NIAM). Embley and others [EKW92]
developed Object-oriented Systems Analysis (OSA) which includes an “Object-Relationship Model”
component that has much in common with standard ORM, with no use of attributes.

2 Datamodeingin ORM
1.3  Notation

A modeling method includes both a notation and a procedure for using its notation. This subsection
discusses notation, and later subsections discuss procedures. Each well-defined version of ORM includes a
formal, textual specification language for both models and queries, as well as a formal, graphical modeling
language. The textual languages are more expressive than the graphical languages, but are mentioned only
briefly in this paper. Figure 1 summarizes most of the main symbols used in the graphical language. We
now briefly describe each symbol. Examples of these symbolsin use are given later.



//’—-"\\‘
A
1 2

3 4 5 6
oA
1 1  —
T o ¢
7 8 9 10 11 12
@ {a,, a, ag}
; {a,..a}
13 14 15 16
? T ® ] o an %ir it %ac
! v ; - ©as O%ans Osym ¥
17 18 19 20 21 22 23

Figure 1 Main ORM symbols

The symbols are numbered for easy reference. An entity type is depicted as a named éllipse (symbol
1). A value type denotes a lexical object type (e.g. a character string or number) and is usually shown as a
named, dotted ellipse (symbol 2). Another notation for value types encloses the value type name in
parentheses. Object types that appear more than once in the schema may be tagged with an arrow tip (see
symbol 3), that “points’ to the existence of another occurrence. Each entity type must have at least one
reference scheme, which indicates how each instance of the entity type may be mapped via predicates to a
combination of one or more values. A simple injective (1:1 into) reference scheme maps entities to single
values. For example, each country may be identified by a single country code (e.g. ‘USA’). In such cases
the reference scheme may be abbreviated as in symbol 4 by displaying the reference mode in parentheses
beside the name of the entity type, e.g. Country(code). The reference mode indicates how values relate to
the entities. Symbol 5 shows that a plus sign “+” may be added if the values are numeric, e.g. Mass(kg)+.
Values are constants with a universally understood denotation, and hence require no reference scheme.

Although not strictly a conceptual issue, it is normal to require each entity type to have a primary
reference scheme. Relationship types used for primary reference are then called reference types. The other
relationship types are known as fact types. In symbol 6, an exclamation mark is added to declare that an
entity type is independent. This means that instances of that type may exist without participating in any
facts. By default, this is not the case (i.e. we don't normally introduce an object into the universe unless it
takes part in some fact).

Symbol 7 shows a ternary predicate, comprised of three roles. Each role is depicted as a box, and
must be played by exactly one object type. Roles are connected to their players by a line segment (see
symbol 13). A predicate is basically a sentence with aobject holes in it, one for each role. The number of
rolesis called the arity of the predicate. Except for the BRM version, ORM allows predicates of any arity (1
= unary, 2 = binary, 3 = ternary etc.). Predicates are usually treated as ordered, as in predicate logic. In this
case, the name of the predicate is written either in or beside the first role box, and if necessary each object
hole may be shown as an ellipsis “..."”. Different readings may be provided so the information may be read
in any direction. FORML allows mixfix predicates so objects may be placed at any position in the
predicate. For example, the fact type Room at Time is used for Activity involves the predicate “... at ... is used for ...".
Apart from facilitating natural verbalization of n-ary relationships, mixfix predicates alow binary
relationships to be verbalized in languages where the verb is not in the infix position (e.g. in Japanese, verbs
come at the end). In some versions of ORM, relationship types are given a name, and each role is also given
aname, thus making order irrelevant.



Internal uniqueness constraints are depicted as arrow tipped bars (symbol 8), and are placed over
one or more roles in a predicate to declare that instances for that role (combination) in the relationship type
population must be unique. For example, adding a uniqueness constraint over the first role of Person was born
in Country declares that each person was born in at most one country. A predicate may have one or more
uniqueness constraints, at most one of which may be declared primary by adding a “P” (symbol 9). An
external unigueness constraint shown as a circled “u” may be applied to two or more roles from different
predicates by connecting to them with dotted lines (symbol 10). This indicates that instances of the
combination of those roles in the join of those predicates are unique. For example, to say that a state is
identified by combining its statecode and country, we add an external uniqueness constraint to the roles
played by Statecode and Country in the reference types: State has Statecode; State is in Country. To declare an
external uniqueness constraint primary, use “P” instead of “u” (symbol 11). An object type may have at
most one primary reference constraint.

If we want to talk about a relationship type we may objectify it (i.e. make an object out of it) so that
it can play roles. Graphically, the objectified predicate is enclosed in either a rounded rectangle (symbol 12)
or an ellipse, and named. Objectified predicates are also called nested object types. Typically the objectified
predicate must have a spanning uniqueness constraint, but 1:1 cases may also be alowed [Hal93].

A mandatory role constraint declares that every instance in the population of the role’'s object type
must play that role. It is usually shown as a black dot (see symbol 13) but a universal quantifier is
sometimes used. Mandatory roles are also called total roles. A disunctive mandatory constraint may be
applied to two or more roles to indicate that all instances of the object type population must play at least
one of those roles. This may often be shown by connecting the roles to a black dot on the object type
(symbol 14) or in general by connecting the roles by dotted linesto acircled black dot (symbol 15).

To restrict an object type's population to a given list, the relevant values may be listed in braces
(symbol 16, top). If the values are ordered, a range may be declared separating the first and last values by
“..” (symbol 16, bottom). These constraints are called value constraints.

Symbols 17-19 denote set comparison constraints, and may only be applied between compatible role
sequences (i.e. sequences of one or more roles, where the corresponding roles have the same host object
type). A dotted arrow (symbol 17) from one role sequence to another is a subset constraint, restricting the
population of the first sequence to be a subset of the second. A double-tipped arrow (symbol 18) is an
equality constraint, indicating the populations must be equal. A circled “X” (symbol 19) is an exclusion
constraint, indicating the populations are mutually exclusive. Exclusion constraints may be applied between
two or more sequences.

A solid arrow (symbol 20) from one object type to another indicates that the first object type is a
(proper) subtype of the other. For example, Woman is a subtype of Person. Totality (circled black dot) and
exclusion (circled “X") constraints may also be displayed between subtypes, but are implied by other
congtraints if the subtypes are given formal definitions.

Symbol 21 shows three kinds of frequency constraint. Applied to a sequence of one or more roles,
these indicate that instances that play those roles must do so exactly n times, between n and m times, or at
least n times.

Symbol 22 shows six kinds of ring constraint, that may be applied to a pair of roles played by the
same host type. These indicate that the binary relation formed by the role population must be irreflexive (ir),
intransitive (it), acyclic (ac), asymmetric (as), antisymmetric (ans) or symmetric (sym).

Symbol 23 is an asterisk “*”, which may be placed beside a fact type to indicate that it is derivable
from other fact types. Not all versions of ORM support all these symbols, and some versions have a few
more symbols. InfoModeler, a popular ORM tool, supports al of the symbols shown, as will a future
release of Visio Professional.

1.4  Conceptual schema design procedure

The information systems life cycle typicaly involves severa stages: feasibility study; requirements
analysis, conceptual design of data and operations; logical design; externa design; prototyping; internal
design and implementation; testing and validation; and maintenance. ORM's conceptual schema design
procedure (CSDP) focuses on the analysis and design of data. The conceptual schema specifies the
information structure of the application: the types of fact that are of interest; constraints on these; and
perhaps derivation rules for deriving some facts from others. With large applications, the UoD is divided
into convenient modules, the CSDP is applied to each, and the resulting subschemas are integrated into the
global conceptua schema.



Table 1 shows the CSDP used in FORM. Although different versions of the CSDP exist, they all
agree on the importance of verbalization in terms of elementary facts, population checks, and thorough
analysis of business rules. The rest of this section illustrates the basic working of this design procedure by
means of an example. Because of space limitations, our treatment is necessarily brief. A much more
detailed discussion of the same example can be electronically accessed from [Hal97].

Table 1 The conceptual schema design procedure (CSDP)

Step

Transform familiar information examples into elementary facts, and apply quality checks.
Draw the fact types, and apply a population check.

Check for entity types that should be combined, and note any arithmetic derivations.
Add uniqueness constraints, and check arity of fact types.

Add mandatory role constraints, and check for logical derivations.

Add value, set comparison and subtyping constraints.

Add other constraints and perform final checks.

NoorwdpE

Sep 1 isthe most important. Examples of the information required from the system are verbalized in
natural language. Such examples are often available in the form of output reports or input forms, perhaps
from a current manual version of the required system. If not, the modeler can work with the client to
produce examples. To avoid misinterpretation, a UoD expert (a person familiar with the application) should
perform or at least check the verbalization. As an aid to this process, the speaker imagines he/she has to
convey the information contained in the examples to a friend over the telephone.

For our case study, we consider a fragment of an information system used by a university to
maintain details about its academic staff and academic departments. One function of the system is to print
an academic staff directory, as exemplified by the report extract shown in Table 2. Part of the modeling task
is to clarify the meaning of terms used in such reports. The descriptive narrative provided here would thus
normally be derived from a discussion with the UoD expert. The terms “empnr” and “extnr” abbreviate
“employee number” and “extension number”.

A phone extension may have access to local calls only (“LOC"), nationa cals (“NAT”"), or
international calls (“INT”). International access includes national access, which includes local access. In the
few cases where different rooms or staff have the same extension, the access level is the same. An academic
is either tenured or on contract. Tenure guarantees employment until retirement, while contracts have an
expiry date.

Table 2 Extract from a directory of academic staff
Phone Tenured/
Empnr EmpName Dept Room Extnr | Access | Contract-expiry
715 | AdamsA Computer Science 69-301 2345 LOC 01/31/95
720 | BrownT Biochemistry 62-406 9642 LOC 01/31/95
139 | Cantor G Mathematics 67-301 1221 INT tenured
430 | Codd EF Computer Science 69-507 2911 INT tenured
503 Hagar TA Computer Science 69-507 2988 LOC tenured
651 | JonesE Biochemistry 69-803 5003 LOC 12/31/96
770 | JonesE Mathematics 67-404 1946 LOC 12/31/95
112 Locke J Philosophy 1-205 6600 INT tenured
223 Mifune K Elec. Engineering 50-215A 1111 LOC tenured
951 Murphy B Elec. Engineering 45-B19 2301 LOC 01/03/95
333 Russell B Philosophy 1-206 6600 INT tenured
654 | WirthN Computer Science 69-603 4321 INT tenured

The information contained in this Table is to be stated in terms of elementary facts. Basically, an
elementary fact asserts that a particular object has a property, or that one or more objects participate in a
relationship, where that relationship cannot be expressed as a conjunction of simpler (or shorter) facts
without introducing new object types [Hal93]. For example, to say that Bill Clinton jogs and is the president
of the USA isto assert two elementary facts.



As afirst attempt, one might read off the information on the first data row as the six facts f1-f6. Each
asserts a binary relationship between two objects. For discussion purposes the predicate is shown in bold
between the noun phrases that identify the objects, and object type names start with a capital letter. Some
obvious abbreviations are used (“empnr”, “EmpName”, “Dept”, “extnr”); when read aloud these can be
expanded to “employee number”, “Employee name”, “Department” and “extension number”. The second
data row contains different instances of these six fact types. Row three, because of its final column,

provides an instance f7 of a seventh fact type, a unary.

fl The Academic with empnr 715 has EmpName ‘Adams A'.

f2 The Academic with empnr 715 works for the Dept named ‘Computer Science’.

f3 The Academic with empnr 715 occupies the Room with roomnr ‘69-301".

f4 The Academic with empnr 715 uses the Extension with extnr ‘2345'.

5 The Extension with extnr ‘2345’ provides the AccessLevel with code ‘LOC’.

f6 The Academic with empnr 715 is contracted till the Date with mdy-code ‘01/31/95'.
f7 The Academic with empnr 139 is tenured.

Different readings may be provided to allow relationships to be read in different directions. For example,
the inverse reading of f4 is The Extension with extnr ‘2345’ is used by the Academic with empnr 715. To save writing,
both the normal predicate and its inverse may be included in the same declaration, with the inverse
predicate preceded by adash “/”. For example:

f4’ The Academic with empnr 715 uses /is used by the Extension with extnr ‘2345’

Predicate names are usually unique in the conceptual schema. In some cases (e.g. “has’), the same name
may be used externally for different predicates: internally these have different identifiers.

As a quality check at Step 1, we ensure that objects are well identified. Values are identified by
constants (e.g. ‘Adams A’, 715). Entities are “rea world” objects that are identified by a definite
description (e.g. the Academic with empnr 715). Fact f1 involves a relationship between an entity (a
person) and a value (a name is just a character string). Facts f2-f6 specify relationships between entities.
Fact f7 states a property (or unary relationship) of an entity.

As a second quality check at Step 1, we use our familiarity with the uoD to see if some facts should
be split or recombined (a formal check on thisis applied later). For example, suppose facts f1 and f2 were
verbalized as: The Academic with empnr 715 and empname ‘Adams A’ works for the Dept named ‘Computer Science’. The
presence of the word “and” suggests that this may be split without information loss. The repetition of
“Jones E” on different rows of Table 2 shows that academics cannot be identified just by their name.
However the uniqueness of empnr in the sample population suggests that this suffices for reference. Since
the “and-test” is only a heuristic, and sometimes a composite naming scheme is required for identification,
the UoD expert is consulted to verify that empnr by itself is sufficient for identification. With this assurance
obtained, the composite sentence is now split into f1 and f2.

As an alternative to specifying complete facts one at a time, the reference schemes may be declared
up front and then assumed in later facts. For example, suppose we declare the following: Academic(empnr);
EmpName(); Dept(name). The empty parentheses after EmpName indicates it is a value type and hence needs no
reference scheme. Now facts f1 and f2 may be stated as. Academic 715 has EmpName ‘Adams A’; Academic 715 works
for Dept ‘Computer Science’. Facts f1-f7 are instances of the following fact types:

F1 Academic has EmpName

F2 Academic works for Dept

F3 Academic occupies Room

F4 Academic uses Extension

F5 Extension provides AccessLevel
F6 Academic is contracted till Date
F7 Academic is tenured

Sep 2 of the csbp is to draw a draft diagram of the fact types and apply a population check (see
Figure 2). As a check, each fact type has been populated with at least one fact, shown as arow of entriesin
the associated fact table, using the data from rows 1 and 3 of Table 2. The English sentences listed before as
facts f1-f7, as well as other facts from row 3, may be read directly off this figure. Though useful for
validating the model with the client and for understanding constraints, the sample population is not part of
the conceptual schemaitself.



2345 LOC
1221 INT 715 Adams A

139 Cantor G

e ——

4 N
| EmpName )
Extension ~
(extnr)

Academic
(empnr)

2345 715
1221 139

715  Computer Science
139  Mathematics

is contracted till

Room
(roomnr)

715 01/31/97

69-301 715
67-301 139
139
Figure 2 Draft diagram of fact types for Table 2 with sample population

Suppose the information system is also required to assist in the production of departmental hand-
books. Figure 3 shows an extract from a page of one such handbook. In this university academic staff are
classified as professors, senior lecturers or lecturers, and each professor holds a “chair” in a research area.
To reduce the size of our problem, we have excluded many details that in practice would aso be recorded
(e.g. office phone and fax). To save space, details are shown here for only four of the 22 academics in that
department. The data are, of course, fictitious.

Department:  Computer Science
Home phone of Dept head: 9765432

Chairs Professors (5)

Databases Codd EF BSc (UQ); PhD (UCLA) (Head of Dept)
Algorithms Wirth N BSc (UQ); MSc (ANU); DSc (MIT)
Senior Lecturers (9)

Hagar TA BInfTech (UQ); PhD (UQ)

Lecturers (8)

Adams A MSc (OXON)

Figure 3 Extract from Handbook of Computer Science Department

It appears from the handbook example that within a single department, academics may be identified
by their name. Let us assume thisis verified by the UoD expert. However the compl ete application requires
us to handle all departments in the same information system, and to integrate this subschema with the
directory subschema considered earlier. Hence we must replace the academic naming convention used for
the handbook example by the global scheme used earlier (i.e. empnr).

We use this report to illustrate Sep 3 of the CSDP: check for entity types that should be combined,
and note any arithmetic derivations. Suppose we verbalized the degree information in terms of the three



ternary fact types. Professor obtained Degree from University; SeniorLecturer obtained Degree from University; Lecturer
obtained Degree from University. The common predicate suggests that the entity types Professor, SeniorLecturer
and Lecturer should be collapsed to the single entity type Academic, with this predicate now shown only
once. To preserve the original information about who is a professor, senior lecturer or lecturer we introduce
the fact type: Academic has Rank. Let's use the codes “P”, “SL” and “L” for the ranks of professor, senior
lecturer and lecturer.

The second aspect of Step 3 is to see if some fact types can be derived from others by arithmetic.
Since we now record the rank of academics as well as their departments, we can compute the number in
each rank in each department simply by counting. So the fact type Dept employs academics of Rank in Quantity is
derivable. If desired, derived fact types may be included on a schema diagram if they are marked with an
asterisk “*”. At any rate, a derivation rule must be supplied. This may be written below the diagram (see
Figure 4). Here “iff” abbreviates“if and only if”.

Sep 4 of the CSDP is to add uniqueness constraints and check the arity of the fact types. For
example, we add a uniqueness constraint to the first role of works for to ensure each academic works for at
most one department. An arity check ensures each uniqueness constraint on an n-ary spans at least n-1 roles.

Sep 5 of the CSDP is to add mandatory role constraints, and check for logical derivations. For
example, we need a digunctive mandatory constraint to declare that each academic either is contracted till
some date or is tenured. Roles that are not mandatory are optional. If an object type plays only one fact role
in the global schema, then by default thisis mandatory, but adot is not normally shown.

Suppose that departmental handbooks include a building directory, which lists the names as well as
the numbers of buildings. A sample fact might be: Building ‘67’ has Buildingname ‘Priestly’. Earlier we
identified rooms by a single value. For example “67-301" was used to denote the room in building 67 which
has room number “301”. Now that buildings are to be talked about in their own right, we replace the smple
reference scheme by a composite one that shows the full semantics (see Figure 4). Here Roomnr now means
just the number (e.g. “301") used to identify the room within its building.

To illustrate nesting, suppose the application requires reports about teaching commitments, an
extract of which is shown in Table 3. Not all academics currently teach. If they do, their teaching in one or
more subjects may be evaluated and given a rating. Some teachers serve on course curriculum committees.
Here the new fact types may be schematized as shown in Figure 4. The nested object type Teaching plays
only onerole, and thisroleis optional, so Teaching is an independent object type (as shown by the “!”).

Table 3 Extract of report on teaching commitments

Empnr | Emp.name | Subject | Rating Committees

715 | AdamsA CS100 5
CS101
430 | Codd EF
654 | WirthN CS300 BSc-Hons

CAL Advisory

The second stage of Step 5 is to check for logical derivations (i.e. can some fact type be derived
from others without the use of arithmetic?). One strategy here is to ask whether there are any relationships
(especially functional relationships) which are of interest but which have been omitted so far. Another
strategy is to look for transitive patterns of functional dependencies. Suppose that our client confirms that
the rank of an academic determines the access level of hig’her extension. For example, suppose a current
business rule is that professors get international access while lecturers and senior lecturers get local access.
This rule might change in time (e.g. senior lecturers might be arguing for national access). To minimize
later changes to the schema, we store the rule as data in a table. So it can be updated as required by an
authorized user without recompiling the schema. The relevant rule is shown at the bottom of Figure 4.

In Step 6 of the CSDP we add any value, set comparison and subtyping constraints. One value
congtraint is that Rankcode isrestricted to {*P’,'SL’,'L’}. In Figure 4, a pair-subset constraint runs from the
heads predicate to the works for predicate, indicating that a person who heads a department must work for the
same department. The rule that nobody can be tenured and contracted at the same time is captured by an
exclusion congtraint. Subtyping is determined as follows. Each optional role is inspected: if the role is
played only by some well-defined subtype, a subtype node is introduced with this role attached.



+“—>
e e TN "Teaching !" -

has - BldgName y - — — :
N - teacheq SUbéeCt 1.7}
-« (code)
Building —
(bldgnr)

-

’ N
\ . .
(\ Roomnr J - | | University
Seo_ =" «—» (code)
l ...obtained...from...
Extension occupies I Is contracted tl
(extnr) -- -- Date
is used by / uses . (mdy)
R ®
+«—>

Academic

[ [ has ] (empr)
-- EmpNanIe,

-7

ensures
I is audited by /audits @ has head with home-

l -- ' -
works for

Dept

\

‘ (name) ( Phonenr ,
AccesslLevel - e
(code) @ Professor heads

{INT'NAT','LOC"} has
teaching

l budget
P
Committee Teaching @ MoneyAmt
serves
(name) - on Prof (usd) +

each Teacher is an Academic who teaches some Subject
each Professor is an Academic who has Rank "P'
each TeachingProf is both a Teacher and a Professor

has
research

+«——rt——>
notgs | | budoet

* Dept d employs academics of Rank r in Quantity q iff g =
count each Academic who has Rank r and works for Dept d

* define Extension provides AccessLevel as
Extension is used by an Academic who has a Rank that ensures AccessLevel

Figure 4 The final conceptual schema

Subtype links and definitions are added. Figure 4 contains three subtypes: Teacher; Professor; and
TeachingProfessor. In this university, each teacher is audited by another teacher. Moreover, only professors
may be department heads, and only teaching professors can serve on curriculum committees (not all
universities work this way).

Sep 7 of the CSDP adds other constraints and performs final checks. For example, auditing is
irreflexive (no teacher audits himself/herself). Suppose we also need to record the teaching and research
budgets of the departments. We might schematize this using the ternary Dept has for Activity a budget of MoneyAmt,
where Activity has the value constraint {‘Teaching’, ‘Research’} and the first role is mandatory and
constrained to a frequency of 2.



10

Once the global schema is drafted, and the target DBMS decided, some optimization can often be
performed to improve the efficiency of the logical schema obtained by mapping. Assuming the conceptual
schema is to be mapped to a relational database schema, the ternary fact type about budgets will map to a
separate table all by itself, leading to extra joins for some queries. We can avoid this problem by
transforming the ternary into the following two binaries before we map: Dept has teaching budget of MoneyAmt;
Dept has research budget of MoneyAmt. These binaries have simple keys, and will map to the “main” department
table. Another optimization may be performed which moves the home phone information to Dept instead of
Professor. Figure 4 includes these optimizations. Such conceptual schema transformations require a
rigorous theory of schema equivalence and optimization strategies. For details on such topics, see [Hal95,
ch. 9; HP95b; DeT93].

2.3 Logical Mapping

Once the conceptual schema has been specified, the target data model is selected and the mapping is done.
For example, the Rmap algorithm [RH93; Hal95] maps our conceptual schema to the relational schema
shown in Figure 5 (domains omitted). If the conceptual fact types are elementary (as they should be), then
the mapping is guaranteed to be free of redundancy, since each fact type is grouped into only one table, and
fact types which map to the same table all have uniqueness constraints based on the same attribute(s).

Keys are underlined. If alternate keys exist, the primary key is doubly-underlined. A mandatory role
is captured by making its corresponding attribute mandatory in its table (not null is assumed by default), by
marking as optional (in sguare brackets) all optional roles for the same object type which map to the same
table, and by running an equality/subset constraint from those mandatory/optional roles which map to
another table. The (2,1) in the pair-subset constraint indicates the source pair should be reversed before the
comparison. Subtyping is captured by qualified optionals or qualified subset constraints. The word “exists’
means “anon-null value exists’.

Building ( bldgnr, bldgname )

—_—— e -4

{L,S.P} {INTNAT,LOC} :
PhoneAccess ( rank, accesslevel ) :
1

I

I I

Department ( deptna%e, headempnr; homephone, teachingbudget,:
I

I

_':<2‘1>—I I researchbudget )
| -
Is I -
l_Y—CJ : PSLYy_ -~ -~
Academic ( empnr, empname, deptname, extn, rank, bldgnr, roomnr,
AAX tenured, [enddate] %, [chair]?, [auditor]3#)

11
A {Y,N} e

57
Award 7/
4

\

( empnr, degree, university ) -

—-————="s
\

\ <

\ ~
Teaching | (e\mgnr subject, [rating] )
\
\ | {1.7}
\\ 1
CteeMember (em'gnr committee )

1 exists iff tenured = 'N'

2 exists iff rank = 'P'

3 <> empnr

4 exists iff empnr in Teaching.empnr
5only where rank = 'P'

* Provides (‘extn, accesslevel ) ::= extn, accesslevel from
Academic natural join PhoneAccess

* Employs ( deptname, rank, nrstaff ) ::= deptname, rank, count(*)
from Academic
group by deptname, rank

Figure 5 The relational schema mapped from Figure 4



11

3 Recent extensions
3.1 Conceptual queries

Besides information modeling, ORM is also idea for information querying. The first significant ORM
guery language was RIDL [Mee82], a hybrid language with both declarative and procedural components.
Temporal aspects were added later to form TRIDL. Currently, research is being carried out on at |east three
ORM query languages. LISA-D [HPW93]; OSM-QL [EWPC96]; and ConQuer [BH96]. Of these ConQuer
(CONCceptual QUERY) is the only one to be commercialy released. A more powerful version, ConQuer-11
[BH97], is currently under development at Visio Corporation.

Using ConQuer, an ORM model may be queried directly without prior knowledge of either the
conceptual schema or the corresponding relational schema, by dragging object types onto the query pane,
selecting predicates of interest, applying restrictions and functions as desired, and ticking the items to be
listed. As a simple example, consider the following English query on our academic database: list the empnr,
empname and number of subjects taught for each academic who occupies a room in the Chemistry building
and teaches more than two subjects. This may be formulated by drag-and-drop basically as follows:

Academic
| is identified by v Empnr
- has v Empname
| occupies Room
| L— is in Building
| L— has BldgName ‘Chemistry’
L teaches Subject
L—v'count (Subject) > 2

Notice how easily the conceptua joins are made. A verbalization of the query is automatically
generated, as well as SQL code. Formulating queries in terms of objects and predicates is much easier than
deciphering the semantics of the relational schema and coding in SQL or QBE. A major benefit of such
gueries is their semantic stability. For example, ConQuer queries are unaffected by most schema changes
(e.g. addition of fact types, or changes to constraints). In contrast, such changes often require the
corresponding SQL or ER query to be reformulated, since they depend on attribute structures.

3.2 Other extensions

Researchers are actively investigating several extensions to the basic ORM framework. These include
abstraction mechanisms to allow users to control the amount of detail seen at any given time [CHP96],
reverse engineering [SS93; CH94], support for complex objects [HW93; DM95], process-event modeling
[Hof93], external schema generation [CH93], schema evolution [Pro94], schema optimization [HP95b;
Bom94], meta-modeling [FO94], subtype extensions [HP95a], null handling [HR92], object-oriented
mapping [ME96], unary nesting [BZL94], and empirical research [Eved4].

Although various versions of ORM have added support for complex objects, they differ in their
approaches. Currently there seems to be a growing agreement that constructors (e.g. set, bag, sequence)
should only be added after a “flat” ORM model is first developed. There are also different opinions on
whether such constructors should be considered part of the conceptual model, or regarded as mapping
annotations. Commercial developers of ORM tools are also extending the method. For example,
InfoModeler includes extra constructs for mapping to object-relational databases, and extensions of this
technology are being incorporated into future Visio products.

4 Conclusion

This article has provided only a brief sketch of the ORM method, emphasizing its fundamental features and
touching on some of its advantages. Apart from its sound theoretical basis, the method has been used
successfully in many countries, on applications from the small to the very large. The recent emergence of
intuitive and powerful ORM tools has led to wider adoption of the method, which is now being successfully
taught as early as high school level. Perhaps the greatest strengths of ORM are that it lifts the
communication between modeler and client to a level where they can readily understand and validate the



12

application model using simple sentences, and that it has been designed from the ground up to facilitate
schema evolution. This second advantage is very relevant to today’s business world where change is
ongoing.

In an article this brief, several aspects of ORM have necessarily been glossed over. The reader who is
interested in pursuing the area further should consult the cited references, which are included at the end of
the handbook.

References

[Abr74] Abria, JR. 1974, ‘Data Semantics, Data Base Management, eds JW. Klimbie and K.L.
Koffeman, North-Holland, Amsterdam, The Netherlands, pp. 1-60.

[BZL94] Bakema, G.P., Zwart, J.P.C. & Lek, H. van der 1994, ‘Fully Communication Oriented NIAM’,
NIAM-ISDM 1994 Conf. Working papers, eds G.M. Nijssen & J. Sharp, Albuquerque, NM USA, pp.
L1-35.

[BH96] Bloesch, A.C. & Halpin, T.A. 1996, ‘ConQuer: a conceptual query language’, Proc. ER 96: 15"
Int. Conf. on conceptual modeling, Springer LNCS, vol. 1157, pp. 121-33.

[BH97] Bloesch, A.C. & Halpin, T.A. 1997, ‘Conceptual queries using ConQuer-11’, Proc. ER 97: 16" Int.
Conf. on conceptual modeling, Springer LNCS, vol. 1331, pp. 113-26.

[Bom94] Bommell, P. van 1994, ‘Implementation selection for Object-Role models’, Proc. First Int. Conf.
On Object-Role Modeling (ORM-1), eds T.A. Halpin & R.M. Meersman, Magnetic Island, Australia,
pp. 103-12.

[CH93] Campbell, L. & Halpin, T.A. 1993, ‘Automated Support for Conceptual to Externa Mapping’,
Proc. 4th Workshop on Next Generation CASE Tools, eds S. Brinkkemper & F. Harmsen, Univ.
Twente Memoranda I nformatica 93-32, pp. 35-51, Paris (June).

[CH94] Campbell, L. & Halpin, T.A. 1994, ‘The reverse engineering of relational databases’, Proc. 5th
Workshop on Next Generation CASE Tools, Utrecht (June).

[CHP96] Campbell, L.J.,, Halpin, T.A. & Proper, H.A.1996 ‘Conceptual Schemas with Abstractions:
making flat conceptual schemas more comprehensible’, Data and Knowledge Engineering, vol. 20, no.
1, pp. 39-85.

[DeT93] De Troyer, O. 1993, ‘On data schema transformations, PhD thesis, University of Tilburg
(K.U.B.), Tilburg, The Netherlands.

[DM95] De Troyer, O. & Meersman, R. 1995, ‘A logic framework for a semantics of object oriented data
modeling’, OOER' 95: Object-Oriented and Entity-Relationship Modeling, Springer LNCS, vol. 1021,
pp. 238-49.

[EKW92] Embley, D.W., Kurtz, B.D. & Woodfield, S.N. 1992, Object-Oriented Systems Analysis, Prentice
Hall, Englewood Cliffs, NJ.

[EWPC96] Embley, D.W., Wu, H.A., Pinkston, J.S. & Czejdo, B. 1996, ‘OSM-QL: a calculus-based
graphical query language’, Tech. Report, Dept of Comp. Science, Brigham Y oung Univ., Utah.

[Evedd] Everest, G. 1994, ‘Experiences teaching NIAM/OR modeling’, NIAM-1SDM 1994 Conf. Working
Papers, eds G.M. Nijssen & J. Sharp, Albuguerque, NM USA, pp. N1-26.

[Fal76] Falkenberg, E.D. 1976, ‘ Concepts for modelling information’, Proc. 1976 IFIP Working Conf. on
Modelling in Data Base Management Systems, ed. G.M. Nijssen, Freudenstadt, Germany, North-
Holland Publishing, pp. 95-109

[FO94] Falkenberg, E.D. & Oei, JL.H. 1994, ‘Meta-model hierarchies from an Object-Role Modeling
perspective’, Proc. First Int. Conf. On Object-Role Modeling (ORM-1), eds T.A. Halpin & R.M.
Meersman, Magnetic Island, Australia, pp. 218-227.

[Hab93] Habrias, H. 1993, ‘Normalized Object Oriented Method', in Encyclopedia of Microcomputers, vol.
12, Marcel Dekker, New york, pp. 271-85.

[Hal89] Halpin, T.A. 1989, ‘A Logical Analysis of Information Systems: static aspects of the data-oriented
perspective’, PhD thesis, University of Queensland.

[Hal93] Halpin, T.A. 1993, ‘What is an elementary fact?, Proc. First NIAM-1SDM Conf., eds G.M. Nijssen
& J. Sharp, Utrecht, (Sep), 11 pp.

[Hal95] Halpin, T.A. 1995, Conceptual Schema and Relational Database Design, 2nd edn, Prentice Hall
Australia, Sydney.

[Hal96] Halpin, T.A. 1996, ‘Business Rules and Object-Role Modeling’, Database Prog. & Design, val. 9,
no. 10, Miller Freeman, San Mateo CA, pp. 66-72.

[Hal97] Halpin, T.A. 1997, ‘Object-Role Modeling: an overview’, electronic paper available on website
WWW.0orm.net.



13

[HP95a] Halpin, T.A. & Proper, H.A. 19953, ‘Subtyping and polymorphism in Object-Role Modeling’,
Data and Knowledge Engineering, vol. 15, pp. 251-81, Elsevier Science.

[HP95b] Halpin, T.A. & Proper, H.A. 1995b, ‘Database schema transformation and optimization’,
OOER 95: Object-Oriented and Entity-Relationship Modeling, Springer LNCS, vol. 1021, pp. 191-
203.

[HR92] Halpin, T.A. & Ritson, P.R. 1992, ‘Fact-Oriented Modelling and Null Values, Proc. 3rd
Australian Database Conf., eds. B. Srinivasan & J. Zeleznikov, World Scientific, Singapore.

[Hof93] Hofstede, A.H.M. ter 1993, ‘Information modelling in data intensive domains, PhD thesis,
University of Nijmegen, The Netherlands.

[HPW93] Hofstede, A.H.M. ter, Proper, H.A. & Weide, th.P. van der 1993, ‘Forma definition of a
conceptual language for the description and manipulation of information models’, Information
Systems, vol. 18, no. 7, pp. 489-523.

[HW93] Hofstede A.H.M. ter & Weide, th.P. van der 1993, ‘ Expressiveness in conceptual data modelling’,
Data and Knowledge Engineering, vol. 10, no. 1, pp. 65-100.

[Ken77] Kent, W. 1977, ‘Entities and relationships in Information’, Proc. 1977 IFIP Working Conf. on
Modelling in Data Base Management Systems, ed. G.M. Nijssen, Nice, France, North-Holland
Publishing, pp. 67-91.

[Mee82] Meersman, R. 1982, ‘The RIDL conceptual language’, Research report, Int. Centre for Information
Analysis Services, Control Data Belgium, Brussels.

[ME96] Mok, W.Y & Embley, D.W. 1996, ‘Transforming conceptual model to object-oriented database
designs: practicalities, properties and peculiarities, Proc. ER'96: 15" Int. Conf. on conceptual
modeling, Springer LNCS, vol. 1157, pp. 309-24.

[Nij76] Nijssen, G.M. 1976, ‘A gross architecture for the next generation database management systems’,
Proc. 1976 IFIP Working Conf. on Modelling in Data Base Management Systems, ed. G.M. Nijssen,
Freudenstadt, Germany, North-Holland Publishing, pp. 1-24.

[Nij77] Nijssen, G.M. 1977, ‘Current issues in conceptual schema concepts’, Proc. 1977 IFIP Working
Conf. on Modelling in Data Base Management Systems, ed. G.M. Nijssen, Nice, France, North-
Holland Publishing, pp. 31-66.

[Pro94] Proper, H.A. 1994, ‘A theory of conceptual modelling of evolving application domains, PhD
thesis, University of Nijmegen, The Netherlands.

[RH93] Ritson, P.R. & Halpin, T.A. 1993, ‘Mapping Integrity Constraints to a Relational Schema’, Proc.
4th ACIS, Brisbane (Sep.), pp. 381-400.

[Sen75] Senko, M.E. 1975, ‘Information systems:. records, relations, sets, entities and things', Information
Systems, voal. 1, no. 1, Jan. 1995, Pergamon Press, pp. 3-13.

[SS93] Shoval, P. & Shreiber, N. 1993, ‘Database reverse engineering: from the relational to the binary
relational model’, Data and Knowledge Engineering, vol. 10, pp. 293-315.

[VB82] Verheijen, G.M.A. & van Bekkum, J. 1982, ‘NIAM: an information analysis method’, Information
systems Design Methodologies: a comparative review, Proc. IFIP WG8.1 Working Conf.,
Noordwijkerhout, The Netherlands, North Holland Publishing, pp. 537-90.

[Ver83] Vermeir, D. 1983, ‘Semantic hierarchies and abstractions in conceptual schemata’, Information
systems, vol. 8, no. 2, pp. 117-24.

[Win90] Wintraecken, J.J.V.R. 1990, The NIAM Information Analysis Method: Theory and Practice,
Kluwer, Deventer, The Netherlands.



Entity Relationship modeling from an ORM perspective:
Part 1

by Dr. Terry Halpin
Director of Database Strategy, Visio Corporation

This is a revised version of a paper that first appeared in the December 1999 issue of the Journal of
Conceptual Modeling, published by InConcept.

This paper is the first in a series of articles examining data modeling in the Entity
Relationship (ER) approach from the perspective of Object Role Modeling (ORM). This
article examines basic aspects of the Barker notation for ER.

Introduction

Entity Relationship modeling (ER) views the application domain in terms of entities that
have attributes and participate in relationships. For example, the fact that an employee
was born on a date is modeled by assigning a birthdate attribute to the Employee entity
type, whereas the fact that an employee works for a department is modeled as a
relationship between them. This view of the world is quite intuitive, and in spite of the
recent rise of UML for modeling object-oriented applications, ER is still the most popular
data modeling approach for database applications.

The ER approach was originally proposed by Peter Chen in 1976, in the very first
issue of an influential ACM journal [Eh As shown in m Chen’s original notation
used rectangles for entity types, diamonds for relationships, and ellipses for attributes.
The double ellipse indicates unique identifier attributes, and the “n and “1” indicate the
relationship is many to one (each employee works for at most one department, but many
employees may work for the same department).

EMPLOYEE works for 1 | DEPARTMENT

Figure 1 An early ER notation used by Chen

Entity Relationship modeling from an ORM perspective: Part1 1



The direction in which relationship names are to be read is formally undecided,
unless we add some additional marks (e.g. arrows) or rules (e.g. always read from left to
right and from top to bottom). For example, does the employee work for the department,
or does the department work for the employee? Although we can use our background
knowledge to informally disambiguate this example, it is quite common nowadays to see
ER models with relationships whose intended direction can only be guessed at by
anybody other than the model’s creator. For example, consider the impact of misreading
the intended direction for the following: Person killed Animal; Person is loved by Person.
This problem is exacerbated if the verb phrase used to name the relationship is shortened

to one word (e.g. “work”, “love”), unfortunately still a fairly common practice.

Chen’s notation evolved over time. His current ER-Designer tool uses hexagons
instead of diamonds, and supports n-ary relationships. Outside academia, Chen’s
notation seems to be rarely used nowadays, so I'll say no more about it here. One of the
problems with the ER approach is that there are so many versions of it, with no single
standard. In industrial practice, the most popular versions of ER are the Barker and
Information Engineering (IE) notations. Another popular data modeling notation is
IDEF1X, but since this is a hybrid of ER and relational notation, | don’t count it as a true
ER representative. As discussed elsewhere , UML class diagrams can be regarded as an
extended version of ER. The rest of this article focuses on basic aspects of the Barker
notation for ER. Later articles will examine IE and IDEF1X.

Barker ER: the basics

I use the term “Barker ER” for the ER notation discussed in the classic treatment by
Richard Barker [ﬂ. While Oracle Corporation has long used this notation in its CASE
tools, Oracle’s Object Designer tool now supports UML as an alternative to its traditional
ER notation. For database applications, many modelers still prefer the Barker ER notation
in preference to UML, and it will be interesting to see whether this changes over time.
Dave Hay, an experienced modeler and ardent fan of the Barker ER notation, argues that
“there is no such thing as ‘object-oriented analysis’” ﬂa] only object-oriented design, and
that “UML is ... not suitable for analyzing business requirements in cooperation with
business people”[ﬂ.

While | agree with Dave Hay that UML class diagrams are less than ideal for data
modeling, | feel that his preferred ER notation shares some of UML’s weaknesses in being
attribute-based. As I've discussed before in a UML context El El] using attributes in a base
conceptual model adds complexity and instability, while making it harder to validate
models with domain experts using verbalization and sample populations. Attributes are
great for logical design, since they allow compact diagrams that directly represent the
data structures (e.g. relations or object-relations) used for the actual design. However
when I’'m performing conceptual analysis, | just want to know what the facts and rules are
about the business, and | want to communicate this information in sentences, so that the

Entity Relationship modeling from an ORM perspective: Part1 2



model can be understood by the domain experts. | sure don’t want to bother about how
facts are grouped into multi-fact structures. Whether some fact will end up in the design
as an attribute is not a conceptual issue to me. As Ron Ross says, “Sponsors of business
rule projects must sign off on the sentences—not on graphical data models. Most
methodologies and CASE tools have this more or less backwards” ||Z| p.15]. The ORM
reporting facilities in Visio Enterprise allow the domain expert to inspect ORM models
fully verbalized into sentences with examples, making validation much easier and safer.

Now that I've stated my bias up front, let's examine the Barker ER notation itself.
The basic conventions are illustrated in m Entity types are shown as soft rectangles
(rounded corners) with their name in capitals. Attributes are written below the entity type
name. Some constraint information may appear before an attribute name. A “#” indicates
that the attribute is the primary identifier of the entity type, or at least a component of its
primary identification scheme. A “*” or heavy dot “«” indicates the attribute is mandatory
(i.e. each instance in the database population of the entity type must have a non-null value
recorded for this attribute). A “°” indicates the attribute is optional. Some modelers also

use a period “.” to indicate the attribute is not part of the identifier.

EMPLOYEE ROOM
an occupier of
# *empnr # * room nr
* emp name| occupied by * size

°fax nr

° phone nr

Figure 2 The basic Barker ER notation

Relationships are restricted to binaries (no unaries, ternaries or longer relationships),
and are shown as lines with a relationship name at the end from which that relationship
name is to be read. This name placement overcomes the ambiguous direction problem
mentioned earlier. Both forward and inverse readings may be displayed for a binary
relationship, one on either side of the line. This makes the Barker notation superior to
UML for verbalizing relationships.

From an ORM perspective, each end (or half) of a relationship line corresponds to a
role. Like ORM, Barker ER treats role optionality and cardinality as distinct, orthogonal
concepts, instead of lumping them together into a single concept (e.g. multiplicity in
UML). A solid line-half denotes a mandatory role, and a dotted line-half indicates an
optional role. For cardinality, a crow’s foot intuitively indicates “many”, by its many
“toes”. The absence of a crow’s foot intuitively indicates “one”. The crow’s foot notation
was invented by Gordon Everest, who originally used the term “inverted arrow” [@ but
now calls it a “fork”. m shows the correspondence with the ORM notation for
uniqueness and mandatory role constraints.

To enable the optionality and cardinality settings to be verbalized, Barker [1| p. 3-5]
recommends the following naming discipline for relationships. Let A R B denote an infix
relationship R from entity type A to entity type B. Name R in such a way that each of the
following four patterns results in an English sentence:

Entity Relationship modeling from an ORM perspective: Part1 3



each A (must | may) be R (one and only one B | one or more B-plural-form)

Use “must” or “may” when the first role is mandatory or optional respectively. Use
“one and only one” or “one or more” when the cardinality on the second role is one or
many respectively. For example, the optionality/cardinality settings in Ma)
verbalize as: each Employee must be an occupier of one and only one Room; each Room
may be occupied by one or more Employees. This verbalization convention is good for
basic mandatory and uniqueness constraints on infix binaries. However it is far less
general than ORM'’s approach, which applies to instances as well as types, for predicates
of any arity, and covers many more kinds of constraint, with no need for pluralization. As
a trivial example, the fact instance “Employee ‘101’ an occupier of Room 23 is not proper
English, but “Employee ‘101’ occupies Room 23" is good English.

@

EMPLOYEE ROOM

an occupier of

occupied by

(b) -
T ()

occupies/ is occupied by

Figure 3 The ER diagram (a) is equivalent to the ORM diagram (b)

If each of the two roles in a binary association may be assigned one of
optional/mandatory and one of many/one, there are sixteen patterns. The equivalent
Barker ER and ORM diagrams for the first eight of these cases are shown in

Entity Relationship modeling from an ORM perspective: Part1 4



Barker ER ORM

n:1 ( ) ( \ A —
both roles A B --
optional \ ) \ )
1n: ( ) ( ) I —
both roles A B --
optional \ ) \ )
1:1 s N\ s N\ «— >
both roles A B
m:n N N -
both roles

A B

— —
n:1 ( \ ( \ o —
first role A B --
mandatory  \ ) \ )
1n ( \ ( \ >
first role A B --
mandatory  \ ) \ )
1.1 ( N\ ( N\ >
first role A B
m:n S SR S —
first role

A B

~— ~—

Figure 4 Some equivalent cases

The other eight cases are shown in m Although all eight are legal in ORM, the
last case where both roles of a many:many relationship are mandatory is considered
illegal by Barker.

Entity Relationship modeling from an ORM perspective: Part1 5



Barker ER ORM

n:1 ( ) ( \ >
second role A B --
mandatory  \ ) \ )
1ln ( \ ( \ h—
second role A B --
mandatory \___ ) \___J
1:1 ( N\ s N «— >
mandatory

— —
m:n S N >
second role

A B ‘—_—‘--

mandatory ° e

— —
n:1 ( ) ( \ —
both roles A B --
mandatory
1ln ( ) ( \ >
both roles A B --
mandatory  \ ) \ )
1:1 ( N\ s N «— >
both roles A B

— —
mn 'SR 'SR -
both roles

A B
— —

Figure 5 Other equivalent cases

Ring associations that considered illegal by Barker are shown in Figure 6(a).
Although rare, they sometimes occur in reality, so should be allowed at the conceptual
level, as permitted in ORM. As an exercise, you may wish to invent satisfying populations
for the ORM associations in Figure 6 (b). Although considered illegal by Barker, at least
some of these patterns are allowed in Oracle’s CASE tools.

Entity Relationship modeling from an ORM perspective: Part1 6



Figure 6 lllegal ring associations in Barker ER () that are rare but allowed in ORM (b)

In Barker ER, a bar “|” across one end of a relationship indicates that the
relationship is a component of the primary identifier for the entity type at that end. In
for example, Employee and Building have simple identifiers, but Room has a

composite reference scheme, being identified partly by its room number and partly by the
building in which it is included.

EMPLOYEE ROOM

BUILDING

an occupier of
# *empnr pb——0 . # * room nr

. T A
* emp name| occupied by | *size the container of | # * bldg nr
° phone nr * nr floors

°fax nr

Figure 7 Room is identified by combining its room nr and its relationship to Building

The use of identification bars provides some of the functionality afforded by
external uniqueness constraints in ORM. For example, the schemas in m are
equivalent. The other attributes of Room and Building in ORM would be modeled in
ORM as relationships. ORM'’s external uniqueness notation seems to me to convey more
intuitively the idea that each RoomNr, Building combination is unique (i.e. refers to at
most one room). But maybe I'm biased. At any rate, this constraint (as well as any other
graphic constraint) can be automatically verbalized in natural language.

-~
R — -~ ~

(@ (b)

ROOM

BUILDING

# *roomnr pb——-
the | # * bldg nr

container of

Building
(nr)

is in /includes

Figure 8 Composite identification in Barker ER (a) and ORM (b)

Entity Relationship modeling from an ORM perspective: Part1 7



Some people misread the bar notation for composite identification as a “1”, since
this is what the symbol means in many other ER notations. But this isn’t a problem if you
don’t have to work with multiple versions of ER. The main problem with the “#” and bar
notations is that they cannot be used to declare uniqueness constraints that are not used
for a primary identification scheme. A second problem is that they are two very different
notations for the same fundamental concept (uniqueness). Because ORM allows
constraints to be used wherever they make sense, and always uses relationships instead of
attributes, it doesn’t have these problems. An example may help illustrate some of these
ideas. Suppose we wanted to model the information shown in m as well as other
facts about rooms.

Table1l A simple data use case for room scheduling

Room Time ActivityCode ActivityName
20 Mon 9 am VMC VisioModeler class
20 Tue 2 pm VMC VisioModeler class
33 Mon 9 am AQD ActiveQuery demo
33 Fri 5 pm SP Staff party

The table suggests that rooms can be simply identified by room numbers, so let’s
accept that. One way of modeling the situation in Barker ER is shown in m Here
the bar notation is used to show that RoomTimeSlot is identified by combining its time
and room number.

ROOM TIME SLOT ) °f| ROOM
# *time J I within | # * roomNr
booked
for
allocated

ACTIVITY

# * activityCode
* activityName

Figure 9 An ER diagram for room scheduling

The use of attributes in this model makes it hard to verbalize and populate the
schema for validation purposes. Moreover, there is at least one constraint missing.
Compare this with the populated ORM model for the same situation (m Here the
facts are naturally verbalized as a ternary (Room at Time is booked for Activity) and a
binary (Activity has ActivityName). The associated fact tables include the original facts, as
well as counter-facts (italicized) to test the constraints. The first counter-row (20, Mon 9
am, AQD) tests the uniqueness constraint that a room at a time is booked for at most one
activity. The second counter-row tests the uniqueness constraint that at most one room
can be booked for a given activity at a given time. This constraint may well be wrong, but

Entity Relationship modeling from an ORM perspective: Part1 8



at least we can express it and test it in ORM. With the ER model there is no way of even
specifying the constraint, much less testing it.

The counter rows (SP, Sales phonecalls) and (PTY, Staff party) are designed to check the
uniqueness constraints that each Activity has at most one Activity name and vice versa. If
these are rejected, the association really is 1:1, as its basic population suggests. Since the
ER notation being discussed doesn’t include a way of indicating that attributes other than
the primary identifier are unique, it isn’t very helpful here. As a small point, the Y2K row
has been added to the original population to indicate that it is possible for some listed
activities to be unscheduled.

Activi “«——r——> Pr N N
ctivity A \
@ [ ] [ [ Fcoynans)
... at ... is booked for ... D
B

has /refers to

+ —>

20 | Mon9am | VMC AQD | ActiveQuery demo
20 | Tue2pm | VMC SP Staff party

33 | Mon 9am | AQD VMC | VisioModeler class
33 [ Fri5pm SP Y2K | Year 2000 seminar
20 Mon9am AQD? SP Sales phonecalls ?
33 Mon9am VMC? PTY  Staff party ?

Figure 10 An ORM diagram for room scheduling, with sample and counter data

In case it looks like I'm just bashing attribute-based approaches like ER in this
article, let me say again that | find attribute-based models useful for compact overviews
and for getting closer to the implementation model. However | generate these by
mapping from ORM, which | use exclusively for conceptual analysis. This makes it easier
to get the model right in the first place, and to modify it as the underlying domain
evolves. Unlike ER (and UML for that matter), ORM was built from a linguistic basis, and
its graphic notation was carefully chosen to exploit the potential of sample populations.
To reap the benefits of verbalization and population for communication with and
validation by domain experts, it’s better to use a language that was designed with this in
mind. An added benefit of ORM is that its graphic notation can capture many more
business rules than popular ER notations.

Next issues

Later articles in this series will consider more advanced aspects of the Barker ER notation,
including exclusion constraints, frequency constraints, subtyping and non-transferable
relationships, and then examine the Information Engineering notation for ER, before
concluding with a discussion of IDEF1X.

Entity Relationship modeling from an ORM perspective: Part1 9



References

1. Barker, R. 1990, CASE*Method: Tasks and Deliverables, Addison-Wesley, Wokingham,
England.

2. Chen, P.P. 1976, ‘The entity-relationship model—towards a unified view of data’, ACM
Transactions on Database Systems, vol. 1, no. 1, pp. 9-36.

3. Everest, G. 1976, ‘Basic Data Structure Models Explained with a Common Example’, Proc.
Fifth Texas Conference on Computing Systems, (Austin, TX, 1976 October 18-19), IEEE
Computer Society publications office, Long Beach, CA, pp. 39-45.

4. Halpin, T.A. 1998-9, ‘UML data models from an ORM perspective: Parts 1-10’, Journal of
Conceptual Modeling, InConcept, Minneapolis USA.

5. Halpin, T.A. & Bloesch, A.C. 1999, ‘Data modeling in UML and ORM: a comparison’,
Journal of Database Management, vol. 10, no. 4, Idea group Publishing Company, Hershey,
USA, pp. 4-13.

6. Hay, D.C. 1999, ‘There is no object-oriented analysis’, DataToKnowledge Newsletter, vol. 27,
no. 1, Business Rule Solutions, Inc., Houston TX, USA.

7. Hay, D.C. 1999, ‘Object orientation and information engineering: UML’, The Data
Administration Newsletter, no. 9, (June 1999), ed. R.S. Reiner, available online at
www.tdan.com.

8. Ross, R.G. 1998, Business Rule Concepts, Business Rule Solutions, Inc., Houston TX, USA.

This paper is made available by Dr. Terry Halpin and is downloadable from www.orm.net.

Entity Relationship modeling from an ORM perspective: Part 1 10



Entity Relationship modeling from an ORM per spective: Part 2

Terry Halpin
Microsoft Corporation

I ntroduction

This article is the second in a series of articles dealing with Entity Relationship (ER) modeling from the
perspective of Object Role Modeling (ORM). Part 1 provided a brief overview of the ER approach, and
then covered the basics of the Barker ER notation [[I]], that has long been supported in CASE tools from
vendors such as Oracle Corporation. In this notation, entity types are depicted as named, soft rectangles,
and binary relationships are shown as lines with forward and inverse names. If shown, attributes are listed
below the entity type name. A “#" indicates that an attribute is [part of] the primary identifier of the entity
type, a “*"indicates the attribute is mandatory and a “°” indicates the attribute is optiona. Only binary
relationships are allowed, so a role corresponds to a half-line (half a relationship ling). If a role is
mandatory, its half-line is solid. If arole is optional, its half-line is dashed. For role cardinality, a crows-
foot at the end indicates “many” and its absence indicates “1". A bar “|" across one end of a relationship
indicates that the relationship is a component of the primary identifier for the entity type at that end. Part 1
discussed examples of the above notations and compared them with the corresponding ORM notations.
This second article briefly discusses verbalization, then examines the Barker ER notation for exclusion
congtraints, frequency constraints, subtyping and non-transferable relationships.

Barker ER: verbalization

To enable the optionality and cardinality settings to be verbalized, Barker IEI, p. 3-5] recommends the
following naming discipline for relationships. Let A R B denote an infix relationship R from entity type A to
entity type B. Name R in such away that each of the following four patterns resultsin an English sentence:

each A (must | may) be R (one and only one B | one or mor e B-plural-form)

Use “must” or “may” when the first role is mandatory or optional respectively. Use “one and only one” or
“one or more” when the cardinality on the second role is one or many respectively. For example, the
optionality/cardinality settingsin a) verbalize as: each Employee must be an occupier of one and only one
Room; each Room may be occupied by one or more Employees.

@

EMPLOYEE ROOM

an occupier of

occupied by

(b) «—>
T (o)

occupies/ is occupied by

Figure 1 The ER diagram (a) is equivalent to the ORM diagram (b)

The constraints on the left hand role in the equivalent ORM model shown in [Figure I{b) verbalize as:
each Employee occupies some Room; each Employee occupies at most one Room. If desired, these constraints may be
combined to verbalize as: each Employee occupies exactly one Room. Since the right-hand role has no
constraints, this is not normally verbalized in ORM (unlike Barker ER). However the lack of any
unigueness constraint could be verbalized explicitly as: it is possible that the same Room is occupied by more than
one Employee. If no inverse reading is available, it can be verbalized as: it is possible that more than one Employee
occupies the same Room. If you would like this explicit verbalization capability added as a configurable option
to the verbalizer in Visio Enterprise, please email me at [ferryHa@microsoft.com]



mailto:TerryHa@microsoft.com

Regarding the lack of an explicit mandatory role constraint on the right-hand role, | am lessinclined to
want that verbalized explicitly, because it may well be unstable. If Room plays no other fact roles, the role
is mandatory by implication (Room has not been declared independent), so verbalization may well confuse
here. If Room does play another fact role, and we decide that some rooms may be unoccupied, we could
declare this explicitly as: it is possible that some Room is occupied by no Employee. Or equivalently: it is not
necessary that each Room is occupied by some Employee. If no inverse reading is available, it could be verbalized
thus: it is possible that no Employee occupies some Room. If you would like an option for explicit verbalization of
optional rolesin Visio Enterprise, please email me your thoughts on this.

To its credit, the Barker verbalization convention is good for basic mandatory and uniqueness
congtraints on infix binaries. However it is far less general than ORM'’s approach, which applies to
instances as well as types, for predicates of any arity, infix or mixfix, and covers many more kinds of
constraint, with no need for pluraization. As a trivial example, the fact instance “Employee ‘101" an
occupier of Room 23" is not proper English, but “Employee ‘101" occupies Room 23" is good English.

Exclusion constraints

In Barker ER notation, an exclusion constraint over two or more roles is shown as an “exclusive arc”
connected to the roles with a small dot or circle. For example, [Figure 2{a) includes the constraint that no
employee may be allocated both a bus pass and a parking bay. In ORM this constraint is depicted by

connecting “[1” to the relevant roles by a dotted line, as shown in Figure 2{b).

ParkingBay

(@) (b)
EMPLOYEE
~ allocated {BUSPASS]
Employee
PARKING
- allocated { BAY ]

Figure 2 A simple exclusion constraint in (a) Barker ER notation and (b) ORM

is allocated

|
|
b

is allocated

To declare that two or more roles are mutually exclusive and digunctively mandatory, the Barker
notation uses the exclusive arc, but each role is shown as mandatory (solid ling). For example, in
E(a) each account is owned by a person or a company, but not both. This notation is liable to mislead, since
it violates the orthogonality principle in language design. Viewed by itself, the first role of the association
Account owned by Person would appear to be mandatory, since a solid line is used. But the role is actualy
optional, since superimposing the exclusive arc changes the semantics of the solid line to mean the role
belongsto a set of roles that are disjunctively mandatory.

@ (b)

ACCOUNT ~ owned by [ PERSON ]
COMPANY
- owned by [ ]

is owned by

is owned by

Figure 3 An exclusive-or constraint in (a) Barker ER notation and (b) ORM



Contrast this with the equivalent ORM model shown in b). Here an exclusion congtraint [ is
orthogonally combined with a disjunctive mandatory (inclusive-or) constraint © to produce an exclusive-or
congtraint, shown here by the “lifebuoy” or partition symbol formed by overlaying one constraint symbol
on the other. As an alternative, the inclusive-or and exclusion constraints may be displayed separately.

The ORM notation makes it clear that each role is individually optional, and that the exclusive-or
congtraint is a combination of inclusive-or and exclusion constraints. Suppose we modified our business so
that the same account could be owned by both a person and a company. Removing just the exclusion
congtraint from the model leaves us with the inclusive-or constraint ® that each account is owned by a
person or company. Like UML, the Barker ER notation doesn’'t even have a symbol for an inclusive-or
congtraint, so is unable to diagram this or the many other cases of this nature that occur in practice.

In the Barker notation, a role may occur in at most one exclusive arc. ORM has no such restriction.
For example, in [Figure 4]a) no student can be both ethnic and aboriginal, and no student can be both an
aboriginal and a migrant (these rules come from a student record system in Australia). Even if Barker
notation supported unaries (it doesn't) this situation could not be handled by exclusive arcs. Like UML,
Barker ER does not provide a graphic notation for exclusion constraints over role-sequences. For instance,
it cannot capture the ORM pair-exclusion constraint in [Figure 4(b), which declares that no person who
wrote a book may review the same book. Such rules are very common. Moreover, the Barker notation
cannot express any ORM subset or equality constraints at all, even over simpleroles.

@ (b)

is ethnic \inOte_»
@ (X) Book
reviewed
Figure 4 Some ORM exclusion constraints not handled by exclusive arcs in Barker ER notation

Frequency constraints

The Barker ER notation allows simple frequency constraints to be specified. For any positive integer n, a
constraint of the form=n, <n, <n, >n, = n may be written beside a single role to indicate the number of
instances that may be associated with an instance playing the other role. For example, the frequency
congtraint “< 2" in indicates that each person is a child of at most two parents. In the Barker
notation, this constraint is placed on the parent role, making it easy to read the constraint as a sentence
starting at the other role. In ORM the constraint is placed on the child role, making it easy to see the
impact of the constraint on the population (each person appears at most twice in the child role population).
Unlike the Barker notation, ORM allows frequency constraints to include ranges (e.g. 2-5) and to apply to

role-sequences.
(@ (b)
PERSON | a child of @
ERRS

a parent of \s 2
AN

/ is a child of /is a parent of

Ann Bill

Ann Cathy
David Cathy
Ernie Cathy

Figure 5 A simple frequency constraint in (a) Barker ER notation and (b) ORM



Subtyping

In Barker ER notation, subtyping is depicted with a version of Euler diagrams. In effect, only partitions
(exclusive and exhaustive) can be displayed. For example, a) indicates that each patient isamale

patient or female patent but not both. Like UML, ORM displays subtyping using directed acyclic graphs
(DAGS). Subtype exclusion and exhaustion constraints are normally omitted in ORM, as i‘b),

since they are implied by the subtype definition and other constraints (e.g. mandatory, uniqueness and value
constraints on Patient is of Gender). However they can be explicitly displayed as in Figure 6(b).

@ (b) (©

0
MALE
FemalePatient MalePatient ) (FemalePatient

PATIENT
Figure 6 A subtype partition in (a) Barker ER, (b) implicit ORM and (c) explicit ORM notation

Euler diagrams are good for simple cases, since they intuitively show the subtype inside its supertype.
However unlike DAGS, they are hopeless for complex cases (e.g. many overlapping subtypes), and they
make it inconvenient to attach details to the subtypes. For the latter reason, attributes are often omitted from
subtypes when the Barker notation is used.

In the Barker notation, if the original subtype list is not exhaustive, an “Other” subtype is added to
make it so, even if it plays no specific role. For example, in[Figure 7]a vehicle isa car or truck or possibly
something else, and a car is a sedan or wagon or possible something else.

A major problem with the Barker notation for subtyping is that it does not depict overlapping subtypes
(eg. Manager and FemaleEmployee as subtypes of Employee) or multiple inheritance (e.g.
FemaleManager as a subtype of Fema eEmployee and Manager). While it is possible to implement multiple
inheritance in single inheritance systems (e.g. Java) by using some low level tricks, for conceptual
modeling purposes multiple inheritance should be simply modeled as multiple inheritance.

As a final comparison point about subtyping, Barker ER lacks ORM’s capability for formal subtype
definitions and context-dependent identification schemes.

MalePatient
FEMALE

PATIENT

EE

p
(@ VEHICLE

)
CAR

SEDAN

WAGON

OTHER CAR

TRUCK

OTHER
VEHICLE

& J

UTE

Figure 7 Non-exhaustive, exclusive subtypes in (a) Barker ER and (b) ORM



Non-transferable relationships

In addition to its static constraint notation, Barker ER includes a dynamic “changeability constraint” for
marking “non-transferable relationships’. This constraint declares that once an instance of an entity type
plays a role with an aobject, it cannot ever play this role with another object. This is indicated by adding an
open diamond to the constrained role. For example, a) declares that the birth country of apersonis
non-transferabl e.

As indicated in[Figure §(b), ORM does not currently include a notation for this constraint. It would be
possible to add a notation for this (as well as UML's changeability settings of changeable, frozen,
addOnly), but it is at least debatable whether this is advisable. If we were to add such a notation, we would
need to ensure that the implemented model is still open to error corrections by duly authorized users. For
example, if my birth country was mistakenly entered as Austria, it should be possible to change this to
Australia. For further discussion on this issue, see my comments on changeability propertiesin [E] If you
have some strong views on this issue, please email me your thoughts.

(@) (b)

born in I —
o V- S—— COUNTRY ]

was born in

Figure 8 Non-transferable nature of a relationship is declared in (a) Barker ER, but not in (b) ORM

Conclusion

The Barker ER notation does a good job of expressing simple mandatory, uniqueness, exclusion and
frequency constraints, simple subtyping and also non-transferable relationships. However, if a feature is
modeled as an attribute instead of as a relationship, very few of these constraints can be specified for it. In
contrast to ORM, the Barker ER notation does not support unary, n-ary or objectified associations (nesting).
Moreover it lacks support for most of the advanced ORM constraints (e.g. subset, multi-role exclusion, ring
constraints and join congtraints). It does not include a formal textual language such as ConQuer for
specifying queries, other constraints and derivation rules at the conceptual level. Nevertheless it is better
than many other notations for ER modeling, and is still widely used. If you ever need to specify a model in
Barker ER notation, | suggest you first do the model in ORM, then map it to the Barker notation and make
anote of any rulesthat can’t be expressed there diagrammatically.

Next issues

Later articles in this series will examine the Information Engineering notation for ER, before concluding
with a discussion of IDEF1X.

References

1. Barker, R. 1990, CASE*Method: Tasks and Deliverables, Addison-Wes ey, Wokingham, England.
2. Hapin, T.A. 1999, ‘UML data models from an ORM perspective: Part 10', Journal of Conceptual
Modeling, InConcept, Minneapolis USA.



Entity Relationship modeling from an ORM per spective: Part 3

Terry Halpin
Microsoft Corporation

I ntroduction

This article is the third in a series of articles dealing with Entity Relationship (ER) modeling from the
perspective of Object Role Modeling (ORM). Part 1 provided a brief overview of the ER approach, and
then covered the basics of the Barker ER notation. Part 2 completed the examination of the Barker ER
notation by discussing verbalization, exclusion constraints, frequency constraints, subtyping and non-
transferable relationships. Both parts compared the Barker notations with the corresponding ORM notations
This article discusses the Information Engineering notation for ER, relating it to relevant ORM constructs.

The Information Engineering (IE) approach began with the work of Clive Finkelstein in Australia, and
CACI in the UK, and was later adapted by James Martin. Different versions of IE exist, with no single
standard. In one form or other, |E is supported by many data modeling tools, and is one of the most popular
notations for database design.

Entity types, attributes and associations

In the IE approach, entity types are shown as named rectangles, as in [Figure 1}a). Attributes are often
displayed in a compartment below the entity type name, as in [Figure 1fb), but are sometimes displayed
separately (e.g. bubble charts). Some versions support basic constraints on attributes (e.g. Ma/Op/Unique).

@ (b)
Employee Employee

emp number
emp name
birthdate

Figure 1 Typical IE notation for (a) entity type and (b) entity type with attributes

Relationships are typically restricted to binary associations only, which are shown as named lines
connecting the entity types. As with the Barker notation, a half-line or line end corresponds to a role in
ORM. Optionality and cardinality settings are indicated by annotating the line ends. To indicate that a role
isoptional, acircle“O” is placed at the other end of the line, signifying a minimum participation frequency
of 0. To indicate that a role is mandatory, a stroke “|” is placed at the other end of the line, signifying a
minimum participation frequency of 1. After experimenting with some different notations for a cardinality
of “many”, Finkelstein settled on the intuitive crow’ s foot symbol suggested by Dr. Gordon Everest.

In conjunction with a minimum frequency of 0 or 1, a stroke “|” is often used to indicate a maximum
frequency of 1. With this arrangement, the combination “OJ” indicates “at most one” and the combination
“I' indicates “exactly on€”’. This is the convention that | will use in this section. However different IE
conventions exist. For example, some assume a maximum cardinality of 1 if no crows foot is used, and
hence use just asingle “[" for “exactly one”. Clive Finkelstein uses the combination “OJ” to mean “optional
but will become mandatory”, which is really a dynamic rather than static constraint—this can be combined
with a crow’s foot. Some conventions allow a crow's foot to mean the minimum (and hence maximum)
frequency is many. So if you are using a version of IE, you should check which of these conventions
applies.

shows a simple |E diagram and its equivalent ORM diagram. With IE, as you read an
association from left to right, you verbalize the constraint symbols at the right-hand end. Here, each
employee occupies exactly one (at least 1 and at most 1) room. Although inverse predicates are not always
supported in IE, you can supply these yourself to obtain a verbalization in the other direction. For example:



“Each room is occupied by zero or more employees’. As with the Barker notation, a plural form of the
entity type name isintroduced to deal with the many case.

(@) occupies
Employee PO f

(b) D
—

occupies /is occupied by

Room

Figure 2 The IE diagram (a) is equivalent to the ORM diagram (b)

The |IE notation is similar to the Barker notation in showing the maximum frequency of a role by
marking the role at the other end. But unlike the Barker notation, the IE notation shows the
optionality/mandatory setting at the other end as well. In this sense, IE is like UML (even though different
symbols are used). As discussed in an earlier article, there are sixteen possible constraint patterns for
optionality and cardinality on binary associations. shows eight cases in |E notation together with
the equivalent casesin ORM.

IE ORM

n:1 >
both roles A BO——0OH B ]
optional
1:n: —
both roles A Ho——o04d B ]
optional
1:1 >
both roles A HO———OH B --
optional
m:n >
both roles

A PO—0 B
n:1 >
first role A pO——H B --
mandatory
1n o —
first role A HO———1g B --
mandatory
11 «— >
first role A hHO—m1 B
e ey [
m:n -—
first role

A PO— B

Figure 3 Some equivalent constraint patterns



m
®)
py|
<

n:1 .
second role A pH—0OH B --
mandatory
1in  —
second role A H—09 B --
mandatory
1:1 «— >
second role A MH—0OH B --
mandatory
m:n PR
second role

A pH——0O9 B
n:1 o —
both roles A } H B --
mandatory
1:n b
both roles A H f B --
mandatory
1:1 «— >
both roles A 1 I B
m:n >
both roles

A ' ' B

Figure 4 Other equivalent cases

The other eight cases are shown in[Figure 4 An example using the different notation for |E used by
Finkelstein is shown in Figure 5| Here the single bar on the left end of the association indicates that each
computer is located in exactly one office. The circle, bar and crow’s foot on the right end of the association
collectively indicate that each office must eventually house one or more computers. This “optiona
becoming mandatory” constraint has no counterpart in ORM, and is not supported in most |E modeling
tools.

houses / is located in
OFFICE } O COMPUTER

Figure 5 Finkelstein’s notation for IE is different from ours

Some modeling tools support the |E notation for n:1, 1:n and 1:1 associations but not m:n (many to
many) associations. For such tools, four of the sixteen cases cannot be directly represented. In this
situation, you can model the m:n cases indirectly by introducing an “intersection entity type” with
mandatory n:1 associations to the original entity types. For example, the m:n case with both roles optional
may be handled by introducing the object type C as shown in Figure 6|for both |E and ORM. In ORM, C is
a co-referenced object type, and the transformation is an instance of a flatten/coreference equival ence.



@

Figure 6 An m:n association remodeled as an entity type with n:1 associations

As an example, the m:n association Person plays Sport can be transformed into the mandatory n:1
associations: Play is by Person; Play is of Sport. However such a transformation is often very unnatural,
especialy if nothing else is recorded about the co-referenced object type. So any truly conceptual approach
must allow m:n associations to be modeled directly.

Advanced constraints and subtyping

Some versions of |E support an exclusive-or constraint, shown as a black dot connected to the alternatives.
Figure 7]a) depicts the situation where each employee is allocated a bus pass or parking bay, but not both.
The equivalent ORM schema is shown in Figure 7[b). Unlike ORM, IE does not support an inclusive-or
congtraint. Nor does it support exclusion constraints over multi-role sequences.

(@) (b) is allocated

Bus Pass
Employee

BusPass

is allocated
Employee

ParkingBay
Parking Bay

is allocated

Figure 7 An exclusive-or constraint in (a) IE and (b) ORM

Subtyping schemes for |E vary. Sometimes Euler diagrams are used, adding a blank compartment if
needed for “Other”. Sometimes directed acyclic graphs are used, possibly including subtype relationship
names and optiondity/cardinality constraints. show three different subtyping notations for
partitioning Patient into the subtypes MalePatient and FemalePatient. There is no formal support for
subtype definitions, and no provision for context-dependent reference. Multiple inheritance may or may not
be supported, depending on the version.



(@) Patient

Male
Patient

Female
Patient

(b)

Patient

j

Male
Patient

Female
Patient

Figure 8 Some different IE notations for subtyping

Conclusion

Although far less expressive than ORM, |E does a good job of covering basic constraints. If you ever need
to specify a model in IE notation, | suggest you first do the model in ORM, then map it to |E and make a
note of any rules that can't be expressed there diagrammaticaly. Often referred to as “the father of
information engineering”, Clive Finkelstein is an amiable Aussie who is still actively engaged in the
information engineering discipline. He developed a set of modeling procedures to go with the notation,
extended |E to Enterprise Engineering (EE), and recently began applying data modeling to work in XML
(Extensible Markup Language). An overview of |1E by Clive can be found in [E], and details on his recent
work are given in [B]. For alook at the IE approach used by James Martin, see [B]. Martin's more recent
books tend to use the UML notation instead. In practice however, |E is used far more extensively for
database design than is UML, which is mostly used for object-oriented code design.

Next issue

The next article in this series discusses the IDEF1X notation.

References

1. Finkelstein, C. 1998, ‘Information engineering methodology’, Handbook on Architectures of
Information Systems, eds. P. Bernus, K. Mertins & G. Schmidt, Springer-Verlag, Berlin, Germany, pp.

405-427.

2. Finkelstein, C. & Aiken, P. 2000, Building Corporate Portals with XML, McGraw-Hill, New York.
3. Martin, J. 1993, Principles of Object Oriented Analysis and Design, Prentice Hall, Englewood Cliffs,

NJ.

(©

Patient
isa isa
Male Female
Patient Patient




Information Modeling and Higher-order Types

Terry Halpin

Northface University
Salt Lake City, Utah, USA.
e-mail: terry.halpin@northface.edu

Abstract: While some information modeling approaches (e.g. the Relational Model, and Object-Role
Modeling) are typically formalized using first-order logic, other approaches to information modeling
include support for higher-order types. There appear to be three main reasons for requiring higher-order
types: (1) to permit instances of categorization types to be types themselves (e.g. the Unified Modeling
Language introduced power types for this purpose); (2) to directly support quantification over sets and
general concepts; (3) to specify business rules that cross levels/metalevels (or ignore level distinctions)
in the same model. As the move to higher-order logic may add considerable complexity to the task of
formalizing and implementing a modeling approach, it is worth investigating whether the same
practical modeling objectives can be met while staying within a first-order framework. This paper
examines some key issues involved, suggests techniques for retaining a first-order formalization, and
also makes some suggestions for adopting a higher-order semantics.

1 Introduction

Following Codd’s use of first-order logic to formally underpin the relational model of data [4], most
formalizations of information modeling approaches restricted their logical foundations to first-order (where
quantification is permitted over individuals only, not predicates). This is the case for Entity Relationship
(ER) modeling [3], as well as Object-Role Modeling (ORM) and its variants [e.g. 2, 12, 13]. A full
formalization of ORM’s fact-oriented (attribute-free) approach to information modeling was first provided
in [11], with alternative formalizations supplied later [5, 15]. In contrast, the Unified Modeling Language
(UML) [19, 20, 22] introduced the notion of powertypes, whose instances may themselves be types, thus
requiring higher-order semantics.

There appear to be three main arguments for requiring higher-order types to logically underpin
information modeling semantics:

e to allow one to think of instances of certain categorization types (e.g. AccountType, CarModel) as
being types themselves (as for UML powertypes);

o to formalize very directly the semantics of flexible data structures where attribute entries may
themselves denote sets or general concepts (e.g. object-relational tables in non-first normal form);

e to allow one to specify business rules that seem to cross levels/metalevels (or ignore level
distinctions) in the same model (e.g. the Finance department is responsible for defining the
possible values of AccountType).

As the move to higher-order logic may add considerable complexity to the task of formalizing and
implementing a modeling approach, it is worth investigating whether the same practical modeling
objectives can be achieved while staying within a first-order framework. This paper examines some key
issues involved, suggests techniques to maintain a first-order formalization, and also makes some
suggestions for adopting a higher-order semantics. The examples are presented in ORM and/or UML
notation, but the issues are relevant to all information modeling approaches.

Section 2 addresses the question of whether instances of categorization types may themselves be
types. Section 3 considers what higher-order logic may be appropriate to cater for higher-order types.
Section 4 provides an alternate first-order approach to categorization schemes. Section 5 discusses whether
higher-order logic is needed to formalize the presence of set-structures or the ability to cross levels/meta-
levels in the same model. Section 6 summarizes the main results, suggests topics for future research, and
lists references for further reading.


mailto:terry.halpin@northface.edu

2 May instances of categorization-types be types themselves?

Figure 1 depicts a simple schema in (a) ORM and (b) UML notation. The ORM diagram may be interpreted
as follows. Four object types (Account, AccountType, SavingsAccount, and InterestRate) are depicted as
named ellipses. Here “Account” means bank account. The thick arrow indicates that SavingsAccount is a
subtype of Account. As in logic, a predicate is a proposition with object-holes in it. In ORM, a predicate is
treated as a named sequence of one or more roles, each of which is depicted as a box. Combining a
predicate with its sequence of object types produces a fact type (e.g. Account is of AccountType, SavingsAccount
earns InterestRate). Simple identification schemes may be abbreviated in parentheses. For example, Account(Nr)
abbreviates the injective (1:1 into) fact type Account has AccountNr.

The value constraint {{CheckingAccount, ‘SavingsAccount} indicates the possible names of account types.
Arrow-tipped lines across one or more roles denote uniqueness constraints, indicating that instantiations of
that role sequence must be unique. For example, the uniqueness constraint on the first role of Account is of
AccountType indicates that entries in the fact column for that role must be unique, which may be formally
verbalized as: each Account is of at most one AccountType.

A solid dot (possibly circled) connected to a set of one or more roles denotes a mandatory constraint
over that role set. For example, the mandatory dot connected to the first role of Account is of AccountType
indicates that each Account is of some AccountType. The text beneath the diagram provides a formal definition
for the SavingsAccount subtype. For discussion purposes, the two AccountType instances named
“CheckingAccount” and “SavingsAccount”, are depicted here as a white dot and shaded dot respectively.

In the UML class diagram, AccountType is an enumerated type with two values!, and provides the
type for the accountType attribute of Account, while SavingsAccount is a subclass of the Account class.

(a) {‘CheckingAccount’,  (b)
‘SavingsAccount’}

Account

accountNr: Integer
accountType: AccountType

T «enumeration»
AccountType

SavingsAccount || checkingAccount
savingsAccount

InterestRate
(%)

Savings
Account

Each SavingsAccount is an Account
that is of AccountType ‘SavingsAccount’

interestRate: Real

Figure 1 Is the AccountType instance for “SavingsAccount” identical to the subtype SavingsAccount?

In practice, we would normally remove or expand the value constraint, to allow other types of account
(e.g. LoanAccount) without modifying the schema. Whether or not we include such a value constraint, we
need to address the fundamental question, which may be phased in ORM terms as: Is the AccountType
instance denoted by the shaded dot identical to the subtype SavingsAccount? 1f we answer Yes, then we
have a case of an instance being a type in the same model.

In the UML schema, the use of an enumerated type demands a No answer, because UML treats
enumeration types as data types whose instances are literals [20, p. 96]. However, as discussed shortly,
UML allows us to remodel the situation using a powertype for AccountType, which requires a Yes answer.

As a general point, in specifying a fact type as the application of a predicate to a sequence of object
types, we understand that the predicate applies to instances of the object types, not the types themselves.
For example, consider the fact type Person was born in Country. The “was born in” predicate is understood to
apply to ordered pairs of persons and countries (e.g. Niklaus Wirth was born in Switzerland, Terry Halpin
was born in Australia). It does not make sense to say the object type Person was born in the object type
Country. A similar comment holds in UML when applying associations to a sequence of classes.

1 In UML 2.0, enumeration types may be extended (by adding further values) in other packages or profiles. This seems
inconsistent with a clean approach to subtyping based on substitutability semantics, where subtypes may strengthen but
not weaken constraints on their supertypes.



Now let us return to the question as to whether in Figure 1(a) the AccountType instance denoted by
the shaded dot is identical to the subtype SavingsAccount. In order for this identity to be even possible, the
semantics of the fact type Account is of AccountType should satisfy at least the following necessary conditions:

1. The “is of” predicate means “is a member of”” or “is an instance of”, i.e. € (set membership).
2. Only Account instances may be instances of AccountType instances.

These conditions (which in combination we’ll call homogeneous set-membership) arguably follow
from the indiscernibility of identicals (if a = b, then a and b have exactly the same properties). The subtype
SavingsAccount includes precisely all the possible savings accounts in the business domain—no other
things can be instances of it. If we agree that the instance of AccountType denoted by the shaded dot is the
subtype SavingsAccount, then only accounts can bear the instance-of relationship to it.

If the modeler wishes to view the model in this way, we should allow this interpretation, as it is not
inconsistent. On the other hand, we should not force the modeler to adopt this interpretation, as there are
often better ways to model such situations that do not require such a commitment to instances being types
in the same model (see later discussion).

If we allow the type = instance interpretation, we must use higher-order logic for formalization, and
should apply the semantics of homogeneous set-membership to categorization relationships of this kind. If
we reject the type = instance interpretation, we may stay with first-order logic (at least for formalizing
categorization relationships of this kind), and may optionally distinguish such categorization relationships
as special (which some practitioners feel is an important thing to do), and provide them with relevant
formal semantics. From a meta-modeling viewpoint, it is trivial to include one or more meta-fact types to
classify fact types to cover this case and others.

To note this distinction, one could adopt a special graphical or textual adornment for such
categorization associations. For example, in ORM one might append a colon “:” to the forward reading of
any predicate used for this purpose (based on the common use of colons to sometimes but not always
introduce types). Applying this suggestion to the model in Figure 1(a) would replace “is of” by “is of:”.

To provide a minimal, common approach to such categorization relationships, whether or not we adopt
the type = instance viewpoint, we could use the colon marker to distinguish any such relationship, and give
it the semantics of an asymmetric, intransitive, and locally-homogeneous relationship. A fact type of the
form A R: B is locally-homogeneous if and only if B is used as categorization scheme for 4, but for no other
type (so no other type bears a colon relationship to B). For the example in Figure 1, this means that only
Account instances may be instances of AccountType instances. It is convenient to use the same predicate
reading (e.g. “is of>”, or even just “:”) for all such categorization predicates, unless this makes the reading
awkward. The choice of reading is language-dependent.

The properties of asymmetry and intransitivity seem to be the only properties of the set-membership
operator (€), that are relevant here. If we always use the same reading (e.g. “is of:”) for the categorization
relationship, we may think of it as a predefined predicate constant that applies globally (all occurrences of
this predicate have the same semantics). If we reserve the colon only for such homogeneous cases, we must
not use it in cases where the classification scheme (e.g. Gender) may be applied to more than one type (e.g.
Person, Dog).

Note that any role played by a type could be used as a basis for categorizing it. So the main reason for
marking such is-of associations as categorization relationships is to enforce the formal properties of such
relationships. We may now formalize categorization relationships of this kind (Figure 2), assuming the
same predicate reading “is of:” for all (if this is not so, then without loss of generality, begin by replacing
each reading by “is of:”). We use “~” for negation (“it is not the case that”), “&” for conjunction (“and”),
and “—” for material implication (“implies”). The asymmetric and intransitive properties may be declared
independent of the object types, unlike local homogeneity.

Figure 2 The categorization relationship is asymmetric, intransitive, and locally-homogeneous.

For the first-order logic interpretation, all types are first-order, so instances of B are individuals, not
types. We use lower-case letters (possibly subscripted) to range over individuals. For our higher-order
logic interpretation, we use capital letters (in italics) to denote type variables of any order. The order (1, 2,



3, ...) of any type is implicit, since it can be derived by inspecting the full schema2. Ignoring the case of
crossing meta-levels, assign the order of a type to be 1, plus the number of relationships in a contiguous
chain of zero or more categorization relationships that end at the type.

Using 3! for Stephen Kleene’s “there exists exactly one” quantifier, we may now formalize the
constraints on the categorization relationship in Figure 3, which has a mandatory and uniqueness constraint.
The first-order formalization treats AccountType as a type of individuals. The higher-order formalization
treats AccountType as a type of first-order types.

P
[isof:[ ] AccountType

Figure 3 A categorization relationship with two additional constraints.

First-order formalization:

Vxy[xisof:y —» ~(yisof: x)] -- asymmetric
Vxyz[xisof:y &yisofiz - ~(xisof: 2)] -- intransitive
Vxy [ AccountType y & x is of: y — Account x] -- local homogeneity

(only accounts are of account types)
Vx [ Account x — 3!y (AccountType y & x is of: ) ] -- mandatory and unique constraints

Higher-order formalization:

VxY[xisof: Y —» ~(Yisof: x)] -- asymmetric
VxYZ[xisof: Y & Yisof: Z — ~(xis of: Z)] -- intransitive
VxY [ AccountType Y & x is of: Y — Account x] -- local homogeneity

(only accounts are of account types)
Vx [ Account x — 3!Y (AccountType Y & x is of: ¥) ] -- mandatory and unique constraints

Alternatively, the higher-order formalization may replace any expression of the form a is of: B, where
B is a type variable, by Pa, since it regards a is of: B in such cases to entail that o instantiates the
predicate. This leads to the higher-order formalization: VxY ( Yx —> ~xY); . VxYZ ( Yx & ZY > ~ Zx);
VxY ( AccountType Y & Yx — Account x ); Vx [ Account x — 3!Y (AccountType ¥ & Yx) ].

UML Powertypes

One motivation for distinguishing such categorization relationships is to facilitate transformation to or from
UML models that include so-called powertypes, which UML includes specifically to model such
categorization schemes. Figure 4 shows a simplified version of an example often used to illustrate the need
for powertypes, using the old UML 1.4 notation. This way of classifying trees is botanically wrong, but
that’s irrelevant to the issue. Let’s assume that trees can be classified into species such as Oak, Elm, and
Willow in this simple way. Here TreeSpecies is a class analogous to the object type AccountType in Figure
1.

_ | <<powertype>>
TreeSpecies

| Oak | | Elm | |Wi||ow|

Figure 4 Powertype example in UML 1.4 notation (now retired).

2 If it is desired to explicitly show the order of a type, a pre-superscript may be used (e.g. °B indicates B is a second
order type, i.e. its instances are types whose instances are individuals). Post-superscripts are typically used to denote
arity, and post-subscripts are often used to distinguish variables of the same type.



To indicate that the subclasses Oak, EIm and Willow are each instances of the class TreeSpecies, a
dashed line connects the inheritance links to TreeSpecies, which is marked with the stereotype name
“powertype”. If the name “powertype” derives from the notion of power set (the power set of a set 4 is the
set of all subsets of 4), the term is misleading, as the powertype TreeSpecies excludes many instances in
the power set of the set of trees (e.g. the null set, the set of all trees, and many other tree sets). For this
reason, the term “higher-order type” seems more appropriate than “powertype”.

At any rate, this diagram does not explicitly include an association such as Tree is a member of TreeSpecies
(analagous to Account is of AccountType). We may treat this association as implicit here, but in practice an
explicit version of this association would typically be needed, since we would normally want to know the
species of any given tree, and with hundreds of tree species it would be diagrammatically extravagant to
introduce subtypes for all of them.

In UML 2.0, powertypes are defined within the superstructure [20, sec. 7.17]. The old stereotype
notation has been retired [20, p. 597]. Instead, a colon “:” prepends the powertype name (e.g. “:
TreeSpecies™) to annotate the collection of displayed subtype-supertype connections that belong to the set
of all possible generalization relationships (called a GeneralizationSet) based on the categorization scheme
provided by the association that relates the supertype to the powertype. If the subtypes are connected to the
supertype using different arrowheads, the powertype annotation is placed next to a dashed line that crosses
the relevant subtype connections (see Figure 5a). If a common arrowhead is used, the annotation is placed

next to that (see Figure 5b).
(b) *
:
: TreeSpecies

@ 1

: TreeSpecies

| Oak | | Elm | |Wi||ow| | Oak | | Elm | |Wi||ow|

Figure 5 Powertype example in UML 2.0 notation.

Without the old stereotype notation, there seems to be no way to directly indicate that a class is a
powertype. If this is the case, we can know that a class is a powertype only if its name used in a
generalization set constraint. We may not assume that any binary association from an object type to a type
marked in some way as a “powertype” is of this nature (moreover, UML 2.0 retired this stereotype). For
example, in addition to Tree is a member of TreeSpecies we might have fact types like Person named TreeSpecies.

Figure 6 shows an example from the UML 2.0 specification [20, p. 127] that provides a different way
to model a variation of our earlier account example. Here AccountType is modeled as a powertype rather
than an enumeration, and the fact type Account is of AccountType is modeled as an association rather than as an
attribute3. It is possible to include this association in the model without explicitly introducing any subtypes
(SavingsAccount etc.). In that case, there is no way to formally capture the categorization semantics of the
association, or to declare that AccountType is a powertype.

account classifier
* 1| Account

Type

Account

{disjoint, incomplete} | : AccountType

Checking Savings
Account Account

Figure 6 Powertype example from the UML 2.0 Superstructure specification (p. 127).

3 This example differs slightly in allowing more than two account types. If an enumeration constraint holds for
AccountType (e.g. {SavingsAccount, CheckingAccount, LoanAccount}), it is unclear how to add this constraint to the
powertype, except by resorting to a textual specification of the constraint (e.g. by using OCL).



While the role name “account classifier” informally suggests these additional semantics, this has no
formal force (other examples in the UML specification use different role names such as “vehicle category”
etc.). So we need to distinguish the categorization association itself, for example by appending a colon to
the relationship reading (e.g. “is of.””) and/or the relevant association role names.

Even if generalization relationships are annotated with the relevant powertype name, this does not
always formally guarantee the required semantics. For example, suppose we classify employees as part-
time or full-time, and also record their preferred employment status (part-time or full-time) if any. We
might model this in UML as shown in Figure 7, with two associations between Employee and
EmployeeType. There is no formal way of knowing which of these two associations is used as the basis for
membership in the subtypes. To solve this problem, we could require role names in the annotation, or adopt
the ORM practice of supplying formal subtype definitions®.

preferredType
* 1
Employee | 1 Employee
Type
currentType

{complete,
disjoint} : EmployeeType

Parttime Fulltime
Employee Employee

Figure 7 Powertypes do not guarantee an unambiguous classification scheme.

UML does allow generalization annotations to include names for the generalization set (presumably
prepended to :powertype names when powertypes are involved, although the UML specification does not
clarify this possibility). However such names are treated as informal comments. There is no formal
requirement to link these back to properties (attributes or far-roles) of the supertype, as is done in those
database modeling techniques that use discriminators to indicate a basis for subtyping.

3  What kind of higher-order logic is appropriate?

The current ORM formalization uses only first-order logic, basic arithmetic, and bag comprehension. Once
we adopt higher-order logic, we need to allow any order (not just second-order), because in principle one
might always introduce new types to categorize existing types, whether or not those types are first-order. If
we adopt standard semantics for higher-order logic, where quantifiers may range over any imaginable
predicates, we lose some useful properties of first-order logic. For example, completeness, compactness,
and the Skolem-Loéwenheim theorems don’t hold in standard second-order logic.

Moreover, care is needed to avoid some well known paradoxes. Russell’s paradox considers the set of
all sets that are not members of themselves: is this set a member of itself? If Yes, then No, and if No then
Yes, leading to a contradiction. Grelling’s paradox deals with self-predicable or autological properties
(properties that apply to themselves). For example, we might argue that the property of being nonhuman is
itself nonhuman (and hence is a self-predicable property) whereas the property of being human is not itself
human (and hence is a non-self-predicable property). If predicates may instantiate themselves, then using N
and H for the properties of being nonhuman and human we might formalize this as NN and ~HH
respectively. But then what about the property of being non-self-predicable? Is this self-predicable or not?
If it is, then it is not, and if it is not, then it is. Either way, we have a contradiction.

To avoid such paradoxes, Bertrand Russell developed a type theory in which types are ordered in a
hierarchy, and it is meaningful to say that a type is an instance of another type only if the second type is on
the next level of the hierarchy. Similarly, predicates of higher-order apply only to predicates or objects of
lower orders. In particular, no predicate may apply to any predicate of the same order. Hence no predicate
may apply to itself. Essentially the paradoxes are avoided by forbidding predicates to apply to themselves,
by adopting a hierarchy of levels in which types can have instances at lower levels only.

4 The types Employee, ParttimeEmployee, and FulltimeEmployee are time-deictic, because their sense is determined in
part by the time that their terms are uttered/inscribed [23, pp. 9-10; 17, esp. pp. 304, 312-13]. Deixis has a significant
impact on information modeling, but space precludes a proper discussion here.



While this seems a reasonable approach to adopting higher-order logic, there are other versions of
higher-order logic that do not take this approach. For example, the logic underlying the Knowledge
Interchange Format (KIF) allows predicates to instantiate themselves, so expressions such as (R R) are
allowed [16]. An extension of this logic has been proposed as an ISO “Common Logic” standard to
facilitate interchange of logical formulae between different knowledge representation tools [21].
Unfortunately, this Common Logic proposal includes a number of “bizarre” properties that make it
unintuitive for direct use. Nevertheless, the common logic is very relaxed, and has mappings to several
logics, so it seems quite feasible to have mappings between it and a more intuitive logic.

To make the implementation of higher-order logic more tractable, it seems best to adopt a non-standard
semantics, similar to Henkin semantics [18, pp. 378-80], to limit the range of predicates/functions over
which we may quantify, in order to retain useful properties of first-order logic (e.g. completeness). With
standard semantics, a monadic first-order predicate may range over the power set of the domain of
individuals (objects: lexical or non-lexical). To deal with categorization-types (e.g. AccountType) where
we wish to assert that instances are types, it seems that the only extension we need beyond first-order logic
is to allow quantification over object types that are instances of a declared categorization-type (whether or
not these instances have been explicitly declared as a subtype).

As a separate decision, if we wish to allow crossing metalevels in the same model (see later), we
should allow quantification over object types (primitive or derived), of any order, that are explicitly
declared in the schema. If we do allow this, there seems to be no compelling case to allow quantification
over polyadic predicates, so this relaxation may be regarded as a restricted case of Henkin semantics.

Given that a move to higher-order logic adds work to the formalization and implementation tasks?, is
explicit support for quantification over predicates worth the extra effort? With respect to the categorization
relationship, the only motivations seem to be in noting what kind of relationship it is, in providing direct
support for those who view the relationship as an instance-type relationship, and in providing a convenient
slot for mapping to/from powertypes in UML. With respect to categorization, these motivations seem non-
compelling, given that a first-order interpretation seems reasonable, and formal subtype definitions (as in
ORM) provide the connections between subtypes and the predicates and object types used to define them.
The next section provides some justification for a first-order interpretation.

4 A first-order logic approach to categorization

Consider the ORM schema in Figure 8, which is a classic case where higher-order logic proponents would
demand that CarModel is a second-order type, whose instances are subtypes of Car (e.g. FordFutura2004).
When I think of an instance of Person and Car (concrete concepts), I’'m thinking of an actual person or car.
When [ think of an instance of CarModel (an abstract concept), I think of an abstraction that is essentially a
car design—a car structure or specification that might be denoted by a schematic diagram, for example.

For any given business domain, I define a #ype as a set of possible instances, where for any given state
of the business domain, exactly one subset of the type is the population of the type in that state. At any
given time, the population of a type is the set of instances of that type that exist in the business domain at
that time. This definition is similar to Fitting’s notion of an intensional type as a function from possible
worlds to extensions [8, p. 84], except that here a possible world corresponds to a state of business domain,
sometimes called a “time-slice” or “instant state” in temporal logic [10, p. 143; 9, p. 121]. The temporal
aspect is needed to distinguish between types that have the same extension over time but may differ in
extension at some time (e.g. HumanPerson, and HumanBaby). Note the two senses of “extension”. A type’s
extension at some time is its population at that time. A type’s extension over time is effectively the
atemporal union of all its state-extensions, past, present, or future, which is fixed. “Type” conveys both
state-dependent (variable extension) and state-independent (fixed extension) notions, not just set semantics.

By the Principle of Extensionality, sets are defined by their extension, i.e. given any sets 4 and B, we
say that 4 = B iff Vx(x € A =x € B). So unless we resort to non-well-founded set theories, we must regard
sets to be fixed—they cannot change over time. It seems clear that for any given business domain, the
current population of a type (e.g. Person or Country) may change over time, but the type itself does not.

5 For a plea in favor of higher-order logic, and for some examples where first-order theorems are much easier to
prove in higher-order logic see [1].



Given the above definition of type, I personally don’t think of an instance of a car model as a set of
possible cars of that model (a subtype). Each CarModel instance is in 1:1 correspondence with such a
subtype (implicit or explicit), but it’s not identical to a subtype. It seems to me that this distinction can
always be made. If so, we can treat instances of such “categorization types’ as ordinary individuals, that are
not types, so first-order logic is enough.

CarModel
(Name)

was designed by

FordFutura2004 ) Each FordFutura2004 is a Car that is of CarModel ‘FordFutura2004’

Figure 8 The population of a subtype (or any type) typically varies over time.

Suppose we explicitly introduce a car subtype called “FordFutura2004”, as shown in Figure 8. The
subtype definition provides the formal connection between the subtype and the car model instance. Using
the standard reference mode semantics for ORM, the expression “CarModel ‘FordFutura2004’” in the
definition abbreviates “CarModel that has CarModelName ‘FordFutura2004’”. In ORM, a subtype is
essentially a derived object type—its population is determined by applying the derivation rule in its
definition to the populations of the object types referenced in the definition.

Suppose we add the existential fact There exists a CarModel that has CarModelName ‘FordFutura2004' to the
information base before any cars of that model are produced. At this time, the population of the car subtype
FordFutura2004 is the null set. Suppose at a later time, 100 cars of that model are produced. At that later
time, the population of the car subtype FordFutura2004 includes 100 cars. At any time, the subtype
FordFutura2004 includes those 100 cars, as well as all other cars of that model that will ever be produced.
So it’s perfectly OK to regard an instance of CarModel to be in 1:1 correspondence with a set of (possible)
cars. This is true whether or not we think of the car model instance as the set of possible cars of that model,
or (as I do) as the fundamental car structure or design to which the car instances conform.

Hence it is reasonable to think of an instance of a “categorization type” such as CarModel or
AccountType as an individual (e.g. a structural pattern) that is ontologically distinct from a type (in the
sense of a set of possible instances). This seems sufficient to stay with first-order logic for such cases.
Although the word “Type” in “AccountType” may suggest that its instances are themselves types, this
stems more from an unfortunate naming choice for the type rather than from any fundamental intuition.

The second approach that allows one to avoid higher-order types for categorization is to avoid
uninformative categorization schemes. The term “AccountType” is uninformative, because it does not
provide any basis for categorizing accounts. In principle, any object type such as Account might be
categorized in many different ways, leading to different types of bank account. For example, we could
define an AccountKind {Local, National, International}, an AccountCategory {Taxable, Nontaxable}, and so on. These are all
categorization schemes, which we may wish to use in the same model, and names such as “AccountType”
and “AccountKind” don’t inform us at all about the criterion used by a given categorization scheme to
place accounts into account categories. One might argue that the value constraint placed on the
categorization scheme provides this criterion, but this requires the modeler to induce the criterion based on
his/her informal understanding of what the names for those values mean, an understanding that is not
formally accessible to an automated system. More importantly, we may wish to introduce a categorization
scheme without committing to a fixed set of instances.

As a pragmatic issue then, it seems reasonable to encourage the modeler to choose informative names
that reveal the basis for classification schemes. If we adopt this approach, the type = instance issue
typically disappears for the categorization case. In Figure 9 for example, the subtype Savings account is
defined based on its primary function. The AccountFunction instance named ‘Savings’ and denoted by the
shaded dot is clearly not identical to the subtype SavingsAccount (a function is not the same thing as a bank
account). One may introduce other informative categorization schemes such as Account may be used in Region,
etc. Similarly, our Car is of CarModel relationship might be renamed “Car conforms to CarModel”.



AccountFunction {‘Checking’,
O (Name) © / ‘Savings’}

InterestRate
(%)

Savings
Account

Each SavingsAccount is an Account
that has primary- AccountFunction ‘Savings’

Figure 9 An informative categorization scheme explains the basis for categorization.

Any binary fact type used for an enumerated categorization scheme may be replaced by one or more
unary fact types. For example, instead of Account is of AccountType {Checking, Savings}, we may use the fact types
Account is used primary for savings and Account is used primarily for checking (the mandatory and uniqueness
constraints are then captured by an xor constraint). Instead of Account is of AccountCategory {Taxable, Nontaxable},
we may use the fact type Account is taxable, applying the closed world assumption to determine nontaxable
accounts. This is yet another way to avoid higher-order types for enumerated categorization schemes.

In many cases, an object type may be used to categorize more than one kind of object. For example,
Figure 10 includes two categorization fact types Person is of Gender and Animal is of Gender, where Gender has
two possible instances identified by the gender codes ‘M’ (for male gender) and ‘F’ for female gender).
Here the semantics of the categorization fact types does not involve homogeneous set membership. Clearly,
instances of Gender (MaleGender, FemaleGender) may not be identified with any of the four subtypes
shown. This kind of categorization scheme is quite common, and clearly excludes any type = instance

identities. «is of
e
Nonhuman
Male Female Nonhuman Nonhuman
Person Person MaleAnimal FemaleAnimal

Each MalePerson is a Person who is of Gender ‘M’

Each FemalePerson is a Person who is of Gender ‘F’

Each NonhumanMaleAnimal is a NonhumanAnimal that is of Gender ‘M’
Each NonhumanFemaleAnimal is a NonhumanAnimal that is of Gender ‘F’

(M, F)

Figure 10 A typical case where instances of the categorization scheme are not identified with subtypes.

The use of Gender in the above model to define the subtypes seems better than using two powertypes
PersonType {MalePerson, FemalePerson} and NonhumanAnimalType {NonhumanMaleAnimal, NonhumanFemaleAnimal}. Note
that while UML allows this case to be modeled using Gender as an attribute or non-powertype, any use of a
generalization set name (e.g. ‘gender’) is merely an informal comment, with no formal connection to the
model element used as the basis of the categorization.

5 Set-structures, and metalevel crossing

Consider a categorization scheme whose instances intuitively correspond to set-like containers. Figure 11
includes a model that, apart from some constraints, is structurally similar to the account example in Figure
1. In this business domain, only A-team members may earn privileges, so a subtype is created to record
facts of this nature. The shaded dot denotes team A and the white dot denotes team B. The shaded subtype
A-TeamMember is the type whose population at any time is the set of A-team members at that time.

It seems natural to think of Team A at any point in time as more than just a set of people. The concept
of a team brings in other semantics (a social unit whose members work together for a common purpose).
While the thing denoted by the shaded dot appears to have this additional informal semantics, the subtype
A-TeamMember does not—at any point in time its denotation seems to be no more than a set of people
who just happen to be members of team A. If these intuitions are correct, and team membership is
considered to be a categorization scheme, here is another example where it is reasonable not to identify the
subtype with the instance of the categorization scheme.



A-Team
Member
Each A-TeamMember is a Person who is in Team ‘A’

Figure 11 Is the Team instance denoted by the shaded dot identical to the subtype A-TeamMember?

Now consider Table 1, which is a slightly simplified version of an example by Fitting [7], used to
motivate a formalization of databases that uses higher-order modal logic. The table has two aspects that are
unusual. First, it is in non-first normal form, allowing unnamed sets as entries (e.g. ColorChoices). This is
permitted in some object-relational databases. Secondly, its final attribute (column) allows as entries
unnamed sets whose instances appear to be attributes themselves, thus crossing levels/metalevels.

Table 1 Table with entries that may be sets of individuals or attributes.

Car CarModel ColorChoices AirConditioning CustomerChosen
1 Ford Escape 2003 {red, green, black} | Yes {ColorChoices}
2 Ford Escape 2003 {red, green, black} | No {}
3 Mazda MPV 2004 | {green, sand-mica} | Yes {ColorChoices, AirConditioning}

Fitting’s formalization of this situation is higher-order, as he treats the structure directly as it stands.
The price paid for this directness is deep complexity, and an implementation nightmare. These disadvant-
ages can be avoided by transformation into a first-order model that is cleaner and pragmatically easier to
implement. In practice, it would be realistic to record the color chosen for a car. With this additional fact
type, and omitting for now the air-conditioning aspects of the model, the situation may be modeled by the
ORM schema shown in Figure 12. Here the color choice sets are handled in the usual normalized way, with
a many:many association. The subset constraint (circled “<”’) ensures that colors chosen for a car belong to
those available for its car model. The fact whether a customer chose the color for a car is catered for by
instantiating the unary predicate applied to the objectified CarColor association. The airconditioning
aspects can be catered for in a similar way. For a simpler example of level-crossing, see [6, p. 20].

allows choice of

CarModel

is customer
selected

<< is of I

“CarColor”
Figure 12 A first-order solution for part of the un-normalized table.

In cases where there are many attributes about which information is to be recorded, and the attributes
are not all known in advance, this may be modeled by introducing Attribute as a first-order type, along with
fact types that record its name and value. By thus demoting meta-data to data, we remain at first-order. This
technique is well-known and quite effective in practice.

A final argument for using higher-order types is to allow expression of business rules that appear to
cross levels/metalevels (or ignore level distinctions) in the same model (e.g. the Finance department is
responsible for defining the possible values of AccountType). If somebody really wants to formalize such
cases directly, then higher-order types are clearly needed. However, as a pragmatic alternative, it is usually
possible to handle such rules in a first-order way, either by separating the meta-aspects into a separate first-
order model where the former meta-types are now ground types, or by demoting meta-data as data, or
simply ignoring the cross-level identities.

10



As a simple example, we might build into the core package of the metaschema such metafact types as
FactRole is played by ObjectType, BusinessRule has lllocutionaryForce etc, while in the management package of the
metaschema we include metafact types dealing with aspects of security and authorization etc., e.g. UserGroup
has AccessRight to FactType. Populating the latter metafact types in the metamodel may then allow us to add
rules of the desired kind without crossing metalevels.

For example, consider the simple business model in Figure 13. Here there are two elementary fact
types (F2 and F4), and three existential fact types (F1, F3, and F5) depicted in abbreviated form using
parenthesized reference modes. In this case, the current values of AccountType are stored in a reference
table instead of being rigidly declared in a value type constraint. One of our business rules is that only the
marketing department may choose what the account type instances may be.

F1 F2 F3 F4 F5

Department AccountType !
(Name)

<< is owned by

Marketing | A101 A101| Savings Checking
Sales A102 A102 |Checking Loan
Savings
Figure 13 A populated business model with 5 fact types (3 existential and 2 elementary).

With this approach, the one column fact table for AccountType may be treated just like any other fact
table in the model, including the way in which we determine who has what kind of access to what fact type.
A simplified metafragment for dealing with security is shown in Figure 14. The business rule mentioned
earlier is now handled by populating this metafact type as shown.

The metamodel in Figure 14 exists at a level above the business model in Figure 13. Each of these
models can be formalized separately, using either first-order logic or the higher-order logic extension for
categorization discussed earlier. What is missing from this picture is the ability to identify the marketing
department mentioned in the business model with the marketing department that appears as a user group in
the metamodel. There does not appear to be any compelling business case to require formal support of this
identity, as businesses seem to run perfectly well without such support (e.g. in SQL systems, the
application tables and metatables are typically accessed separately).

AccessRight
(Code)

MarketingDept | Read | F5
MarketingDept | Write | F5

UserGroup FactType

Figure 14 A model fragment from the management package of the metamodel.

6 Conclusion

This paper addressed issues relating to the necessity or otherwise of including higher-order types to deal
adequately with three aspects of information modeling: categorization schemes, un-normalized structures,
and crossing levels/metalevels within the same model. It argued that higher-order types may be used, so
long as the underlying higher-order logic retains certain important first-order properties (e.g. by adopting
Henkin semantics). It also suggested a number of ways in which higher-order types may be avoided, by
treating types as intensional objects whose instances may sometimes be in 1:1 correspondence (but not
identical) to subtypes, by requiring subtype definitions to be informative, by remodeling (including
demotion of metadata to data), and by treating types as individuals in separate models.

1"



Various formal properties were established for those categorization types that on first glance appear to
require a higher-order solution, and a number of deficiencies were identified in the current treatment of
powertypes within UML.

Related future research will investigate the detailed impact of deixis in information modeling, and how
issues of semantic equivalence and co-extension are affected by one’s stance with regard to the absolute or
relative nature of types. For example, when we use terms for object types (e.g. Person, Gender, Country) in
modeling, are we thinking only about a given business domain, or a more general concept of the type?

Acknowledgement: The presentation of some ideas in this paper has benefited from discussion with Andy
Carver of Northface University, and Don Baisley of Unisys Corporation.

References

1.  Andrews, P. B. 2002, An Introduction to Mathematical Logic and Type Theory: To Truth through
Proof, Kluwer Academic Publishers, Dordrecht.

2. Bakema, G., Zwart, J. & van der Lek, H. 1994, ‘Fully Communication Oriented NIAM’, NIAM-ISDM
1994 Conf. Working Papers, eds G. M. Nijssen & J. Sharp, Albuquerque, NM, pp. L1-35.

3. Chen, P. P. 1976, ‘The entity-relationship model—towards a unified view of data’. ACM Transactions
on Database Systems, 1(1), pp. 9-36.

4. Codd, E. F. 1970, ‘A Relational Model of Data for Large Shared Data Banks’, CACM, vol. 13, no. 6,
pp. 377-87.

5. De Troyer, O. & Meersman, R. 1995, ‘A Logic Framework for a Semantics of Object Oriented Data
Modeling’, OOER 95, Proc. 14" International ER Conference, Gold Coast, Australia, Springer LNCS
1021, pp. 238-249.

6. Fitting, M. 2000, ‘Modality and Databases’, Automated Reasoning with Analytic Tableaux and Related
Methods, Springer Lecture Notes in Artificial Intelligence 1847, Roy Dyckhoff (ed), pp 19--39, 2000.
[© Springer-Verlag, URL: http://www.springer.de/comp/Incs/index.html]

7. Fitting, M. 2000, ‘Databases and Higher Types’, Computational Logic --- CL2000, Springer Lecture
Notes in Artificial Intelligence 1861, John Lloyd et. al. (ed), pp 41--52, 2000. [© Springer-Verlag,
URL: http://www.springer.de/comp/Incs/index.html]

8. Fitting, M. 2002, Types, Tableaus, and Gédel’s God, Kluwer Academic Publishers, Dordrecht.

9. Girle, R. 2000, Modal Logics and Philosophy, McGill-Queen’s University Press, Montreal &
Kingston.

10. Girle, R. 2003, Possible Worlds, McGill-Queen’s University Press, Montreal & Kingston.

11. Halpin, T. A. 1989, ‘A Logical Analysis of Information Systems: static aspects of the data-oriented
perspective’, doctoral dissertation, University of Queensland.

12. Halpin, T. A. 1998, ‘ORM/NIAM Object-Role Modeling’, Handbook on Information Systems
Architectures, eds P. Bernus, K. Mertins & G. Schmidt, Springer-Verlag, Berlin, pp. 81-101.

13. Halpin, T. A. 2001, Information Modeling and Relational Databases, Morgan Kaufmann, San
Francisco.

14. Halpin, T. A. 2002, ‘Metaschemas for ER, ORM and UML: A Comparison’, Journal of Database
Management, Idea Group Publishing, Hershey PA, pp. 4-13.

15. ter Hofstede, A. H. M., Proper, H. A. & Weide, th. P. van der 1993, ‘Formal definition of a conceptual
language for the description and manipulation of information models’, Information Systems, vol. 18,
no. 7, pp. 489-523.

16. Hayes, P. & Menzel, C., ‘A Semantics for Knowledge Interchange Format’, Proceedings of 2001
Workshop on the IEEE Standard Upper Ontology, August 2001. The paper itself is available online at:
http://reliant.teknowledge.com/IJCAIO01/HayesMenzel-SKIF-IJCAI2001.pdf.

17. Lyons, J. 1995, Linguistic Semantics: An Introduction, Cambridge University Press: Cambridge, UK.

18. Mendelson, E. 1997, Introduction to Mathematical Logic, Chapman & Hall/CRC: Boca Raton.

19. Object Management Group 2003, UML 2.0 Infrastructure Specification. URL: www.omg.org/uml.

20. Object Management Group 2003, UML 2.0 Superstructure Specification. URL: www.omg.org/uml.

21. Menzel, C. ‘The Common Logic Standard’, Online at: http://cl.tamu.edu/CL-ISO.pdf.

22. Rumbaugh J., Jacobson, I. & Booch, G. 1999, The Unified Language Reference Manual, Addison-
Wesley, Reading, MA.

23. Thomas, J. 1995, Meaning in Interaction: An Introduction to Pragmatics, Longman: London.

12


http://comet.lehman.cuny.edu/fitting/bookspapers/pdf/papers/ModalityDataBase.pdf
http://comet.lehman.cuny.edu/fitting/bookspapers/pdf/papers/ModalityDataBase.pdf
http://comet.lehman.cuny.edu/fitting/bookspapers/pdf/papers/HighOrdPaper.pdf
http://www.springer.de/comp/lncs/index.html
http://comet.lehman.cuny.edu/fitting/bookspapers/pdf/papers/DataBaseHigherType.pdf
http://comet.lehman.cuny.edu/fitting/bookspapers/pdf/papers/DataBaseHigherType.pdf
http://comet.lehman.cuny.edu/fitting/bookspapers/pdf/papers/HighOrdPaper.pdf
http://www.springer.de/comp/lncs/index.html
http://www.springer.de/comp/lncs/index.html

Conceptual Queries

by Dr. Terry Halpin, BSc, DipEd, BA, MLitStud, PhD
Director of Database Strategy, Visio Corporation

This paper first appeared in vol. 26, no. 2 of Database Newsletter and is reproduced by permission.

Formulating non-trivial queries in relational languages such as SQL or QBE can prove
daunting to end users. ConQuer, a new conceptual query language based on Object Role
Modeling (ORM), enables users to pose complex queries in a readily understandable way,
without needing to know how the information is stored in the underlying database. This
article highlights the advantages of conceptual query languages such as ConQuer over
traditional query languages for specifying queries and business rules.

Four query levels

There are four main levels at which humans may communicate with an information
system:

External
Conceptual
Logical
Physical

The external level deals with the actual interfaces and input/output representations
used to work directly with the system (e.g. screen forms and printed reports). At the
conceptual level, the information is expressed in its most fundamental form, using concepts
and language familiar to the wusers (e.g. Employee drives Car) and ignoring
implementation and external presentation aspects. At the logical level, a commitment is
made to the general type of data model to be used for storage (e.g. relational or object-
oriented) and the information is expressed using the logical constructs of that model (e.g.
tables and keys). At the physical level, a specific DBMS is chosen (e.g. MS Access or DB2)
and all the detailed internal details are fleshed out (e.g. indexes and clustering).

Since a conceptual schema expresses the structure of an application from a human
rather than a machine perspective, it facilitates communication between modeler and
subject matter experts during the modeling process, and it can be mapped automatically
to a variety of DBMS structures. Although software tools are often used for conceptual
modeling and mapping, they are rarely used for querying the conceptual model directly.
Instead, queries are typically formulated either at the external level using forms, or at the
logical level using a language such as SQL or QBE.

Query-By-Form (QBF) enables users to enter queries directly on a screen form, by
entering appropriate values or conditions in the form fields. This form-based interface is



well suited to simple queries where the scope of the query is visible on a single form, and
no complex operations are involved. However this cannot be used to express complicated
queries. Moreover, saved QBF queries may rapidly become obsolete as the external
interface evolves. For such reasons, QBF is too restrictive for serious work.

For relational databases, SQL and QBE (Query-By-Example) are more expressive.
However, complex queries and even queries that are easy to express in natural language
(e.g. who does not speak more than one language?) can be difficult for non-technical users
to express in these languages. Moreover, an SQL or QBE query often needs to be changed
if the relevant part of the conceptual schema or internal schema is changed, even if the
meaning of the query is unaltered. Finally, relational query optimizers ignore many
semantic optimization opportunities arising from knowledge of constraints.

Logical query languages for post-relational DBMS$ (e.g. object-oriented and object-
relational) suffer similar problems. Their additional structures (e.g. sets, arrays, bags and
lists) often lead to greater complexity in both user formulation and system optimization.
For example, OQL [3] extends SQL with various functions for navigation as well as
composing and flattening structures, thus forcing the user to deal directly with the way
the information is stored internally. At the physical level, programming languages may be
used to access the internal structures directly (e.g. using pointers and records), but this
very low level approach to query formulation is totally unsuitable for end users.

Conceptual query languages

Given the disadvantages of query formulation at the external, logical or physical level, it
is not surprising that many conceptual query languages have been proposed to allow users
to formulate queries directly on the conceptual schema itself [1, 2]. Most of these language
proposals are academic research topics, with at best prototype tool support. One
commercial tool, English Wizard, provides some ability for users to enter queries directly
in English, but the tool currently suffers from problems with ambiguity and expressibility,
as well as the correctness of its SQL generation. By and large, current conceptual query
language tools based on Entity-Relationship (ER) or deductive models are challenging for
naive users, and their use of attributes exposes their queries to instability, since attributes
may evolve into entities or relationships as the application model evolves.

This instability is avoided by using a query language based on Object Role Modeling
(ORM), a conceptual modeling approach that pictures the application world in terms of
objects that play roles (individually or in relationships), thus avoiding the notion of
attribute. ORM facilitates detailed information modeling since it is linguistically based, is
semantically rich and its notations are easily populated. An overview of ORM may be
found in [7] and a detailed treatment in [5].

The use of ORM for conceptual and relational database design is becoming more
popular, partly because of the spread of ORM-based modeling tools. However, as with
ER, the use of ORM for conceptual queries is still in its infancy. The first significant ORM-
based query language was RIDL [9], a hybrid language with both declarative and
procedural aspects. Although RIDL is very powerful, its advanced features are not easy to

Conceptual Queries 2



master, and while the modeling component was implemented in the RIDL* tool, the query
component was not supported. Another ORM query language is LISA-D [8]; although
very expressive, it is technically challenging for end users, and currently lacks tool
support.

Like ORM, the OSM (Object-oriented Systems Modeling) approach avoids the use of
attributes as a base construct. An academic prototype has been developed for graphical
query language OSM-QL [4] based on this approach. For any given query, the user selects
the relevant part of the conceptual schema, and then annotates the resulting subschema
diagram with the relevant restrictions to formulate the query. Negation is handled by
adding a frequency constraint of “0”, and disjunction is introduced by means of a
subtype-union operator. Projection is accomplished by clicking on the relevant object
nodes and then on a mark-for-output button.

Another recent ORM query language is ConQuer (the name derives from
“CONceptual QUERY™). ConQuer is more expressive than OSM-QL [2], easier for novice
users, and its commercial tool transforms conceptual queries into SQL queries for a
variety of back-end DBMSs. Moreover, the ConQuer tool does not require the user to be
familiar with the conceptual schema or the ORM diagram notation. The first version of
ConQuer was released in InfoAssistant [1]. Feedback from this release led to the redesign
of both the language and the user interface for greater expressibility and usability,
resulting in a new tool called ActiveQuery [2], a restricted version of which is available as
an OLE control for Windows applications. As well as complying with Microsofts user
interface standards, the tool provides an intuitive interface for constructing almost any
query that might arise in an industrial database setting. Typical queries can be
constructed by just clicking on objects with the mouse, and adding conditions.

The rest of this paper suggests some design principles for conceptual query
languages, and then illustrates how these principles are realized in ConQuer, as
supported by ActiveQuery. A brief outline of the underlying ORM framework is
included, as well as examples of how queries are formulated and mapped to SQL. Finally
some examples are given of how the query language can also be used to provide high
level declaration of business rules.

Language design criteria

The following four criteria were used in designing the ConQuer language and tool
support, and seem appropriate for conceptual query languages in general.

Semantic strength
Semantic clarity
Semantic relevance

Semantic stability

Semantic strength is a measure of a language$ expressibility (i.e. the range of queries
that can be expressed in the language). Ideally, the language should allow you to
formulate any question that is relevant to your application. In practice, something less

Conceptual Queries 3



than this ideal is acceptable. For most business applications, if the language can express
whatever is possible to formulate as a sequence of SQL-89 queries, this is often good
enough. In more complex cases, this might not be adequate. For example, a bill of
materials query requires recursion, which while supported by recursive union in the long
awaited SQL3 standard, is still not available in many commercial SQL dialects.
ActiveQuery was designed to translate ConQuer queries into a sequence of SQL
statements on the back end DBMS, and hence is limited in practice by the power of the
chosen SQL back end. In comparison with the low expressive power of QBF however, this
is a very mild limitation.

Semantic clarity is a measure of how easy it is to understand and use the language. To
begin with, the language must be unambiguous (i.e. there is only one possible meaning).
Since any ConQuer query corresponds to a qualified path through an ORM schema,
where all the object types and predicates are well defined, the meaning of the query is
essentially transparent. As we discuss shortly, the ActiveQuery tool automatically reveals
the relevant part of the application to the user, so that ConQuer queries can be formulated
without requiring any prior knowledge of the information space. Although this context
revelation is a feature of the tool rather than the language, even a manual formulation of
ConQuer queries requires no sub-conceptual knowledge (e.g. knowledge about how the
information is actually stored in a database). This is in sharp contrast to a query language
such as SQL, QBE or OQL, where the query needs to be formulated in terms of the storage
structures themselves.

Semantic relevance requires that only the information relevant to the intent of the query
needs to be stated. In order to formulate a query, the user must not be forced to include
other features of the application that have no bearing on the question that he or she wants
to ask.

Semantic stability is a measure of how well queries retain their original intent in the
face of changes to the application. Because ConQuer queries are based on ORM, they
continue to produce the desired result so long as their meaning endures. In other words,
you never need to change a ConQuer query if the English meaning of the question still
applies. In particular, ConQuer queries are not impacted by typical changes to an
application, such as addition of new fact types or changes to constraints or the relative
importance of some feature. This ensures semantic independence (i.e. the conceptual queries
are independent of changes to underlying structures when those changes have no effect
on meaning).

If the discussion so far seems pretty abstract or hard to follow, it should all become
clear with a few examples. The rest of the article is mainly concerned with illustrating
these four design criteria with sample queries based on a small application. The
underlying ORM schema for this application is explained in the next section.

A sample ORM schema

Although knowledge of the ORM diagram notation is not needed to formulate ConQuer
queries, some familiarity with it will help you to understand the basis of the query

Conceptual Queries 4



technology. A ConQuer query can be applied only to an ORM schema. Using a software
tool, an ORM schema may be entered directly, or instead reverse engineered from an
existing logical schema (e.g. a relational or object-relational schema). While reverse
engineering is automatic, some refinement by a human improves the readability (e.g. the
default names generated for predicates are not always as natural as a human can supply).

ORM is a bit like ER without attributes. If you are familiar with ER, just use a
relationship instead whenever tempted to portray some feature as an attribute, and you
have the basic ORM view of the world as a set of objects playing roles (parts in
relationships).

Figure 1 is an ORM conceptual schema fragment for an application about a company
with branches in various countries. Object types are shown as named ellipses. Entity types
have solid ellipses with their simple reference schemes abbreviated in parenthesis (these
references are often unabbreviated in queries). For example, “Car (regnr)” abbreviates
“Car is identified by RegNr”.

If an entity type has a compound reference scheme, this may be shown explicitly
using an external uniqueness constraint (circled “u”). In our example, a City is identified
by combining its Cityname and State (which in turn is identified by combining its
Statecode and Country). For instance, | live in a city called “Bellevue” that is in
Washington state; this state is in the country named “USA” and has the statecode “WA”
(whereas Western Australia is in the country named “Australia” and has the statecode
“WA”). Value types have dotted ellipses (e.g. “ Statecode”), and a “+” indicates numeric
reference.

A predicate is a sentence with holes in it for object-terms. Predicates are shown as
named role sequences, where each role is depicted as a box. A role is just a part in a
relationship. In the example, all the relationships are binary (two roles) except for the
ternary (three role): USbranch achieved Rank in Year. Predicates may have any arity (number
of roles) and may be written in mixfix form (i.e. the object holes may be mixed in at any
position within the predicate— this is essential for languages like Japanese where the verb
comes at the end). A relationship type not used for primary reference is a fact type. An n-
ary relationship type has n! readings, but only n are needed to guarantee access from any
object type. Figure 1 shows forward and inverse readings (separated by “/” if needed) for
some of the relationships.

Conceptual Queries 5



earns /is earned by

P -

P ~ ~

‘ AN ’émployee‘\ «
{ PhoneNr , | N ' -- Color
N ,/ '\ Name , has

> e hES - (name)

- -

drives /is driven by
l l CarModel
| i [ Lot | Came)

main-

reports
to Employee
(nn)

supervises
heads l
is headed by l

speaks /is spoken by

--

was born in /is birthplace of is used in
D —

uses

works
for

employs

// T A
{ Cityname @
A .

achieved I l T

l * define Branch is in Country as

l Branch is located in a City

that is in a State
Year * each USbranch is a Branch
(AD)+ that is in Country 'USA'

that is in Country
FIGURE 1: A sample ORM conceptual schema.

An arrow-tipped bar across a role sequence depicts an internal uniqueness constraint.
For example, each employee has at most branch, but the same branch may employ more
than one employee. The ternary has two uniqueness constraints: the right-hand one
declares that a USbranch may achieve at most one rank in a given year; the left-hand one
states that a given rank in a given year is achieved by at most one USbranch (i.e. no ties).

A black dot connecting a role to an object type indicates that the role is mandatory (i.e.
each object in the database population of that object type must play that role). Subtypes
are connected to their supertype(s) by arrows, and given formal definitions. Here we have
only one subtype (USbranch). The two asterisked rules at the bottom of the figure declare

Conceptual Queries 6



a derived fact type, and a subtype definition: these textual rules are essentially ConQuer
queries.

The circled “X” in the top right corner is a pair-exclusion constraint (an employee$
main phone number must differ from his/her other phone number). The dotted arrow
just below the exclusion constraint is a simple subset constraint (if an employee has
another phone number, he/she must have a main phone number). The dotted arrow from
the heads predicate to the works-for predicate is a pair-subset constraint (each employee
who heads a branch also works for that branch). The “%c” constraint on the reporting
relationship indicates this relationship is acyclic (no loops back to itself). ORM has other
kinds of constraint not shown here. InfoModeler$ verbalization ability allows schemas to
be entered or output in English sentences, so that it is not necessary to understand the
diagram notation.

Sample ConQuer queries and SQL mapping

Although ConQuer queries are based on ORM, users dont need to be familiar with ORM
or its notation. A ConQuer query is set out in textual (outline) form (basically as a tree of
predicates connecting objects) with the underlying constraints hidden, since they have no
impact on the meaning of the query.

With ActiveQuery, a user can construct a query without any prior knowledge of the
schema. On opening a model for browsing, the user is presented with an object pick list.
When an object type is dragged to the query pane, another pane displays the roles played
by that object in the model. The user drags over those relationships of interest. Clicking an
object type within one of these relationships causes its roles to be displayed, and the user
may drag over those of interest, and so on. In this way, users may quickly declare a query
path through the information space, without any prior knowledge of the underlying data
structures. Users may also initially drag across several object types. The structure of the
underlying model is then used to automatically infer a reasonable path through the
information space (this Point-to-point query feature is ignored for the remainder of this
article).

Items to be displayed are indicated with a tick “ v these ticks may be toggled on/off
as desired. The query path may be restricted in various ways by use of operators and
conditions. As a simple example, consider the query: List each employee who lives in the
city that is the location of branch 52. This may be set out in ConQuer thus:

Q1 v'Employee

+- lives in City
+- is location of Branch 52

This implicit form of the query may be expanded to reveal the reference schemes (e.g.
EmployeeNr, BranchNr), and an equals sign may be included before “52”. For most users,
the meaning of a ConQuer query should be clear enough (semantic clarity). ActiveQuery
also generates an English verbalization of the query in case there is any doubt.

Conceptual Queries 7



USbranch

Branch

Employee

Speaks

Drives

Car

LangUse

Since ORM conceptual object types are semantic domains, they act as semantic “glue”
to connect the schema. This facilitates not only strong typing but also query navigation
through the information space, enabling joins to be visualized in the most natural way.
Notice how City is used as a join object type for this query. If attributes were used instead,
we would typically have to formulate this is a more cumbersome way. If composite
attributes are allowed we might use: List Employee.employeenr where Employee.city =
Branch.city and Branch.branchnr = 52. If not, we might resort to: List
Employee.employeenr  where  Employee.cityname =  Branch.cityname and
Employee.statecode = Branch.statecode and Employee.country = Branch.country and
Branch.branchnr = 52. Apart from awkwardness, both of these attribute-based approaches
violate the principle of semantic relevance. Since the identification scheme of City is not
relevant to the question, the user should not be forced to deal explicitly with these details.

Even if we had a tool that allowed us to formulate queries directly in ER or OO
models, and this tool displayed the attributes of the current object type for possible
assimilation into the query (similar to the way Active query displays the roles of the
highlighted object type), this would not expose immediate connections in the way that
ORM does. For example, inspecting Employee.city does not tell us that there is some
connection to Branch.city. The only way to do this is to use the domains themselves as a
basis for connectedness, and this is one of the distinguishing features of ORM.

To illustrate other features of the query technology, it will help to show some SQL
code that can be automatically generated from ConQuer queries. Using the Rmap
algorithm [5], our conceptual schema maps to the relational schema shown in Figure 2
(for simplicity, domains are omitted). SQL queries apply to this.

( branchnr, year , rank)

A ! only where country = 'USA'

N

A
( headempnr , branchnr, cityname, statecode, country )
— »

[ \
\ <>
N
(emgnr, empname, branchnr, salary, cityname, statecode, country, [supelrvisor_empnr], [mainphone, [otherphone]] )
1

%ac

............................

( emQ' nr, carregnr )
4

’
’

>
( carregnr, carmodelname, [color] )

( languagename, country )

FIGURE 2: The relational schema mapped from the ORM schema of Figure 1.

In Figure 2, keys and uniqueness constraints are indicated by underlining (primary
keys are doubly underlined where alternate keys exist). Optional columns are shown in
square brackets. A subset constraint (e.g. foreign key constraint) is shown as a dotted

Conceptual Queries 8



arrow. Here the numbered qualification 1 enforces the subtype definition. For more about
subtyping in ORM, see [6].

ActiveQuery maps ConQuer queries to SQL for a variety of DBMSs, in the process
performing semantic optimization where possible by accessing the constraints in the ORM
schema. SQL code for query Q1 is shown below (S1). Notice how the conceptual query
shields the user from details about Citys composite reference scheme. Moving through an
object type corresponds to a conceptual join. Here the relational join is a result of the same
city playing two roles that map to separate tables, with no foreign key connection. In
contrast to this semantic domain approach, some query tools require foreign keys to
perform a join, and even force the user to specify what kind of join (e.g. inner or outer) is
associated with a foreign key connection: the limitations of such an approach are obvious.

S1 select X1.empnr
from Employee as X1, Branch as X2
where X1.cityname = X2.cityname
and X1.statecode = X2.statecode
and X1.country = X2.country
and X2.branchnr = 52

ORM makes no use of attributes in base models. This helps with natural verbalization,
simplifies the framework, avoids arbitrary or temporary decisions about whether some
feature should be modeled as an attribute, and lengthens the lifetime of conceptual
queries since they are not impacted when a feature is remodeled as a relationship or
attribute. This semantic stability of ORM models, and hence ORM queries, gives it a major
advantage over ER, OO and lower level approaches.

For example, suppose that after storing the previous query, we change the schema to
allow an employee to live in more than one city (e.g. a contractor might live in two cities).
The uniqueness constraint on Employee lives in City is now weakened, so that this fact type is
now many:many. With most versions of ER, this means the fact can no longer be modeled
as an attribute of Employee.

Moreover, suppose that we now decide to record the population of cities. In ER or OO
this would require that City be remodeled as an entity type instead of as an attribute.
Hence an ER or OO based query would need to be reformulated. With ORM based
queries however, the original query can still be used, since changing a constraint or
adding a new fact type has no impact on it. Of course, the SQL generated by the ORM
query may well differ with the new schema, but the meaning of the query is unchanged.

As an even simpler example, suppose we wanted to list employee drivers and their
branches. In ConQuer we have:

Q2 v'Employee

+- drives Car
+- works for v'Branch

Conceptual Queries 9



With our current schema, employees may drive many cars but work for at most one
branch. So the information is spread over two relational tables, and the SQL code is:

S2a  select X1.empnr, X1.branchnr
from Employee as X1, Drives as X2

where X1.empnr = X2.empnr

However suppose that in an earlier version of our schema, employees could drive at
most one car. In that case, all the information is in one table and the SQL code is:

S2b  select X1.empnr, X1.branchnr
from Employee as X1

where X1.carregnr is not null

Not only is this code sub-conceptual (null values are an implementation detail) but it
is unstable, since a simple change to a conceptual constraint on the driving relationship
requires the code to be changed as well. If we now relaxed our schema to allow
employees to work for more than one branch (e.g. contract employees) the SQL code
would need to be changed again since an extra table is needed to store the works
relationship. In all these cases, the ConQuer query stays valid: all that changes is the SQL
code that gets automatically generated from the query.

An OO query approach is often more problematic than an ER or relational approach,
because there are many extra choices on how facts are grouped into structures, and the
user is exposed to these structures in order to ask a question. Moreover these structures
may change drastically to maintain performance as the business application evolves.

In the real world, changes often occur to an application, and work is required to cater
for the changes in the database structures. Even more work is required to modify the code
for stored queries. If we are working at the logical level, the maintenance effort can be
very significant. We can minimize the impact of change to both models and queries by
working in ORM at the conceptual level and letting a tool look after the lower level
transformations.

The simple examples above illustrate how ConQuer achieves semantic clarity,
relevance and stability. Let$ look briefly at its semantic strength ( expressibility). Further
details on this may be found in [2]. The language supports the usual comparators (=, <, in,
like etc.), logical operators (and, or, not), and bag functions (count, sum etc.), as well as a
maybe operator for conceptual left outer joins. Subtype/supertype connections appear as
“is” predicates.

Suppose we want to list the branch number of any USbranch that did not achieve the
top rating before the year 1998, as well as the name, and cars (if any) of the branchs head.
This may be formulated in ConQuer thus:

Conceptual Queries 10



Q3 v'USbranch
+- not achieved Rank = 1 in Year < 1998

+- is Branch
+- is headed by Employee
+- has vEmployeeName
+- maybe drives v'Car

Notice how easy this is, especially if the tool provides the predicates for each object
type. As a minor point, ActiveQuery currently uses the syntactical variant “possibly” for
“maybe”. You are invited to provide the lengthy SQL for this query. Although
straightforward, notice how you need to locate the relevant four tables and then decide on
what columns to join, what kinds of join to perform (inner or outer) and then add the
intra-table restrictions. In other words, to do this in SQL you need to worry about low
level implementation details.

The most powerful feature of ConQuer is its ability to perform correlations of arbitrary
complexity. As a simple correlation example, consider the query: Who supervises an
employee who lives in the same city as the supervisor but was born in a different country
from the supervisor? Here is one way of expressing the query in ConQuer:

Q4 v'Employee;
+- lives in City;
+- was born in Country;
+- supervises Employee;
+- lives in City;
+- was born in Country, <> Country;

When an object type appears more than once, ActiveQuery automatically appends
subscripts to distinguish the occurrences. You can assert that the instances are equal by
equating the subscripts (e.g. City:). More generally, you can use comparators to compare
instances (e.g. Country, <> Country.). Try this in SQL. It§ not that hard, but you have to
admit it§ easier in ConQuer!

As a harder example that includes a function as well as nasty correlation, consider the
query: Who owns a car, and does not drive more than one of those cars (that he/she
owns)?. In English, correlation is often achieved through pronouns. Here there is a
correlation on cars (“those”) as well as employees (“he/she”). This query may be
formulated as Q5. Recall that object variables with identical subscripts are correlated. This
is used here to correlate cars (Car,). The for-clause has only one instance of Employee in
the query body to reference, so no subscripts are needed to perform the correlation for
employees.

Conceptual Queries 11



Q5 v'Employee
+- owns Car;
+- not drives Car;
+- count(Car;) for Employee > 1

Equivalent SQL is shown below. Because the correlation stems from a function
argument inside a negated function subquery, the correlation concerns membership in a
set, not just equality with an outer instance (see italicized code). This is quite tricky, and
even experienced SQL users might get it wrong.

S5 select X1.empnr

from Owns X1

where X1.empnr not in (
select X2.empnr
from Drives X2
where X2.car in (select X3.car from Owns X3

where X3.empnr = X1.empnr)

group by X2.empnr
having count(X2.car) > 1)

Last year | taught advanced SQL to a group of 4th year university students who
already had years of experience with SQL. | then gave them a simple introduction to
ConQuier, followed by a list of varied questions in English that they had to translate into
both ConQuer and SQL. Even without tool support, they had little trouble with the
ConQuer formulations, but they experienced great difficulty with the SQL. I admit the
SQL questions were pretty nasty (lots of correlated subqueries and functions), but | set a
wide range of questions without trying to bias them in favor of either language. At any
rate, the relative performance was so dramatic that it reinforced my impression that
ConQuer is much easier to learn than SQL. Of course, more extensive trials are needed for
a reliable empirical evaluation of the language.

Business Rules

Although ORMS graphical notation can capture more constraints than popular ER

notations such as IDEF1X and UML class diagrams, it still needs to be supplemented by a
textual language to provide a complete coverage of the kinds of constraints and derivation
rules found in business applications. Research is currently under way to adapt ConQuer
for this purpose. This is analogous to the way that SQL is used for formulation of queries
as well as declaration of constraints (e.g. check clauses) and derivation rules (e.g. view
declarations). All of ORMS graphical constraints can be verbalized in FORML, an ORM

language that was designed specifically for this purpose. The ConQuer language is more
general, can be used to define other business rules, and can be mapped automatically to
SQL. Hence it could be used as a very high level language for capturing business rules in
general.

As a trivial example of a derivation rule, Figure 1 includes a definition of the derived
fact type: Branch is in Country. Now that you have some familiarity with ConQuer, you

Conceptual Queries 12



will recognize this definition as a ConQuer query. ActiveQuery allows you to define
derived predicates, and store these definitions. These derived predicates (or “macros”)
can then be used just like base predicates in other queries. Figure 1 also includes a subtype
definition for USbranch. A subtype may be thought of as a derived object type, with its
definition provided by a ConQuer query. Note that the subtype definition for USbranch
made use of a derived predicate.

A constraint may be viewed as a check that a query searching for a violation of the
constraint returns the null set. Hence constraints may also be expressed in terms of
queries. Various high level constructs can be provided in the language to make it more
natural than the not-exists-check-query form provided in SQL. Although there is no room
here to go into detail, it should be clear that this approach is quite powerful.

Conclusion and Acknowledgement

This article outlined the benefits of lifting queries to the conceptual level, and argued that
a truly conceptual query language should provide semantic strength, clarity, relevance
and stability. It then indicated that ORM-based languages are especially suited for
meeting these criteria, and gave examples of how queries can be formulated in one such
language, ConQuer, and then mapped to SQL. Finally, it was noted that a conceptual
query language can be used not just for queries but also for the declaration of business
rules.

The ActiveQuery tool was constructed by a team of talented developers, now working
at Visio Corporation. The fundamental research on the design of ConQuer and the
associated mapping to SQL was performed jointly by Dr Anthony Bloesch and myself,
and parts of this article are based on two of our papers [1, 2], in which a more formal
discussion of the languages$ semantics is provided.

References
1. Bloesch, A.C. & Halpin, T.A. 1996, ConQuer: a conceptual query language; Proc. ER 96:
15t Int. Conf. on conceptual modeling, Springer LNCS, no. 1157, pp. 121-33.

2. Bloesch, A.C. & Halpin, T.A. 1997, Conceptual queries using ConQuer-1I; Proc. ER97:
16th Int. Conf. on conceptual modeling, Springer LNCS 1131, pp. 113-26.

3. Cattell, R.G.G. & Barry, D. K. (eds) 1997, The Object Database Standard: ODMG 2.0, Morgan
Kaufmann, San Francisco CA (see ch. 4 for a definition of OQL).

4. Embley, D.W., Wu, H.A., Pinkston, J.S. & Czejdo, B. 1996, OSM-QL.: a calculus-based
graphical query language, Tech. Report, Dept of Comp. Science, Brigham Young Univ.,
Utah.

5. Halpin, T.A. 1995, Conceptual Schema and Relational Database Design, 2nd edn, Prentice Hall
Australia, Sydney.

6. Halpin. T.A. 1995, Subtyping: conceptual and logical issues; Data Base Newsletter, ed. R.G.
Ross, Database Research Group Inc., vol. 23, no. 6, pp. 3-9.

Conceptual Queries 13



7. Halpin, T.A. 1996, Business rules and Object Role modeling, Database Programming and
Design, vol. 9, no. 10 (Oct. 1996), pp. 66-72.

8. Hofstede, A.H.M. ter, Proper, H.A. & Weide, th.P. van der 1996, Query formulation as an
information retrieval problem, The Computer Journal, vol. 39, no. 4, pp. 255-74.

9. Meersman, R. 1982, The RIDL conceptual language, Research report, Int. Centre for
Information Analysis Services, Control Data Belgium, Brussels.

This paper is made available by Dr. Terry Halpin and is downloadable from www.orm.net.

Conceptual Queries 14



UML Data Models From An ORM Perspective:
Part 1

by Dr. Terry Halpin, BSc, DipEd, BA, MLitStud, PhD
Director of Database Strategy, Visio Corporation

This paper appeared in the April 1998 issue of theJournal of Conceptual Modeling
published by Information Conceptual Modeling, Inc. and is reproduced here by permission.

Although the Unified Modeling Language (UML) facilitates software modeling, its
object-oriented approach is arguably less than ideal for developing and validating
conceptual data models with domain experts. Object Role Modeling (ORM) is a fact-
oriented approach specifically designed to facilitate conceptual analysis and to
minimize the impact on change. Since ORM models can be used to derive UML class
diagrams, ORM offers benefits even to UML data modelers. This multi-part article
provides a comparative overview of both approaches.

Introduction

In our competitive and dynamic world, businesses require quality software systems
that meet current needs and are easily adapted. These requirements are best met by
modeling business rules at a very high level, where they can be easily validated with
clients, and then automatically transformed to the implementation level. The Unified
Modeling Language (UML) is becoming widely used for both database and software
modeling, and version 1.1 was adopted in November 1997 by the Obiject
Management Group (OMG) as a standard language for object-oriented analysis and
design [11, 12, 13]. Initially based on a combination of the Booch, OMT (Object
Modeling Technique) and OOSE (Object-Oriented Software Engineering) methods,
UML was refined and extended by a consortium of several companies, and is
undergoing minor revisions by the OMG Revision Task Force [10]. A simple
introduction to UML is contained in [4], and a thorough discussion of OMT for
database applications is given in [1], although its notation for multiplicity constraints
differs from the UML standard.

UML includes diagrams for use cases, static structures (class and object
diagrams), behavior (state-chart, activity, sequence and collaboration diagrams) and
implementation (component and deployment diagrams). For data modeling
purposes UML uses class diagrams, to which constraints in a textual language may
be added. Although class diagrams may include implementation detail (e.g.
navigation and visibility indicators), it is possible to use them for analysis by
omitting such detail. When used in this way, class diagrams essentially provide an
extended Entity Relationship (ER) notation.



UML's object-oriented approach facilitates the transition to object-oriented code,
but can make it awkward to capture and validate business rules with domain
experts. This problem can be remedied by using a fact-oriented approach where
communication takes place in simple sentences, and each sentence type can easily be
populated with multiple instances. Object Role Modeling (ORM) is a fact-oriented
approach that harmonizes well with UML, since both approaches provide direct
support for roles, n-ary associations and objectified associations. ORM pictures the
world simply in terms of objects (entities or values) that play roles (parts in
relationships). For example, you are now playing the role of reading, and this article
is playing the role of being read.

ORM originated in the mid-1970s as a semantic modeling method, one of the
early versions being NIAM (Natural language Information Analysis Method), and
has since been extensively revised by many researchers. Overviews of ORM may be
found in [6, 7] and a detailed treatment in [5]. Although all versions of ORM are
based on the same framework, minor variations do exist. This article focuses on the
most popular version of ORM as supported in modeling and query tools such as
Visio$ InfoModeler and ActiveQuery.

Since business requirements are subject to ongoing change, it is critical that the
underlying data model be crafted in a way that minimizes the impact of these
changes. The ORM framework is more stable under business changes than either OO
or ER models, and facilitates the remaining changes that need to be made. This
stability applies not only to the model itself, but also to conceptual queries based on
the model.

Although ORM can be used independently of other methods, it may also be used
in conjunction with them. To better exploit the benefits of UML, or ER for that
matter, ORM can be used for the conceptual analysis of business rules, and the
resulting ORM model can be easily transformed into a UML class diagram or ER
diagram.

This article summarizes the main data modeling constructs in both ORM and
UML, and discusses how they relate to one another. It aims to provide a basic
understanding of both approaches and to illustrate translation between their
notations. Along the way, some comparative advantages of ORM are noted.
However this is not to disparage UML, which does have some nice features. Overall,
UML provides a useful suite of notations for behavior and software modeling, and its
class diagram notation is better than most other ER notations for data modeling.
Visio Professional already provides basic support for several data and process
modeling notations, and the integration of InfoModeler technology will enable very
powerful support for both ORM and UML. So it will be possible to work in one or
more of your preferred notations (ORM, UML, ER) with automatic mapping to an
implementation in a variety of DBMSs. You could even do part of the model in ORM
and part in UML, and have these merged to a single model.

This article is divided into parts, only the first of which appears in this issue. Part
1 focuses on the basic fundamentals. To provide an evaluation framework, some

UML Data Models From An ORM Perspective 2



design criteria for modeling languages are first identified. We then discuss simple
cases of how objects are referenced, and how single-valued “attributes” and can be
captured in ORM and UML. From an ORM perspective, we confine our discussion of
constraints to simple uniqueness and mandatory role constraints. From a UML
perspective, we consider only attribute multiplicity and related textual constraints.
Later parts will discuss UML associations and more advanced features such as other
constraint types, aggregation, subtyping, derivation rules and queries.

Conceptual modeling language criteria

A modeling method comprises a language and also a procedure for using the
language to construct models. Written languages may be graphical (diagrams)
and/or textual. Conceptual models portray applications at a fundamental level,
using terms and concepts familiar to the application users. In contrast, logical and
physical models specify underlying database structures to be used for
implementation, and external models specify user interaction details (e.g. design of
screen forms and reports). The following criteria provide a useful basis for evaluating
conceptual modeling methods:

Expressibility

Clarity

Semantic stability
Semantic relevance
Validation mechanisms
Abstraction mechanisms
Formal foundation

The expressibility of a language is a measure of what it can be used to say. Ideally,
a conceptual language should be able to model all conceptually relevant details about
the application domain. This is called the 100% Principle [9]. Object Role Modeling is
primarily a method for modeling and querying an information system at the
conceptual level, and for mapping between conceptual and logical levels. Although
various ORM extensions have been proposed for object-orientation and dynamic
modeling, the focus of ORM is on data modeling, since the data perspective is more
stable and it provides a formal foundation on which operations can be defined. In
this sense, UML is generally more expressive than standard ORM, since its use case,
behavior and implementation diagrams model aspects beyond static structures. Such
additional modeling capabilities of UML and ORM extensions are beyond the scope
of this article, which focuses on the conceptual data perspective. For this perspective,
ORM diagrams are graphically more expressive than UML class diagrams.

UML Data Models From An ORM Perspective 3



Moreover, ORM diagrams may be used in conjunction with the other UML diagrams,
and may even be transformed into UML class diagrams.

The clarity of a language is a measure of how easy it is to understand and use. To
begin with, the language should be unambiguous. Ideally, the meaning of diagrams
or textual expressions in the language should be intuitively obvious. At a minimum,
the language concepts and notations should be easily learnt and remembered.
Semantic stability is a measure of how well models or queries expressed in the
language retain their original intent in the face of changes to the application. The
more changes one is forced to make to a model or query to cope with an application
change, the less stable it is.

Semantic relevance requires that only conceptually relevant details need be
modeled. Any aspect irrelevant to the meaning (e.g. implementation choices,
machine efficiency) should be avoided. This is called the conceptualization principle
[9]. Validation mechanisms are ways in which domain experts can check whether the
model matches the application. For example, static features may be checked by
verbalization and multiple instantiation, and dynamic features may be checked by
simulation.

Abstraction mechanisms are ways in which unwanted details may be removed
from immediate consideration. This is especially important with large models. ORM
diagrams tend to be more detailed and take up more space than corresponding UML
models, so abstraction mechanisms are often used. Various mechanisms such as
modularization, refinement levels, feature toggles, layering, and object zoom can be
used to hide and show just that part of the model relevant to a users immediate
needs [3, 5]. With minor variations, these techniques can be applied to both ORM and
UML. ORM also includes an attribute abstraction procedure that can be adapted to
generate a UML or ER diagram as a view.

A formal foundation ensures models are unambiguous and executable (e.g. to
automate the storage, verification, transformation and simulation of models). One
particular benefit is to allow formal proofs of equivalence and implication between
alternative models for the same application [8]. Although ORMS richer graphic
constraint notation provides a more complete diagrammatic treatment of schema
transformations, use of textual constraint languages can partly offset this advantage.
With respect to their data modeling constructs, both UML and ORM have an
adequate formal foundation.

Since the ORM and UML languages are roughly comparable with regard to
abstraction mechanisms and formal foundations, our comparison focuses on the
criteria of expressibility, clarity, stability, relevance and validation.

UML Data Models From An ORM Perspective 4



Object reference

For readers unfamiliar with ORM, some of its main concepts and notations are now
summarized. These concepts will also help explain related UML notations. ORM
classifies objects into entities (non-lexical objects) and values (lexical objects), and
requires each entity to be identified by a well defined reference scheme used by
humans to communicate about the entity. For example, employees might be
identified by employee numbers or social security numbers, and countries by ISO
country codes or country names. ORM uses “object”, “entity” and “value” to mean
“object instance”, “entity instance” and “value instance”, appending “ type” for the
relevant set of all possible instances. For example, you are an instance of the entity
type Person. Entities might be referenced in different ways, and typically change
their state over time. Glossing over some subtle points, values are constants (e.g.
character strings and numbers) that basically denote themselves, so do not require a
reference scheme to be declared.

Figure 1(a) depicts explicitly a simple reference scheme in ORM. Object types
are shown as named ellipses, using solid lines for entity types (e.g. Employee) and
dashed lines for value types (e.g. EmpNTr). Relationship types are depicted as a named
sequence of one or more roles, where each role appears as a box connected to the
object type that plays it. The number of roles is called the arity of the relationship
type. In ORM, relationships may be of any arity (1 = unary, 2 = binary, 3 = ternary, 4
= quaternary, 5 = quinary etc.). In base ORM, each relationship must be elementary
(i.e. it cannot be split into smaller relationships covering the same object types
without information loss). For this reason, arities above 5 are rare. In practice, about
80% of relationships are binary.

«—Pre—> e LN .
Employee has -is of EmpNr Employee
hS P ,,’ (empNr)
@ 101 (b)
101
102

Figure 1: A simple reference scheme in ORM, shown (a) explicitly, (b) implicitly

Figure 1(a) depicts a binary relationship type. Read from left to right, we have:
Employee has EmpNr. Read backwards, we have: EmpNr is of Employee. The verb
phrases “has” and “is of” are predicate names. To enable navigation in any direction
around an ORM schema, each n-ary relationship (n > 0) may be given n predicate
names (one starting at each role), but it is a user preference as to how many of these
are simultaneously displayed.

UML Data Models From An ORM Perspective 5



If an entity type has more than one candidate reference scheme, one of these may
be declared primary to assist verbalization of instances (and sometimes to reflect
actual business practice). If an entity type has only one candidate reference scheme,
this is the primary one. Relationship types used for primary reference are called
reference types. All other relationship types are called fact types. A primary reference
scheme for an entity type maps each instance of that type onto a unique, identifying
value (or a combination of values, as discussed in a later issue). In Figure 1(a), the
reference type has a sample population shown below it in a reference table (one column
for each role). Here icons are used to denote the real world employee entities.

To conserve space, simple reference schemes may be abbreviated by enclosing
the reference mode in parentheses below the entity type name (see Figure 1(b)), and an
object types reference table includes values but no icons. References verbalize as
existential sentences, e.g. “There is an Employee who has the EmpNr 101”. The
constraints in the reference scheme (see below) enable entity instances to be
referenced elsewhere by definite descriptions, e.g. “The Employee who has the
EmpNr 101™.

Reference modes indicate the mode or manner in which values refer to entities
(e.g. contrast Mass(kg) with Mass(Ib)). The black dot where the left role connects to
Employee is a mandatory role constraint, indicating that role must be played by all
population instances of that type (verbalization: each employee has at least one
employee number). The arrow-tipped bar over the left role is a uniqueness constraint,
indicating that each instance in its associated population column appears there only
once (verbalization: each Employee has at most one EmpNr). The uniqueness
constraint on the right role indicates that each employee number refers to at most one
employee. Hence the reference type provides an injection (mandatory, 1:1-into
mapping) from Employee to EmpNr. The sample population clarifies the 1:1
property. A uniqueness constraint used for primary reference (e.g. the right-hand
constraint in Figure 1(a)) may be annotated with a “P”.

In a relational implementation, we might choose to use the primary reference
scheme to provide value-based identity, or instead use row-ids (system generated,
tuple identifiers). In an object-oriented implementation we might use oids (hidden,
system generated object identifiers). Such choices can be added later as annotations
to the model. For analysis and validation purposes however, we need to ensure that
humans have a way of identifying objects in their normal communication.

It is the responsibility of humans (not the system) to enforce constraints on
primary reference types. This is a conceptual, not an implementation issue. For
instance, choosing employee numbers as external identifiers (or oids as internal
identifiers) does not magically guarantee that each employee in the real world is
actually assigned only one employee number (or only one oid). Various measures
can be taken at the point of data entry to help ensure this, but even extreme measures
such as DNA checks still have some possibility of error. However, assuming that
humans do enforce the reference type constraints, the system may now be used to
enforce fact type constraints.

UML Data Models From An ORM Perspective 6



UML classifies instances into objects and data values. UML objects basically
correspond to ORM entities, but are assumed to be identified by oids. UML data
values basically correspond to ORM values: they are constants (e.g. character strings
or numbers) and hence require no oids to establish their identity. Entity types in
UML are called classes, and value types are called data types. Note that “object”
means “object instance”, not “object type”. A relationship instance in UML is called a
link, and a relationship type is called an association.

Because of reliance on oids, UML does not require entities to have a value-based
reference scheme. This can make it impossible to communicate naturally at the
instance level, and ignores the real world database application requirement that
humans have a verbal way of identifying objects. It is important therefore to include
value-based reference in any UML class diagram intended to capture all the
conceptual semantics about a class. Unfortunately, to do this we often need to
introduce non-standard extensions to the UML notation, as seen in the following
example.

Single-valued attributes

Like other ER notations, UML allows relationships to be modeled as attributes. For
instance, in Figure 2(b) the Employee class has eight attributes. Classes in UML are
depicted as a named rectangle, optionally including other compartments for
attributes and operations. For now, we ignore operations in our discussion. The
corresponding ORM diagram is shown in Figure 2(a). True to its name, ORM models
the world in terms of just objects and roles, and hence has only one data structure—
the relationship type. This is one of the fundamental differences between ORM and
UML (and ER for that matter). Wherever an attribute is used in UML, ORM uses a
relationship instead. As a consequence, ORM diagrams typically take up more room
than corresponding UML or ER diagrams, as Figure 2 illustrates. But this is a small
price to pay for the resulting benefits. Before discussing these advantages, lets see
how to translate between the relevant notations.

UML Data Models From An ORM Perspective 7



@ « PR (b)

Employee

empNr {P}
empName
title
sex
isSmoker: Boolean
birthplace [0..1]
socialSecNr [0..1] {U1}
passportNr [0..1] {U2}
T
I
|

Employee
(empNr)

\’SociaISech\) {Employee.socialSecNr is not nul
. or
. Employee.passportNr is not null}

, N
| PassportNr,

< L Ea— \\ ’/,

Figure 2: ORM relationship types (a) depicted as attributes in UML (b)

The ORM model indicates that employees are identified by their employee
numbers. The top three mandatory role constraints indicate that every employee in
the database must have a name, title and sex. The other black dot where two roles
connect is a disjunctive mandatory role constraint, indicating that the disjunction of
these roles is mandatory (each employee has a social security number or passport
number, or both). Although each of these two roles is individually optional, at least
one of them must be played.

In UML, attributes are mandatory by default. In the ORM model, the unary
predicate “smokes” is optional (not everybody has to smoke). UML does not support
unary relationships, so it models this instead as the Boolean attribute *“isSmoker”. In
UML the domain of any attribute may optionally be displayed after it (preceded by a
colon). In this example, we showed the domain only for the isSmoker attribute. By
default, InfoModeler takes a closed world approach to unaries, which agrees with the
isSmoker attribute being mandatory. The ORM model also indicates that Sex and
Country are identified by codes (rather than names, say). We could convey some of
this detail in the UML diagram by appending domain names. For example,
“Sexcode” and ““ Countrycode” could be appended after “sex: ” and “birthplace: ” to
provide syntactic domains.

In the ORM model it is optional whether we record birthplace, social security
number or passport number. This is captured in UML by appending [0..1] after the
attribute name (each employee has 0 or 1 birthplace, and 0 or 1 social security
number). This is an example of an attribute multiplicity constraint. UML does not have
a graphic notation for disjunctive mandatory roles, so this kind of constraint needs to
be expressed textually in an attached note (see bottom of Figure 2(b)). Such textual
constraints may be expressed informally, or in some formal language interpretable by

UML Data Models From An ORM Perspective 8



a tool. In the latter case, the constraint is placed in braces. Although UML provides
the Object Constraint Language (OCL) for this purpose, it does not mandate its use,
allowing users to pick their own language (even programming code). This of course
weakens the portability of the model. Moreover, the readability of the constraint is
typically poor compared with the ORM verbalization (each Employee has a
SocialSecNr or has a PassportNr).

The uniqueness constraints over the left-hand roles in the ORM model (including
the empnr reference scheme shown explicitly earlier) indicate that each employee has
at most one employee number, employee name, title, sex, country of birth, social
security number and passport number. Unary predicates have an implicit uniqueness
constraint; so each employee instantiates the smokes role at most once (for any given
state of the database). All these uniqueness constraints are implicitly are captured in
the UML model, where attributes are single-valued by default (multi-valued
attributes will be discussed in a later issue).

The uniqueness constraints on the right-hand roles (including the empnr
reference scheme) indicate that each employee number, social security humber and
passport number refers to at most one employee. UML does not have a standard
graphic notation for these “attribute uniqueness constraints”. It suggests that boldface
could be used for this (or other purposes) as a tool extension ([12], p. 25), but clearly
this is not portable. We have chosen our own notation for this, appending textual
constraints in braces after the attribute names (P = primary identifier, U = unique,
with numbers appended if needed to disambiguate cases where the same U
constraint might apply to a combination of attributes). The use of “P” here does not
imply the model must be implemented in a relational database using value primary
keys; it merely indicates a primary identification scheme that may be used in human
communication.

Because UML does not provide standard graphic notations for such constraints,
and it leaves it up to the modeler whether such constraints are specified, it is perhaps
not surprising that many UML models one encounters in practice simply leave such
constraints out.

Now that wete seen how single-valued attributes are modeled in UML, let$
briefly see why ORM refuses to use them in its base modeling. The main reasons may
be summarized thus:

Attribute-free models are more stable

Attribute-free queries are more stable

Attribute-free models are easy to populate with multiple instances
Attribute-free models facilitate verbalization in sentences

Attribute-free models highlight connectedness through semantic domains
Attribute-free models are simpler and more uniform

Attribute-free models make it easier to specify constraints

UML Data Models From An ORM Perspective 9



Attribute-free models avoid arbitrary modeling decisions
Attribute-free models may be used to derive attribute views when desired

Lets begin with semantic stability. ORM models and queries are inherently more
stable, because they are free of changes caused by attributes evolving into entities or
relationships, or vice versa. Consider the ORM fact type: Employee-was-born-in-
Country. In ER and OO approaches we might model this using a birthplace attribute
(e.g. Figure 2(b)). If we later decide to record the population of a country, then we
need to introduce Country as an entity type. In UML, the connection between
birthplace and Country is now unclear. Partly to clarify this connection, we would
probably reformulate our birthplace attribute as an association between Employee
and Country. This is a significant change to our model. Moreover, any object-based
queries or code that referenced the birthplace attribute would also need to be
reformulated.

Another reason for introducing a Country class is to enable a listing of countries
to be stored, identified by their country codes, without requiring all of these
countries to participate in a fact. To do this in ORM, we simply declare the Country
type to be independent (this is displayed by appending “!”” to the type name). The
object type Country may be populated by a reference table that contains those
country codes of interest (e.g. AU’denotes Australia).

A typical counter-argument is this: “Good ER or OO modelers would declare
country as an object type in the first place, anticipating the need to later record
something about it, or to maintain a reference list; on the other hand, features such
the title and sex of a person clearly are things that will never have other properties,
and hence are best modeled as attributes”. This attempted rebuttal is flawed. In
general, you cant be sure about what kinds of information you might want to record
later, or about how important some feature of your model will become. Even in the
title and sex case, a complete model should include a relationship type to indicate
which titles are restricted to which sex (e.g. “ Mrs”, “Miss”, “Ms” and “Lady” apply
only to the female sex). In ORM this kind of constraint can be captured graphically as
a join-subset constraint between the relevant fact types (see later issue), or textually
as a constraint in a formal ORM language (e.g. if Person; has a Title that is restricted
to Sex: then Person; is of Sex;). In contrast, attribute usage hinders expression of the
relevant restriction association (try expressing and populating this rule in UML).

An ORM model is essentially a connected network of object types and
relationship types. The object types are the semantic domains that glue things
together, and are always visible. This connectedness reveals relevant detail and
enables ORM models to be queried directly, using traversal through object types to
perform conceptual joins [2]. For example, to list the employees born in a country
with a population below ten million, we may formulate our query in ORM thus: list
each Employee who was born in a Country that has a Population < 10000000.

Avoiding attributes also leads to greater simplicity and uniformity. For example,
we dont need notations to reformulate constraints on relationships into constraints

UML Data Models From An ORM Perspective 10



on attributes or between attributes and relationships (more about this in a later
issue). Another reason is to minimize arbitrary modeling choices (even experienced
modelers sometimes disagree about whether to model some feature as an attribute or
relationship).

ORM sentence types (and constraints) may be specified either textually or
graphically. Both are formal, and can be automatically transformed into the other. In
an ORM diagram, a predicate appears as a nhamed, contiguous sequence of one or
more role boxes. Since these boxes are set out in a line, fact types may be
conveniently populated with fact tables holding multiple fact instances, one column
for each role. This allows all fact types and constraints to be validated by
verbalization as well as sample populations. Communication between modeler and
domain expert can thus take place in a familiar language, backed up by population
checks. The practical value of these validation checks is considerable, especially since
many clients find it much easier to work with instances rather than types. As
discussed in the next issue, attributes and UML-style associations make it harder to
populate models with multiple instances, and often lead to unnatural verbalization.
UML does provide object diagrams for discussing single instances, but these are of
little use for discussing populations with multiple instances.

For summary purposes, ORM includes algorithms for dynamically generating
ER-style diagrams as attribute-views [3, 5]. These algorithms assign different levels of
importance to object types depending on their current roles and constraints,
redisplaying minor fact types as attributes of the major object types. Modeling and
maintenance are iterative processes. The importance of a feature can change with
time as we discover more of the global model, and the application being modeled
itself changes. To promote semantic stability, ORM makes no commitment to relative
importance in its base models, instead supporting this dynamically through views.
Elementary facts are the fundamental conceptual units of information, are uniformly
represented as relationships, and how they are grouped into structures is not a
conceptual issue.

In short, you can have your cake and eat it too, by using ORM for analysis, and if
you want to work with UML class diagrams, you can use your ORM models to
derive them.

Later issues

Weve barely scratched the surface of UML or ORM, but many of the fundamentals
have been introduced. In later issues, well compare UML associations with ORM
predicates, fact tables with object diagrams, UML muiltiplicity constraints with ORM
mandatory and frequency (including uniqueness) constraints, UML association
classes with ORM nesting, and UML qualified associations with ORM co-referencing.
Well also discuss more advanced constraints, aggregation, subtyping, derivation
rules and queries.

UML Data Models From An ORM Perspective 11



References

10.

11.

12.

13.

Blaha, M. & Premerlani, W. 1998, Object-Oriented Modeling and Design for Database
Applications, Prentice Hall, New Jersey.

Bloesch, A. & Halpin, T. 1997, Conceptual queries using ConQuer-Il; Proceedings of
the 16th International Conference on Conceptual Modeling ER'97 (Los Angeles), D.
Embley, R. Goldstein eds, Springer LNCS 1331 (Nov.) 113-126.

Campbell, L., Halpin, T. & Proper, H. 1996, Conceptual schemas with abstractions:
making flat conceptual schemas more comprehensible; Data & Knowledge
Engineering, 20, 1, 39-85.

Fowler, M. with Scott, K. 1997, UML Distilled, Addison-Wesley.

Halpin, T. 1995, Conceptual Schema and Relational Database Design, 2nd edn, Prentice
Hall Australia.

Halpin, T. 1996, Business rules and Object Role modeling, Database Prog. & Design, 9,
10, (Miller Freeman, San Mateo CA), 66-72.

Halpin, T. 1998, Object Role Modeling: an overview;, white paper,
www.visio.com/infomodeler.

Halpin, T. & Proper, H. 1995, Database schema transformation and optimization,
OOER5: Object-Oriented and Entity-Relationship Modeling, Springer LNCS, 1021
(Dec.) 191-203.

1SO 1982, Concepts and Terminology for the Conceptual Schema and the Information Base, J.
van Griethuysen ed., ISO/TC97/SC5/WG3-N695 Report, ANSI, New York.

OMG UML Revision Task Force website, http://uml.systemhouse.mci.com/.

UML Partners 1997, UML Semantics, version 1.1, OMG document ad/97-08-04,
WWw.omg.org.

UML Partners 1997, UML Notation Guide, version 1.1, OMG document ad/97-08-05,
WWw.omg.org.

UML Partners 1997, Object Constraint Language Specification, version 1.1, OMG
document ad/97-08-08, www.omg.org.

This paper is made available by Dr. Terry Halpin and is downloadable from www.orm.net.

UML Data Models From An ORM Perspective 12



UML Data Models From An ORM Perspective: Part 2

by Dr. Terry Halpin, BSc, DipEd, BA, MLitStud, PhD
Director of Database Strategy, Visio Corporation

This paper appeared in the May 1998 issue of theJournal of Conceptual Modeling
published by Information Conceptual Modeling, Inc. and is reproduced here by permission.

This paper is the second in a series of articles examining data modeling in the Unified
Modeling Language (UML) from the perspective of Object Role Modeling (ORM). Part 1
provided some historical background on both approaches, identified several design criteria
for modeling languages, and discussed how object reference and single-valued attributes
are modeled in both. In Part 2 we compare UML multi-valued attributes with ORM
relationship types, including basic constraints on both. As part of this discussion, we also
consider how these structures may be instantiated, using UML object diagrams or ORM
fact tables.

Multi-valued attributes

Suppose that we are interested in recording the names of employees, as well as the sports
they play (if any). In ORM, we might model this situation as shown in

Figure 1(a). The mandatory role dot indicates that each employee has a name. The absence
of mandatory role dot on the first role of the Plays fact type indicates that this role is
optional (it is possible that some employee plays no sport). The lack of a mandatory role
dot on the roles of EmpName and Sport does not imply that these roles are optional. If in
the global schema an object type has only one fact role, this is implied to be mandatory
unless the object type has been declared independent. So if EmpName and Sport have no
other roles in the complete application, their roles shown here are implicitly mandatory.
This is of little importance, since implied constraints are automatically enforced with no
additional overhead.

@ A T T (b)
EmpName
\ 4
RS Pre Employee

Employee
(empNr)

empNr {P}
empName
sports [0..%]

Figure 1: Plays depicted as an ORMm:n fact type (a) and a UML multi-valued attribute (b)

Since an employee may play many sports, and a sport may be played by many
employees, Plays is a many-to-many (m:n) relationship type. This is shown in ORM by



making the uniqueness constraint span both roles. Visually, this indicates that for each
population of the fact type, only the combination of values for the two roles needs to be
unique. In other words, each employee-sport pair can occur on at most one row of the
associated fact table. Since it is understood that the population of any fact type is a set of
rows (not a bag of rows), such a spanning uniqueness constraint always applies. We only
show this constraint if no stronger one exists. For example, the uniqueness constraint on
the empname fact type is stronger, since it spans just one role; so we dont bother adding
the weaker, 2-role uniqueness constraint. Read from left to right, the empname
relationship type is many-to-one (n:1), since employees have at most one name, but the
same name may refer to many employees.

One way of modeling the same situation in UML is shown in Figure 1(b). Here the
information about who plays what sport is modeled as the multi-valued attribute “sports”.
The “[0..*]” appended to this attribute is a multiplicity constraint indicating how many
sports may be entered here for each employee. The “0” indicates that it is possible that no
sports might be entered for some employee. Unfortunately, the UML standard uses a null
value for this case, just like the relational model. The presence of nulls in the base UML
model exposes users to implementation rather than conceptual issues, and adds
considerable complexity to the semantics of queries. By restricting its base structures to
elementary fact types, ORM avoids the notion of null values, enabling users to understand
models and queries in terms of simple 2-valued logic. The “*” in “[0..*]” indicates there is
no upper bound on the number of sports of a single employee. In other words, an
employee may play many sports, and we dont care how many. If “*” is used without a
lower bound, this is taken as an abbreviation for *“0..*”.

As mentioned in Part 1, an attribute with no explicit multiplicity constraint is
assumed to be mandatory and single-valued (exactly one). This can be depicted explicitly
by appending “[1]” to the relevant attribute. For example, to indicate explicitly that each
employee has exactly one name, we would use “empName [1]”. Although the UML
standard [3] specifies that multi-valued attributes are allowed and that “[1]” is the default
multiplicity of attributes, some authors of popular UML books appear to be unaware of
this (e.g. [2], p. 63). Moreover, some of the principal authors of OMT (the Object Modeling
Technique from which UML class diagrams are largely derivative) argue that the default
is single-valued with nullability unspecified (i.e. either [1] or [0..1]); for example, see [1], p.
44.

ORM constraints are easily clarified by populating the fact types with sample
populations. For example, see Figure 2. The inclusion of all the employees in the
EmpName fact table, and the absence of employee 101 in the Plays fact table clearly shows
that playing sport is optional. Notice also how the uniqueness constraints mark out which
column or column-combination values can occur on at most one row. In the EmpName
fact table, the first column values are unique, but the second column includes duplicates.
In the Plays table, each column contains duplicates: only the whole rows are unique. Such
populations are very useful for checking constraints with the subject matter experts. This
validation-via-example feature of ORM holds for all its constraints, not just mandatory
roles and uniqueness, since all its constraints are role-based, and each role corresponds to
a fact table column.

UML Data Models From An ORM Perspective 2



101 | SmithJ

102 |Jones E
103 | Smith J
+«—> P TS ~

Employee
(empNr)

Figure 2: Fact tables with sample populations clarify the constraints

Instead of using fact tables for the purposes of instantiation, UML provides object
diagrams. These are essentially class diagrams in which each object is shown as a separate
class instance, with data values supplied for its attributes. As a simple example, the
population of Figure 2 may be displayed in a UML object diagram as shown in Figure 3.
For simple cases like this, object diagrams are useful. However, as we see later, they
rapidly become extremely unwieldy if we wish to display multiple instances for more
complex cases. In contrast, fact tables scale easily to handle large and complex cases.

101: Employee 102: Employee 103: Employee
empNr = 101 empNr = 102 empNr = 103
empName = 'Smith J' empName = 'Jones E' empName = 'Smith J'
sports = null sports = (‘judo’) sports = (‘judo’, 'soccer')

Figure 3: Object diagrams may be used in UML to show sample populations

Lets look at a couple more examples involving multi-valued attributes. At my former
university, employees could apply for a permit to park on campus. The parking permit
form required one to enter the license plate numbers of those cars (up to three) that one
might want to park. A portable sticker was issued that could be transferred from one car
to another. Over time, an employee may be issued different permits, and we want to
maintain an historical record of this. Suppose that it is also a rule that an employee can be
issued at most one parking permit on the same day. One way of modeling this situation in
ORM is set out in Figure 4.

UML Data Models From An ORM Perspective 3



was issued to

Employee
(empNr)

ParkPermit
(nr)

Figure 4: ORM diagram with external uniqueness constraint and frequency constraint

Here the circled “u” depicts an external uniqueness constraint (i.e. a uniqueness
constraint that spans roles from different predicates). This captures the rule that any given
employee on any given date may be issued at most one parking permit. An external
uniqueness constraint is equivalent to an internal uniqueness constraint over the same
roles in the conceptual join of the predicates. In this case, a join would create the
compound fact type: ParkPermit was issued to Employee on Date. If this derived fact type
were populated, the Employee-Date combination would be unique, and this is what the
constraint means.

Notice also the “<=3" next to the first role of the fact type ParkPermit-is-for-Car. This
is a frequency constraint, indicating that each permit in the fact column for that role appears
there at most three times. In other words, each parking permit allows at most three cars to
be parked on campus. In ORM, both uniqueness and frequency constraints may be
applied to one or more roles, possibly from different predicates. Frequency constraints
place restrictions on the number of times that instances of the role(s) may appear. The
frequency might be a single number (e.g. 2), a number range (e.g. 2..5), a list of numbers
(e.g. 2, 4) or a combination. The expression “<= n” means “at most n”, but since it applies
to entries in the role column (rather than the object type) this is equivalent to “1.. n”’, since
any entry for the role has already appeared once. The expression “>=n" means “at least
n”. A frequency constraint of 1 is simply a uniqueness constraint. However because
uniqueness constraints are so common, they are given a special notation of their own.

One way of modeling the same application in UML is shown in Figure 5. In addition
to the ParkPermit class, Employee and Car classes are included. The “...” shown here
simply indicates that other attributes of these classes exist in the global schema (this use of
“...” is not part of the UML notation). For discussion purposes, the attribute domains are
displayed. In UML these domains are called “type expressions”. Instead of defining a
standard syntax for type expressions, UML allows them to be written in any
implementation language, assuming the latter provides the relevant parser. For example,
one type expression might be a C++ function pointer. To keep our analysis model at least
semi-conceptual, we restrict type expressions to simple data types and classes. Data types
are sets of pure values (no oids), and include primitive types (e.g. Integer, String) as well
as enumeration types (including Boolean and user-defined). In our example, the attribute
domains include the data types Integer and Date, as well as the classes Employee and Car.

UML Data Models From An ORM Perspective 4



By using classes as domains in this way, we can at least understand when an attribute
corresponds to a association between entities, even it is not displayed as such.

ParkPermit Employee Car

parkPermitNr: Integer {P} empNr: Integer {P} regNr: Integer {P}
driver: Employee {U1}

issuedate: Date {U1}
cars [1..3]: Car

Figure 5: A UML alternative to the ORM model inFigure 4

As discussed in Part 1, constraints not included in the standard notation may be
added in braces in some implementation language. In Figure 5 we use “{P}” for “primary
identifier”, and “{U1}” on both driver and issuedate to indicate that this combination is
unique. Taken together, the two “{U1}” annotations correspond to the ORM external
uniqueness constraint in Figure 4. The “[1..3]” constraint on the cars attribute indicates that
each parking permit is associated with at least one and at most three cars. The “at least
one” part of this corresponds to an ORM mandatory role constraint; and the “at most
three” corresponds to the “<= 3” ORM frequency constraint. Recall that mandatory role
constraints are separated out in ORM, mainly because they have global impact (each
population instance of that type must play all the roles of that object type in the global
schema). In contrast, other ORM constraints (e.g. frequency and uniqueness) are local,
applying only to the population of the associated role(s).

As a final example of multi-valued attributes, suppose that we wish to record the
nicknames and colors of country flags. Let us agree to record at most two nicknames for
any given flag, and that nicknames apply to only one flag. For example, “Old Glory” and
perhaps “The Star-spangled Banner” might be used as nicknames for the USA flag. Flags
have at least one color. Figure 6(a) shows one way to model this in ORM. For verbalization
purposes we identify each flag by its country. Since country is an entity type, the reference
scheme is shown explicitly (parenthesized reference modes may abbreviate reference
schemes only when the referencing type is a value type). The uniqueness constraint on the
role played by Country could be annotated with a “P” for primary reference, but this is
implied if Flag has no other reference schemes. The “<= 2" frequency constraint indicates
that each flag has at most two nicknames, and the uniqueness constraint on the role of
NickName indicates that each nickname refers to at most one flag.

() (b)

Flag

. - \‘ country {P}
\NICkName, nickName [0..2] {U1}

’ colors [1..¥]

Figure 6

UML Data Models From An ORM Perspective 5



Figure 6(b) shows one way of modeling this in UML. The “[0..2]” indicates that each
flag has at most two (from zero to two) nicknames, and we use “{U1}” to indicate that
nicknames refer to at most one flag. The [*“1..*] declares that a flag has one or more colors.
In this case we have omitted the display of attribute domains. NickName would typically
have a data type for its domain (e.g. String). If we dont want to store any information
about countries or colors, we might choose String as the domain for country and colors as
well (although this is sub-conceptual, because in the real world countries and colors are
not character strings). However since we might want to add information about these later,
its better to use classes for their domains (e.g. Country and Color). If we do this, we need
to define the classes as well (cf. our previous example).

As we discuss in the next issue, UML gives us the choice of modeling a feature as an
attribute or an association (similar to an ORM relationship type). At least for conceptual
analysis and querying, explicit associations usually have many advantages over
attributes, especially multi-valued attributes. This choice helps us verbalize, visualize and
populate the associations. It also enables us to express various constraints involving the
“role played by the attribute” in standard notation, rather than resorting to some non-
standard extension (as we did with our braced comments). This applies not only to simple
uniqueness constraints (as discussed earlier) but also to other kinds of constraints
(frequency, subset, exclusion etc.) over one or more roles that include the role played by
the attributes domain (in the implicit association corresponding to the attribute). For
example, if the association Flag-is-of-Country is explicitly depicted in UML, the constraint
that each country has at most one flag can be captured by adding a multiplicity constraint
of “0..1” on the left role of this association. Although country and color are naturally
conceived as classes, nickname would normally be construed as a data type (e.g. a
subtype of String). Although associations in UML may include data types (not just
classes), this is somewhat awkward; so in UML, nickname might best be left as a multi-
valued attribute. Of course, we could model it cleanly in ORM first.

Another reason for favoring associations over attributes is stability. As we discuss
later, if ever we want to talk about a relationship, it is possible in both ORM and UML to
make an object out of it, and simply attach the new details to it. If instead we modeled the
feature as an attribute, we would not be able to add the new details without first changing
our original schema: in effect we would need to first replace the attribute by an
association. For example, consider the association Employee-plays-Sport in Figure 1 (a). If
we now want to record a skill level for this play, we can simply objectify this association
as Play, and attach the fact type: Play-has-SkillLevel. A similar move can be made in UML
if the play feature has been modeled as an association. In Figure 1(b) however, this feature
has been modeled as the sports attribute; so this attribute needs to be removed and
replaced by the equivalent association before we can add the new details about skill level.
The notion of objectified relationship types or association classes will be covered in a later
issue.

Another problem with multi-valued attributes is that queries on them need some way
of extracting the components, and hence complicate the query process for users. As a
trivial example, compare queries Q1, Q2 expressed in ConQuer (the ORM query language

UML Data Models From An ORM Perspective 6



supported by Visios ActiveQuery tool) with their counterparts in OQL (the Object Query
language proposed by ODMG):

(Q1) List each Color that is of Flag USA’
(Q2) List each Flag that has Color fed!

(Qla) select x.colorsfrom x in Flag where x.country = ‘USA”
(Q2a) select x.countryfrom x in Flag where fed” in x.colors

Although this example is trivial, the use of multi-valued attributes in more complex
structures can make it harder for users to express their requirements.

If we choose to avoid multi-valued attributes in our conceptual model, we still have
the option of using them in the actual implementation. Both ORM and UML allow
schemas to be annotated with instructions to over-ride the default actions of whatever
mapper is used to transform the schema to an actual implementation. For example, the
ORM schema in Figure 6 can be prepared for mapping by annotating the roles played by
NickName and Color to map as sets inside the mapped Flag structure. Such annotations
are not a conceptual issue, and can be postponed till mapping. If you ever feel tempted to
use multi-valued attributes in UML, you may be thinking about how you want the
structure to be implemented rather than first trying to understand how things are related
in the real world.

Later issues

The next issue focuses on a detailed comparison between ORM relationship types and
UML associations, including related constraints. We then contrast ORM nesting with
UML association classes, and ORM co-referencing with UML qualified associations. Later
issues discuss more advanced constraints, aggregation, subtyping, derivation rules and
queries.

References

1. Blaha, M. & Premerlani, W. 1998, Object-Oriented Modeling and Design for Database
Applications, Prentice Hall, New Jersey.

2. Fowler, M. with Scott, K. 1997, UML Distilled, Addison-Wesley.

3. OMG UML Revision Task Force website, http://uml.systemhouse.mci.com/.

This paper is made available by Dr. Terry Halpin and is downloadable from www.orm.net.

UML Data Models From An ORM Perspective 7



UML Data Models From An ORM Perspective: Part 3

by Dr. Terry Halpin, BSc, DipEd, BA, MLitStud, PhD
Director of Database Strategy, Visio Corporation

This paper appeared in the June 1998 issue of theJournal of Conceptual Modeling
published by Information Conceptual Modeling, Inc. and is reproduced here by permission.

This paper is the third in a series of articles examining data modeling in the Unified
Modeling Language (UML) from the perspective of Object Role Modeling (ORM). Part 1
provided some historical background on both approaches, identified design criteria for
modeling languages, and discussed how object reference and single-valued attributes are
modeled in both. Part 2 compared UML multi-valued attributes with ORM relationship
types, and discussed basic constraints on both, as well as instantiation using UML object
diagrams or ORM fact tables. This third issue compares UML associations and related
multiplicity constraints with ORM relationship types and related uniqueness, mandatory
role and frequency constraints. It also contrasts instantiation of associations using UML
object diagrams and ORM fact tables.

Associations

Before discussing UML associations in detail, we review some ideas discussed previously.
Attributes in UML are depicted as relationship types in ORM. A relationship instance in
ORM is called a link in UML (e.g. Employee 101 works for Company Visio). A relationship
type in ORM is called an association in UML (e.g. Employee works for Company). In both
UML and ORM, a role is a part played in a relationship. The number of roles in a
relationship is its arity.

ORM allows relationships of any arity. Each relationship type has at least one
reading or predicate name. An n-ary relationship may have up to n readings (one starting
at each role), to provide natural verbalization of constraints and navigation paths in any
direction. A predicate is an elementary sentence with holes in it for object terms. In ORM
these object holes may appear at any position in the predicate (mixfix notation), and are

denoted by an ellipsis “... ” if the predicate is not infix-binary. Mixfix notation enables
natural verbalization of sentences in any language (e.g. in Japanese, verbs come at the end
of sentences).

ORM sentence types and constraints may be specified either textually or graphically.
Visios InfoModeler can automatically transform between the graphical and textual
representations. In an ORM diagram, roles appear as boxes, connected by a line to their
object type. InfoModeler allows role names to be added on a properties sheet rather than
on the diagram; in principle however, an ORM tool could display role names directly on
the diagram (preferably with the display toggled by the user to avoid clutter). A predicate
appears as a named, contiguous sequence of role boxes. Since these boxes are set out in a



line, fact types may be conveniently populated with tables holding multiple fact instances,
one column for each role. This allows all fact types and constraints to be validated by
verbalization as well as sample populations. Communication between modeler and
domain expert takes place in a familiar language, backed up by population checks.

UML uses Boolean attributes instead of unary relationships, but allows relationships
of all other arities. Each association may be given at most one name, and this is optional.
Association names are normally shown in italics, starting with a capital letter. Binary
associations are depicted as lines between classes. Association lines may include elbows to
assist with layout or when needed (e.g. for ring relationships). Association roles appear
simply as line ends instead of boxes, but may optionally be given role names. Once added,
role names may not be suppressed. Verbalization into sentences is possible only for infix
binaries, and then only by naming the association with a predicate name (e.g. “Employs”)
and using an optional marker “}” to denote the direction.

Figure 1 depicts two binary associations in both UML and ORM. On the UML diagram
we have chosen to display the association names, their directional markers and all the role
names: all of these could have been omitted. To avoid ambiguity however, either the
directed association name or the role names should be shown. In the ORM diagram, both
forward and inverse predicate names have been shown: at most one of these may be
omitted. Role names are not displayed on the ORM diagram but may be added (as
discussed above).

(a) UML Acquired N
buyer
Employee E Employs Company

empNr {P}  |employee employer| compName {P} | acquisition

(b) ORM works for /employs

acquired /was acquired by

Figure 1: Binary associations in (a) UML and (b) ORM

Ternary and higher arity associations in UML depicted as a diamond connected by
lines to the classes. Because many lines are used to denote the association, directional
verbalization is ruled out, so the diagram cant be used to communicate in terms of
sentences. This non-linear layout also often makes it impractical to conveniently populate
associations with multiple instances. Add to this the impracticality of displaying multiple
populations of attributes, and it is clear that class diagrams are of little use for population
checks.

UML Data Models From An ORM Perspective 2



(a) UML Crop
cropName {P}

Country Season
countryCode {P} seasonCode {P}
Harvest
(b) ORM

Crop
(name)
Country | | Season
(code) (code)

... harvested ... in ...

Figure 2: A ternary association in (a) UML and (b) ORM

As discussed in the previous issue, UML does provide object diagrams for instantiation,
but these are convenient only for populating associations with a single instance. Adding
multiple instances leads to a mess (e.g. [0], p. 31). Hence, as noted in the UML Notation
Guide, “the use of object diagrams is fairly limited”.

Multiplicity constraints on associations

The previous issues discussed how UML depicts multiplicity constraints on attributes. A
similar notation is used for associations, where the relevant multiplicities are written
beside the relevant roles. Figure 3(a) adds the relevant multiplicity constraints to Figure
1(a). A “*” abbreviates “0..*”, meaning “zero or more”, “1” abbreviates ““1..1”, meaning
“exactly one”, and “0..1” means “at most one”. Unlike some ER notations, UML places
each multiplicity constraint on the “far role”, in the direction in which the association is
read. Hence the constraints in this example mean: each company employs zero or more
employees; each employee is employed by exactly one company; each company acquired
zero or more companies; and each company was acquired by at most one company.

UML Data Models From An ORM Perspective 3



(a) UML Acquired N

or ]

Employee E Employs Company *
empNr {P} * 1 | compName {P}
(b) ORM works for /employs

acquired /was acquired by

Figure 3: UML multiplicity constraints captured in ORM by uniqueness and mandatory role
constraints.

The corresponding ORM constraints are depicted in Figure 3(b). Recall that
multiplicity covers both cardinality (frequency) and optionality. Here the mandatory role
constraint indicates that each employee works for at least one company, and the
uniqueness constraints indicate that each employee works for at most one company, and
each company was acquired by at most one company. As usual, the ORM notation
facilitates verbalization and population. InfoModeler allows these constraints to be
entered graphically, or by answering multiplicity questions, or by induction from sample
populations, and can automatically verbalize the constraints.

For binary associations, there are four possible uniqueness constraint patters (n:1, 1:n;
1:1, m:n) and four possible mandatory role patterns (only the left role mandatory, only the
right role mandatory, both roles mandatory, both roles optional). Hence if we restrict
ourselves to a maximum frequency of one, there are 16 possible multiplicity combinations
for binary associations. The first four of these are shown in Figure 4, covering the cases
where both roles are optional.

n:l

* 0.1

both roles A = B --
optional
1in: 0.1 * —
both roles A B --
optional
11 0.1 01 >
both roles A - - B
m:n D —
both roles * *

A B

Figure 4: Equivalent constraint patterns in UML and ORM, where both roles are optional

UML Data Models From An ORM Perspective 4



The next four cases, shown in Figure 5, cover the situation where the first role is
mandatory and the second role is optional.

n:l

* 1

first role A B --
mandatory
1in 0.1 1.* .
first role A = = B --
mandatory
11 0.1 1 -«
first role A - B
m:n . 1% i —
first role -

A B

Figure 5: Equivalent constraint patterns in UML and ORM, where first role is mandatory

The next four cases, shown in Figure 6, cover the situation where the second role is
mandatory and the first role is optional. Finally, Figure 7 covers the four cases where both

roles are mandatory.

n:l
second role
mandatory

1n
second role
mandatory

11
second role
mandatory

m:n
second role
mandatory

Figure 6: Equivalent constraint patterns in UML and ORM, where second role is

mandatory

1.* 0.1
1 *
1 0.1
1“* *

° e
° °
<—><—>

° e

it

UML Data Models From An ORM Perspective 5



n:1 1 * 1  —
both roles A B --
mandatory
1n 1 1% h—
both roles A B --
mandatory
11 1 1 «— >
both roles A B
m:n * * -
both roles 1. 1.

A B

Figure 7: Equivalent constraint patterns in UML and ORM, where both roles are
mandatory

In the previous issue, we discussed attribute multiplicity constraints involving
occurrence frequency lists and/or ranges containing frequencies other than zero or one
(e.g. “1..7, 10”). For such cases, ORM uses general frequency constraints instead of
uniqueness constraints. In a similar way, both UML and ORM cater for multiplicity
constraints of arbitrary complexity on single roles. As discussed in a later issue, ORM is
actually more expressive in this regard since it can apply such constraints to arbitrary
collections of roles.

An internal constraint applies to roles in a single association. For an elementary n-ary
association, each internal uniqueness constraint must span at least n-1 roles. Unlike many
ER notations, UML and ORM can express all possible internal uniqueness constraints. In
UML, a multiplicity constraint on a role of an n-ary association effectively constrains the
population of the other roles combined. For example, Figure 8 is a UML diagram for a
ternary association in which both Room-Time and Time-Activity pairs are unique. For
simplicity, we have omitted the conceptual reference schemes for the classes.

Time

.1
Room Activity

Usage

Figure 8: Multiplicity constraints on a ternary in UML

An ORM depiction of the same association is shown in Figure 9, including the
reference schemes and sample population. The left-hand uniqueness constraint indicates
that Room-Time is unique (i.e. for any given room and time, there is at most one activity).
The right-hand uniqueness constraint indicates that Time-Activity is unique (i.e. for any

UML Data Models From An ORM Perspective 6



given time and activity, at most one room is used). Note how useful the population of the
ternary is for checking the constraints. For example, if Time-Activity is not really unique,
this can be tested by adding a counterexample and asking the client whether this is

possible.
| | Activity
(name)
... at...is used for ...

< >
< >

20 | Mon 9am | IM class
20 | Mon 4pm | AQ demo
20 | Tue 2pm | IM class
33 | Mon 9am | AQ demo
33 | Fri5pm Party

Figure 9: An ORM ternary with a sample population

Later issues

The next issue looks at associations in more detail, covering some advanced constraints,
and then contrasts ORM nesting with UML association classes, and ORM co-referencing
with UML qualified associations. Later issues discuss more advanced constraints,
aggregation, subtyping, derivation rules and queries.

References

Blaha, M. & Premerlani, W. 1998, Object-Oriented Modeling and Design for Database
Applications, Prentice Hall, New Jersey.

This paper is made available by Dr. Terry Halpin and is downloadable from www.orm.net.

UML Data Models From An ORM Perspective 7



UML data models from an ORM perspective:
Part 4

by Dr. Terry Halpin

Director of Database Strategy, Visio Corporation

This article first appeared in the August 1998 issue of the Journal of Conceptual Modeling, published by

InConcept.

This paper is the fourth in a series of articles examining data modeling in the Unified
Modeling Language (UML) from the perspective of Object Role Modeling (ORM). Part 1
provided historical background and design criteria for modeling languages, and discussed
object reference and single-valued attributes. Part 2 discussed multi-valued attributes,
basic constraints, and instantiation using UML object diagrams or ORM fact tables. Part
3 compared UML associations and related multiplicity constraints with ORM
relationship types and related uniqueness, mandatory role and frequency constraints; it
also contrasted instantiation of associations using UML object diagrams and ORM fact
tables. In Part 4 we look at associations in more detail, contrasting ORM nesting with
UML association classes, and ORM co-referencing with UML qualified associations, then
discuss exclusion constraints, and summarize how the two methods compare with respect
to terms and notations for data structures and instances.

Association classes

Unlike many ER versions, both UML and ORM allow associations to be objectified as first
class object types, called association classes in UML and nested object types (or objectified
relationship types) in ORM. UML requires the same name to be used for the original
association and the association class, impeding natural verbalization of at least one of
these constructs. In contrast, ORM nesting is based on linguistic nominalization (a verb
phrase is objectified by a noun phrase), thus allowing both to be verbalized naturally,
with different names for each. When an association is objectified, VisioModeler
automatically creates a name for the nested object type, which you are free to edit. UML
allows the association class name to be displayed on the association or the association
class, or both.

In spite of identifying association classes with their underlying association, UML
displays them separately, making the connection by a dashed line (see . Each
person may write many papers, and each paper is written by at least one person. In the
UML depiction, we have used “{P}” to indicate the primary reference attributes used for

UML data models from an ORM perspective (part4) 1



human communication about persons and papers. Since authorship is m:n, the association
class Writing has a primary reference scheme based on the combination of person and
paper (e.g. the writing by person ‘Norma Jones’ of paper 33). The optional period attribute
stores how long that person took to write that paper. Instead of distancing the objectified
association from its underlying association, ORM intuitively envelops the association with
an object type frame. Writing is marked independent (displayed with “!I””) to indicate that
a writing object may exist, independently of whether we record its period. ORM displays
Period as an object type, not an attribute, and includes its unit.

UML ORM
"Writing !"
Person 1.* * | Paper Person
personName {P} | author | paperNr {P} (name)
I
I
I
I
|
Writing
period [0..1]

Figure 1. Writing is depicted as an objectified association in UML and ORM

Objectified relationships in standard ORM must have at least two roles, and must
either have a single, spanning uniqueness constraint or be a 1:1 binary. A Dutch variant of
ORM known as FCO-IM allows unaries to be objectified, but this adds no extra
expressibility and is not supported in Visio technology. UML allows any association
(binary and above) to be objectified into a class, regardless of its multiplicity constraints.
In particular UML allows objectification of n:1 associations, unlike ORM (see

UML illegal ORM

"Orbit"

Moon Orbits Planet

moonName {P}| *

1 |planetName {P}

period

Figure 2: Objectification of n:1 associations is allowed in UML but not ORM

ORM currently forbids such cases, mainly to encourage modelers to conceptualize
facts in elementary rather than compound form. For example, since each moon orbits only
one planet, we can specify its orbital period without having to mention its planet. Hence

UML data models from an ORM perspective (part4) 2



ORM requires this case to be modeled using two separate fact types, as shown in
This also facilitates removal/addition of mandatory role constraints on the fact types
independently (e.g. the nested version has to be completely remodeled if we now decide
to keep period facts mandatory but make planet facts optional). However, if an
experienced modeler aware of the implications still finds it easier to think about a
situation as a nested n:1 association, there may be some argument for relaxing ORM'’s
restriction, just as we relaxed it for 1:1 cases to avoid arbitrary decisions about relative
importance. If enough people feel this way, ORM could be relaxed to downgrade this
error to a warning, and mapping algorithms would add a pre-processing step to re-attach
roles and adjust constraints internally.

orbits in

Figure 3: ORM models n:1 association classes instead as separate, elementary fact types

Qualified associations

In Part 2 of this series, we saw that UML has no graphic notation to capture ORM external
uniqueness constraints across roles that are remodeled as attributes in UML. Hence we
introduced our own {Un} notation to append as textual constraints to the constrained
attributes (see Part 2, Figures 4 and 5). Simple cases where ORM uses an external
uniqueness constraint for co-referencing can also be modeled in UML using qualified
associations. Here, instead of depicting the relevant ORM roles or object types as attributes,
UML uses a class, adjacent to a qualifier, through which connection is made to the relevant
association role. A qualifier in UML is a set of one or more attributes, whose values can be
used to partition the class, and is depicted as a rectangular box enclosing its attributes.
Figure 4 is based on an example from the UML standard document EII along with the
ORM counterpart.

Bank
accountNr
4 \
* AccountNr 1
\ /
is used
0.1 by
uses
Person

Person
UML (custnr) ORM

Figure 4: Qualified association in UML, and co-referenced object type in ORM

UML data models from an ORM perspective (part4) 3



Here each bank account is used by at most one person, and each person may use
many accounts. In the UML model, the attribute accountNr is used as a qualifier on the
association, effectively partitioning each bank into different accounts. In the ORM model,
an Account object type is explicitly introduced, and is referenced by combining its bank
with its (local) account number. The circled “u” may be replaced by a “P” to indicate
primary reference.

The UML notation is not only less clear, but less adaptable. For example, if we now
want to record something about the account (e.g. its balance) we need to introduce an
Account class, and the connection to accountNr is unclear. For a similar example, see [E|J
(p. 92, Fig. 5.10), where product is used with Order to qualify an order line association:
again, this is unfortunate, since we would normally introduce a Product class to record
data about products, and relevant connections are then lost. As a complicated example of
this deficiency, see ﬂ] (p. 51, Fig. 3.14) where the semantic connection between Node and
nodeName is lost. The problem can be solved in UML by using an association class
instead, though this is not always natural. The use of qualified associations in UML is
hard to motivate, but may be partly explained by their ability to capture some compound
uniqueness constraints in the standard graphic notation, rather than relying on non-
standard textual notations (such as our {Un} notation).

ORM’s concept of an external uniqueness constraint that may be applied to a set of
roles in one or more predicates provides a simple, uniform way to capture all of UML’s
gualified associations and unique attribute combinations, as well as other cases not
expressible in UML graphical notation (e.g. cases with m:n predicates or long join paths).
As always, the ORM notation has the further advantage of facilitating validation through
verbalization and multiple instantiation.

Or-associations

UML uses the term or-association for one of many associations stemming from a class,
where at any given time each class member may participate in at most one of these
associations. To indicate this, UML uses what it calls an or-constraint between the
associations, attaching the constraint string “{or}” to a dotted line connecting the relevant
associations. Figure 5 is based on an example from the UML standard. For simplicity,
reference schemes and other constraints are omitted.

/ Person
I

Account ({or}

\
Corporation

Figure 5: No account is used by both a person and a corporation

is used by

Corporation

is used by

UML data models from an ORM perspective (part4) 4



UML’s use of “or” for this constraint is confusing because it is used in an exclusive
instead of inclusive sense (in contrast to virtually all computer languages). An alternative
such as “xor” would be less ambiguous, and hence safer, even if artificial.T There is
another possible confusion arising from the standard document itself. A literal reading of
the latest version (1.2) of the UML standard indicates that the constraint simply means
that an account is used by at most one of the two choices (person or corporation). However,
some authors argue that its use in OMT (a precursor of UML) means each account must
be used by exactly one of these choices ([E], p. 50). If this is the case, the constraint means
that the disjunction is both exclusive and mandatory. Given that the lengthy UML
standard currently contains a number of ambiguities and inconsistencies, I’'m not sure
which reading is actually correct. For now, I'll assume that the weaker reading (exclusive)
is correct. In this case, the constraint is captured in ORM by an exclusion constraint, shown
by connecting “[1” by dotted lines to the relevant roles (see above figure). If the stronger
reading is correct?, a disjunctive mandatory role constraint needs to be added as well (see
Part 1).

UML or-constraints apply between single roles. The standard seems to imply that
these roles must belong to different associations. If so, UML cannot use an or-constraint
between roles of a ring fact type (e.g. between the husband and wife roles of a marriage
association). ORM exclusion constraints cover this case, as well as many other cases not
expressible in UML graphic notation. ORM exclusion constraints may apply to any set of
compatible role-sequences, by connecting “00” by dotted lines to the relevant role-
sequences. As a trivial example, consider the difference between the following two
constraints: no person both wrote and reviewed a book; no person wrote and reviewed
the same book. ORM clearly distinguishes these by noting the precise arguments of the
constraint (see Figure 6).

wrote

:

reviewed reviewed

Figure 6: (a) no person wrote and reviewed; (b) no person wrote and reviewed the same book

The pair-exclusion constraint in Figure 6(b) can be expressed in UML by adding a
comment box that includes a textual constraint written in some language (e.g. OCL), and
connecting this by dotted lines to the two associations. However this notation is both
cluttered and non-standard (since UML allows users to pick their own language to write
textual constraints).

UML has no graphic notation for exclusion between attributes, or between attributes
and associations. In Figure 7(a), the unary predicate must be modeled in UML as a

! After the original publication of this article, UML 1.3 replaced the “or” constraint notation by “xor”
% In UML 1.3, the xor constraint was clarified to mean the stronger reading, i.e. “exactly one”

UML data models from an ORM perspective (part 4)

5



Boolean attribute, and the contract predicate would probably be modeled as a
contractDate attribute. In Figure 7(b), the completion predicate would be modeled in
UML as a completionDate attribute of the Project class, while resource usage would
normally be modeled as an association between Project and Resource classes. If we made
these modeling choices in UML, we must resort to non-standard notations or textual
constraints to add exclusion constraints between attributes (a) or between an attribute and
association (b). There are alternative ways to model these cases in UML (e.g. using
subtypes) that offer more chance to capture the constraints graphically, but it is clear that
UML’s or-constraint is far less expressive than ORM'’s exclusion constraint.

o — was completed on

@

Employee
(empnr)

Resource

is contracted till

Figure 7: A comparative summary of data structure concepts

We’ve now covered essentially all the high level data structures that can be specified
in graphic notation on ORM data models and UML class diagrams. As we discuss in a
later issue, collection types may also be specified in both ORM and UML via textual
annotations. @kummarizes the differences between the two modeling methods with
respect to terms and graphic (not textual) notations for data instances and structures. We
still have several constraints to discuss, so will delay provision of a summary table about
constraints till a later issue.

UML data models from an ORM perspective (part4) 6



Table 1: Basic correspondence between ORM and UML conceptual data concepts

Data instances/structures
ORM UML
Entity Object
Value Data value
Object Object or Data value
Entity type Class
Value type Data type
Object type Class or Data type
— { use relationship type } Attribute
Unary relationship type — { use Boolean attribute }
2+-ary relationship type Association
2+-ary relationship instance Link
Nested object type Association class
Co-reference Quialified association §

§ = incomplete coverage of corresponding concept

Later issues

Later issues will discuss more advanced graphic constraints in both ORM and UML
(subset, equality, aggregation, ring, join etc.), subtyping, derivation rules and queries.

References

Blaha, M. & Premerlani, W. 1998, Object-Oriented Modeling and Design for Database
Applications, Prentice Hall, New Jersey.

Fowler, M. with Scott, K. 1997, UML Distilled, Addison-Wesley.

Halpin, T. 1995, Conceptual Schema and Relational Database Design, 2nd edn, Prentice
Hall Australia.

OMG-UML v1.2, OMG UML Revision Task Force website,

T o]

This paper is made available by Dr. Terry Halpin and is downloadable from www.orm.net.

UML data models from an ORM perspective (part4) 7


http://uml.systemhouse.mci.com/

UML data models from an ORM perspective:
Part 5

by Dr. Terry Halpin

Director of Database Strategy, Visio Corporation

This paper first appeared in the October 1998 issue of the Journal of Conceptual Modeling, published by

InConcept.

This paper is the fifth in a series of articles examining data modeling in the Unified
Modeling Language (UML) from the perspective of Object Role Modeling (ORM). Part 1
discussed historical background, design criteria for modeling languages, object reference
and single-valued attributes. Part 2 covered multi-valued attributes, basic constraints,
and instantiation using UML object diagrams or ORM fact tables. Part 3 compared UML
associations and related multiplicity constraints with ORM relationship types and related
uniqueness, mandatory role and frequency constraints, as well as how associations may be
instantiated. Part 4 contrasted ORM nesting with UML association classes, ORM co-
referencing with UML qualified associations, and ORM exclusion constraints with UML
or-constraints. Part 5 discusses ORM subset and equality constraints, and how these may
be specified in UML.

Subset constraints

ORM allows a subset constraint to be graphically specified between any pair of compatible
role-sequences by connecting them with a dashed arrow. This declares that the population
of the source role sequence must always be a subset of the target role sequence (the one
hit by the arrow-head). Each sequence may comprise one or more roles. These constraints
have corresponding verbalizations. For example, in Figure 1 the subset constraint between
single roles indicates that students have second names only if they have first names. The
other subset constraint is between Student-Course role-pairs, and declares that students
may pass tests in a course only if they have enrolled in that course. Since the role of
having a surname is mandatory for Student, subset constraints to it from all the other
student roles are implied (and hence not shown).

UML data models from an ORM perspective (part5) 1



enrolled in

- ~<
N\

/
| FirstName
S v

~ -

Course
(code)
A o - N |
\ < »
7/

...0n ... passed ...

Figure 1: Subset constraints in ORM

As an extension mechanism, UML allows subset constraints to be specified between
whole associations by attaching the constraint label “{subset}” next to a dashed arrow
between the associations. For example, the subset constraint in mmdicates that any
person who chairs a committee must be a member of that committee.

+ Member-of  «
Person A Committee
 {subset}
personName {P} : committeeName {P}
1  Chair-of *

Figure 2: A subset constraint in UML

However UML does not provide a graphic notation for subset constraints between
single roles or between parts of associations. Hence if a UML diagram depicted the
relationship types in Figure 1 as associations, it would not be able to capture the subset
constraints graphically. Of course, other options are available in UML. For instance, if we
model surname, firstName and secondName as attributes of Person we can express the
single-role subset constraint by attaching a comment including the following textual
constraint (see Figure 3):

Student.firstName is not null or Student.secondName is null

Although this does capture the subset constraint, it is at a lower level than ORM’s
graphic or verbalized form, and is basically the same as the check clause generated by
VisioModeler when mapping the constraint down to a relational implementation.

One way in UML to capture the pair-subset constraint from Figure 1 is to transform
the ternary into a binary association with a subset constraint to the enrollment association,
and with a binary association to Test. A better solution is to use ORM’s overlap algorithm
[EI p. 349] to objectify the enrollment association and associate this with Test. As discussed
in Part 4, the equivalent UML action is to make a class out of enrollment (see Figure 3).
Although in this situation an association class provides a good way to cater for a
compound subset constraint, sometimes this nesting transformation leads to a very

UML data models from an ORM perspective (part5) 2



unnatural view of the world. Ideally the modeler should be able to view the world
naturally, while having optimization transformations that lessen the clarity of the
conceptual schema performed under the covers.

Student Course

studentNr {P}
surname

: % | courseCode {P}
firstName [0..1] I

I

|

secondName [0..1]

Enrollment Passed »

I

| Test
I * *

I

I

I

testNr {P}

{Student.firstName is not null
or
Student.secondName is null}

Figure 3: A UML version of the ORM schema in Figure 1

ORM has a mature formalization, including a rigorous theory of such topics as
schema consistency, equivalence and implication. UML was only recently standardized,
and is undergoing revisions. Since formal guidelines for working with UML are
somewhat immature, extra care is needed to avoid logical problems. As a simple example,
look back at Figure 2, which comes from the current draft of the UML 1.2 standard [Ei
with reference schemes added. Do you spot anything confusing about the constraints?

You probably noticed the problem. The multiplicity constraint of 1 on the chair
association indicates that each committee must have at least one chair. The subset
constraint tells us that a chair of a committee must also be a member of that committee.
Taken together, these constraints imply that each committee must have a member. Hence
one would expect to see a multiplicity constraint of “1..*”” (one or more) on the Person end
of the membership association. However we see a constraint of “*”” (zero or more) instead,
which at best is very misleading.

An ORM schema equivalent to m is shown in Figure 4(a). The implied
mandatory role constraint (each Committee includes at least one Person) is added
explicitly in Figure 4(b). Which representation do you prefer?

(a) is member of / includes (b) is member of / includes

Person
(name)

Committee
(name)

chairs / is chaired by chairs / is chaired by

Figure 4: Schema (a) has an implied mandatory role constraint, shown explicitly in (b)

UML data models from an ORM perspective (part5) 3



Although display options for implied constraints may sometimes be a matter of taste,
practical experience has shown that in cases like this is better to show implied constraints
explicitly rather than expect modelers or domain experts participating in the modeling
process to figure them out for themselves. If you enter the schema of Figure 4(a) in
VisioModeler, and attempt to build the logical dictionary, the tool will detect the
misleading nature of the constraint pattern and ask you to resolve the problem. Human
interaction is the best policy here, since there is more than one possible mistake (e.g. is the
subset constraint correct or is the optional role correct?). Clicking on the error message
throws you back into the conceptual schema with a red arrow highlighting the problem
for you to fix (e.g. add the mandatory role constraint).

Note that if the schema of Figure 4(b) is mapped to a relational database it generates a
referential cycle, since the mandatory fact types for Committee map to different tables (so
each committee must appear in both tables). Referential cycles can be messy to work with,
so VisioModeler warns you about this, but still generates the code to cope with it. The
relational schema diagram generated by VisioModeler is shown in Figure 5 (the arrows
show the foreign key references, one simple and one composite, that correspond to the
subset constraints).

Committee Membership

PK,FK |[committeeName MPK personName
FK chair PK,FK" |committeeName

Figure 5: The relational schema mapped from the schema of Figure 4(b)

As another constraint example in UML, consider Figure 6, which is the UML version
of an OMT diagram used in [ﬂ p. 68] to illustrate a subset constraint between associations.
See if you can spot any problems with the constraints.

Define {ordered}
Table 1 A % | Column
| {subset}
1 I *
1
primaryKeyField

Figure 6: Spot anything wrong?

There are some fairly obvious problems with the multiplicity constraints. For
example, the “1” on the primary key association should be “0..1” (not all columns belong
to primary keys), and the “*” on the define association should presumably be “1.*”
(unless we allow tables to have no columns). Assuming that tables and columns are
identified by oids or artificial identifiers, the subset constraint makes sense, but the model
is arguably sub-optimal since the PK association and subset constraint could be replaced
by a boolean isaPKfield attribute on Column.

UML data models from an ORM perspective (part5) 4



From an ORM perspective, heuristics lead us to initially model the situation using
natural reference schemes as shown in Figure 7. Here ColName denotes the local name of
the column in the table, and we have simplified reality by assuming tables may be
identified just by their name. As seen by the external uniqueness constraints, two natural
reference schemes for Column suggest themselves (name plus table, or position plus
table). We can choose one of these as primary, or instead introduce an artificial identifier.
The unary predicate indicates whether a column is, or is part of, a primary key. If desired,
we could derive the association “Column is a primary key field of Table” from the path:
“Column is in Table and Column isaPKcol” (the subset constraint from the previous
model is then implied).

«—> A7TTTN
4

ColName |
N /

Position
(nr)+

Figure 7

What is interesting about this example is not that the authors of the earlier model may
have made some trivial errors with constraints (I've made slips of the pen like that in
some of my book examples too), but rather the difference in modeling approaches. Most
OMT and UML modelers seem to assume that oids will be used as identifiers in their
initial modeling, whereas ORM modelers like to expose natural reference schemes right
from the start, and populate their fact types accordingly. These different approaches often
lead to different solutions. The main thing is to first come up with a solution that is
natural and understandable to the domain expert, because here is where the most critical
phase of model validation should take place. Once a correct model has been determined,
optimization guidelines can be used to enhance it.

One other feature of the example is worth mentioning. The UML solution in m
uses the annotation “{ordered}” to indicate that a table is comprised of an ordered set (i.e. a
sequence with no duplicates) of columns. In the ORM community, a debate has been
going on for several years on the best way to deal with constructors (e.g. set, bag,
sequence, unique sequence) at the conceptual level. My view (and that of several other
ORM researchers) is that such constructors should not appear in the base conceptual
model. Hence the use of Position in M7 to convey column order (the uniqueness of
the order is conveyed by the unigueness constraint on Column-has-Position). Keeping fact
types elementary has so many advantages (e.g. validation, constraint expression,
flexibility and simplicity) that it seems best to relegate constructors to derived views. |
may have more to say about this in a later article.

UML data models from an ORM perspective (part5) 5



Equality constraints

In ORM, an equality constraint between two compatible role sequences is shorthand for
two subset constraints (one in either direction), and is shown as a double-headed arrow.
Such a constraint indicates that the populations of the role-sequences must always be
equal. If two roles played by an object type are mandatory, then an equality constraint
between them is implied (and hence not shown).

As a simple example of an equality constraint, consider Figure 8. Here the equality
constraint indicates that if a patient’s systolic blood pressure is measured, so is his/her
diastolic blood pressure (and vice versa). In other words, either both measurements are
taken, or neither. This kind of constraint is fairly common. Less common are equality
constraints between sequences of two or more roles.

UML has no graphic notation for equality constraints. For whole associations we
could use two separate subset constraints, but this would be very messy. We could add a
new notation, using “{equality}” besides a dashed arrow between the associations, but
this notation would be unintuitive, since the direction of the arrow would have no
significance (unlike the subset case).

has systolic-

- ——

7 RN
. \

'\ PatientName
~ /’

~o -

BloodPressure
(mmHg)+

has diastolic-

Figure 8: A simple equality constraint

In general, equality constraints in UML would normally be specified as textual
constraints (in braced comments). For our current example, the two blood pressure
readings would normally be modeled as attributes of patient, and hence a textual
constraint is attached to the Patient class as shown in Figure 9. Like UML textual subset
constraints, this is awkward compared to the corresponding ORM constraint (graphic or

verbalized).

Patient {aPr?éient.systolicBP is not null
patientNr {P} Patient.diastolicBP is not null
patientName or
systolicBP [0..1] Patient.systolicBP is null
diastolicBP [0..1] and

Patient.diastolicBP is null}

Figure 9: A simple subset constraint in UML

UML data models from an ORM perspective (part5) 6



Subset and equality constraints enable various classes of schema transformations to be
stated in their most general form, and ORM’s more general support for these constraints
allows more transformations to be easily visualized. For example, Figure 10 depicts
equivalence PSG2 [E] p. 331].

Each S, corresponds to R where T is restricted to B = b,

Figure 10: A basic schema equivalence in ORM

Later issues

Later issues will discuss other advanced graphic constraints in ORM and UML (join, ring,
aggregation), subtyping, derivation rules and queries.

References

1. Blaha, M. & Premerlani, W. 1998, Object-Oriented Modeling and Design for Database
Applications, Prentice Hall, New Jersey.

2. Halpin, T. 1995, Conceptual Schema and Relational Database Design, 2nd edn, Prentice Hall
Australia.

3. OMG-UML v1.2, OMG UML Revision Task Force website,

http://uml systemhouse mci.com/]

This paper is made available by Dr. Terry Halpin and is downloadable from www.orm.net.

UML data models from an ORM perspective (part5) 7


http://uml.systemhouse.mci.com/

UML data models from an ORM perspective:
Part 6

by Dr. Terry Halpin

Director of Database Strategy, Visio Corporation

This paper first appeared in the December 1998 issue of the Journal of Conceptual Modeling, published by

InConcept.

This paper is the sixth in a series of articles examining data modeling in the Unified
Modeling Language (UML) from the perspective of Object Role Modeling (ORM). Part 1
discussed historical background, design criteria for modeling languages, object reference
and single-valued attributes. Part 2 covered multi-valued attributes, basic constraints,
and instantiation using UML object diagrams or ORM fact tables. Part 3 compared UML
associations and related multiplicity constraints with ORM relationship types and related
uniqueness, mandatory role and frequency constraints, as well as instantiation of
associations. Part 4 contrasted ORM nesting with UML association classes, ORM co-
referencing with UML qualified associations, and ORM exclusion constraints with UML
or-constraints. Part 5 discussed ORM subset and equality constraints, and how to specify
them in UML. Part 6 examines subtyping in ORM and in UML.

Subtyping: semantics and motivation

Both UML and ORM support subtyping, using substitutability (“is-a”) semantics, where
each instance of a subtype is also an instance of its supertype(s). For example, declaring
Woman to be a subtype of Person entails that each woman is a person, and hence Woman
inherits all the properties of Person. Given two object types, A and B, we say that A is a
subtype of B if, for each state of the database, the population of A is included in the
population of B. For data modeling, the only subtypes of interest are proper subtypes. We
say that A is a proper subtype of B if and only if (i) A is a subtype of B, and (ii) there is a
possible state where the population of B includes an instance that is not in A. We could
have a database state in which all people are women, and another in which some people
are men, but we never have a state in which a woman is not also a person. From now on,
we use “subtype” as short for “proper subtype”.

In both ORM and UML, specialization is the process of introducing subtypes, and
generalization is the inverse procedure of introducing a supertype. Both ORM and UML
allow single inheritance as well as multiple inheritance (where a subtype has more than
one direct supertype). For example, AsianWWoman may be a subtype of both AsianPerson

UML data models from an ORM perspective (part6) 1



and Woman. In UML, “subclass” and “superclass” are synonyms of “subtype” and
“supertype” respectively, and generalization may also be applied to things other than
classes (e.g. interfaces, use case actors and packages). We confine our attention here to
subtyping between object types (classes).

In ORM, a subtype inherits all the roles of its supertypes. In UML, a subclass inherits
all the attributes, associations and operations/methods of its supertype(s). An operation
implements a service and has a signature (name and formal parameters) and visibility, but
may be realized in different ways. A method is an implementation of an operation, and
hence includes both a signature and a body detailing an executable algorithm to perform
the operation. In an inheritance graph, there may be many methods for the same
operation (polymorphism), and scoping rules are used to determine which method is
actually used for a given class. If a subclass has a method with the same signature as a
method of one of its supertypes, this is used instead for that subclass (overriding). For
example, if Rectangle and Triangle are subclasses of Shape, all three classes may have
different methods for display(). Since the focus of this series of articles is on data
modeling, not behavior modeling, we restrict our attention to inheritance of static
properties (attributes and associations), typically ignoring operations or methods.

Subtypes are used in data modeling to do at least one of the following:

e assert typing constraints
* encourage reuse of model components
» show a classification scheme (taxonomy)

In this context, typing constraints ensure that subtype-specific roles are played only
by the relevant subtype. As we will see, ORM has a stronger approach to typing
constraints than UML. Both approaches use subtyping for reuse. Since a subtype inherits
the properties of its supertype(s), only its specific roles need to be declared when it is
introduced. Apart from reducing code duplication, the more generic supertypes are likely
to find reuse in other applications. At the coding level, inheritance of operations/methods
augments the reuse gained by inheritance of roles/attributes/associations. Using
subtypes to show taxonomy is of little use, since taxonomy is often more efficiently
captured by predicates. For example, the fact type Person is of Sex {male, female} implicitly
provides the taxonomy for the subtypes MalePerson and FemalePerson.

Display of subtypes

Data modeling approaches typically depict subtyping graphically using either Euler
diagrams or Directed Acyclic Graphs. Euler diagrams depict relationships between
subtypes spatially (unlike Venn diagrams, with which they are sometimes confused). For
example, Figure 1 depicts the following information: B, C and D are subtypes of A, and E
is a subtype of both C and D. Moreover, B overlaps with C (i.e. they may have a common
instance) and C overlaps with D, but B and D are mutually exclusive (cannot have a

UML data models from an ORM perspective (part 6) 2



common instance). For example: A = Person; B = Asian; C = Consultant; D = American; E
= TexanConsultant.

[GD

Figure 1: An Euler diagram

Euler diagrams provide intuitive displays for simple cases, and are used in some ER
modeling tools (e.g. Designer/2000). However Euler diagrams are too cumbersome for
complex subtype patterns often found in real applications, where an object type might
have a large number of subtypes, possibly overlapping. Moreover, individual subtypes
may have many specific details recorded for them, and there is simply no room to attach
these details if the subtype nodes are crowded inside their supertype nodes.

For such reasons, Euler diagrams are eschewed for non-trivial subtyping. Instead
directed acyclic graphs (DAGSs) are often used, as is the case for both ORM and UML. A
directed graph is simply a graph of nodes with directed connections, and “acyclic” means
there are no cycles (a consequence of proper subtyping). The subtype pattern in Figure 1
is represented in DAG form in Figure 2, with (a) ORM and (b) UML versions shown. Here
an arrow from one node to another shows that the first is a subtype of the second. ORM
uses a solid shaft and arrowhead, while UML uses a thin arrow shaft with an open
arrowhead. As an alternative notation, UML also allows separate shafts to merge into one,
with one arrowhead acting for all (see m later). Since subtypehood is transitive,
indirect connections are omitted (e.g. since E is a subtype of C, and C is a subtype of A, it
follows that E is a subtype of A, so there is no need to display this implied connection).

b {incomplete}
{overlapping}_/ ... B <{overlapping}

Le]lec]lp]
IR 4

Figure 2: Previous Euler subtype diagram depicted as directed acyclic graphs in (a) ORM and (b) UML

UML data models from an ORM perspective (part 6) 3



As shown, ORM and UML both show subtypes outside, connected by arrows to their
supertype(s). Although less intuitive than Euler diagrams, this is preferable since it allows
us to express subtype patterns of any complexity, with enough space at each subtype
node to add specific details. By default, ORM subtypes may overlap, and subtypes need
not collectively exhaust their supertype. However ORM allows graphic constraints to be
added to indicate that subtypes are mutually exclusive (a circled “X” connected to the
relevant subtypes via dotted lines, as in Figure 2, collectively exhaustive (a circled dot) or
both (a circled, crossed dot). Exhaustion constraints are also called “totality constraints”.
Although exclusion and totality constraints for subtypes are part of ORM, VisioModeler
does not yet support them. As we will see presently, explicit depiction of such constraints
is not a necessity, since other constraints in conjunction with formal subtype definitions
typically imply the relevant exclusion and totality constraints.

In UML the only default for generalization appears to be “incomplete”, i.e. not all
subtypes have been specified. The opposite of “incomplete” is “complete”—this probably
means the same as totality (collective exhaustion) in ORM, i.e. the supertype equals the
union of its subtypes. However the wording in the UML standard ﬂﬂ does not make this
clear. In UML, constraint keywords may be added in braces besides dotted lines
connecting the relevant subtypes, as shown in Figure 2. The following four keywords are
predefined in UML for this purpose: “overlapping” (the subtypes overlap), “disjoint” (the
subtypes are mutually exclusive), “complete” (all subtypes have been declared), and
“incomplete” (some more subtypes may be introduced later). Other keywords may be
added by users. When more than one arrowhead is involved, UML requires the keyword
to be written beside a single dotted line that connects the relevant subtypes. | have
assumed that this line may include elbows (as shown in Figure 2 for the disjoint
constraint); without elbows or a similar device, some cases can’t be specified.

As Figure 2 shows, ORM'’s depiction of inter-subtype constraints is less cluttered than
UML’s. ORM’s approach is that exclusion and totality constraints are enforced on
populations, not types. For example, an overlapping “constraint” does not mean that the
populations must overlap, just that they may overlap. Hence from an ORM viewpoint,
this is not really a constraint at all, so there is no need to depict it.

For any subtype graph, the topmost supertype is called the root, and the bottom
subtypes (those with no descendants) are called leaves. In UML this can be made explicit
by adding “{root}” or “{leaf}” below the class name. If we know the whole subtype graph
is shown, there is little point in doing this; but if we were to display only part of a subtype
graph, this notation makes it clear whether or not the local top and bottom nodes are also
like that in the global schema. For example, from m we know that globally
Customer has no supertype, and MalePerson and FemalePerson have no subtypes.
However, since Organization has not been marked as a leaf node, it may have other
subtypes not shown here. Currently ORM does not include such a root/leaf notation
(apart from adding a text box with this information), but it would be simple to add it.
UML also allows an ellipsis “...” in place of a subclass to indicate that at least one subclass
of the parent exists in the global schema, but its display has been suppressed on the
diagram.

UML data models from an ORM perspective (part 6) 4



Customer

{root}
JAN
sex
MalePerson FemalePerson
{leaf} {leaf}

Figure 3: An incomplete UML subtype graph: Organization may have other subtypes not shown here

UML also distinguishes between abstract and concrete classes. An abstract class cannot
have any direct instances, and is shown by writing its name in italics or by adding
“{abstract}” below the class name. Abstract classes are realized only through their
descendants. Concrete classes may be directly instantiated. This distinction seems to have
little relevance at the conceptual level, and is not depicted explicitly in ORM. For code
design however, the distinction is important (e.g. abstract classes provide one way of
declaring interfaces, and in C++ abstract operations correspond to pure virtual operations,
while leaf operations map to nonvirtual operations). For further discussion, see [E] pp. 85-

8] and [EI pp. 125-6].

Subtype definitions

Like other ER notations, UML provides only weak support for defining subtypes. A
discriminator label may be placed near a subtype arrow to indicate the basis for the
classification. For example, Figure 3 includes a “sex” discriminator to specialize Person
into MalePerson and FemalePerson. The UML standard [ﬂ says that the discriminator
names a “a partition of the subtypes of the superclass”. In formal work, the term
“partition” usually implies the division is both exclusive and exhaustive. In UML, the use
of a discriminator does not imply that the subtypes are exhaustive or complete, but it does
seem that they must be exclusive (e.g. [E] p. 78). If that is the case, there does not appear
to be any way in UML of declaring a classification scheme for a set of overlapping
subtypes. The same discriminator name may be repeated for multiple subclass arrows to
show that each of these subclasses belong to the same classification scheme. This
repetition can be avoided by merging the arrow shafts to end in a single arrowhead, as in
Figure 3.

The UML standard states that “the discriminator must be unique among the attributes
and association roles of the given superclass” but I’'m unsure what this means. If it implies
that an attribute or association role can’t be used as a discriminator, then that would seem
to be bizarre. If it doesn’t imply this, then the notation is open to inconsistency. As a
trivial example, consider the Patient subtyping in Figure 4, where the sex attribute is used
as a discriminator. This attribute is based on the enumerated type Sexcode, which has
been defined using the stereotype «enumeration», and listing its values as attributes.

UML data models from an ORM perspective (part6) 5



Patient «enumeration»
Sexcode

patientNr : Integer {P}
sex : Sexcode

N

m
f

{disjoint, complete}

MalePatient FemalePatient

sex

prostateStatus [0..1] nrPregnancies

Figure 4

By itself, this model fails to ensure that instances populating these subtypes have the
correct sex. For example, there is nothing to stop us populating MalePatient with some
patients that have the value ‘f" for their sexcode. This problem is best explained using
ORM, where it’s easy to display populations. Figure 5 shows an equivalent ORM schema,
with prostate status being measured for a female, and pregnancies being recorded for one
of the males. This kind of nonsense is allowed because the model hasn’t formally related
the subtypes back to their precise sex.

Prostate
Status
(name)

Figure 5: What is the problem here?

ORM overcomes this problem by requiring that formal subtype definitions be declared
for all subtypes. These definitions must refer to roles played by the supertype(s). The
correct schema is shown in Figure 6, together with a satisfying population. Note that the
ORM partition (exclusion and totality) constraint has been removed from the diagram
since it is now implied by the combination of the subtype definitions and the three
constraints on the fact type Patient-is-of-Sex. Though long part of ORM, formal subtype
definitions are not yet supported by VisioModeler, which allows them to be entered only
as comments. However the conceptual query technology underlying ActiveQuery
potentially provides one way of formally defining and mapping subtypes, and the related
formal theory is mature.

UML data models from an ORM perspective (part6) 6



Prostate
Status
(name)

OK

= ——

Male
Patient

101 102 5

each MalePatient is a Patient who is of Sex 'M'
each FemalePatient is a Patient who is of Sex 'F'

Figure 6: Formal subtype definitions are needed, and subtype partition constraints are implied

While the subtype definitions in Figure 6 are trivial, in practice more complicated
subtype definitions are sometimes required. As a basic example, consider a schema with
the fact types City-is-in-Country, City-has-Population, and now define LargeUScity as

follows:

each LargeUScity is a City that is in Country ‘US’ and has Population > 1000000

There does not seem to be any convenient way of doing this in UML, at least not with
discriminators. One could perhaps add a derived Boolean isLarge attribute, with an
associated derivation rule in OCL, and then add a final subtype definition in OCL, but
this would be less readable than the ORM definition above.

This article has ignored various subtyping issues such as mapping and context-
dependent reference. For an ORM perspective on these and related issues see [EE@

Later issues

Later issues will discuss other advanced graphic constraints in ORM and UML (ring, join, aggregation etc.),

derivation rules and queries.

References

1. Booch, G., Rumbaugh, J. & Jacobson, I. 1999, The Unified Modeling Language User Guide,
Addison-Wesley, Reading MA, USA.

2. Blaha, M. & Premerlani, W. 1998, Object-Oriented Modeling and Design for Database
Applications, Prentice Hall, New Jersey.

UML data models from an ORM perspective (part6) 7



3. Fowler, M. with Scott, K. 1997, UML Distilled, Addison-Wesley.

4. Halpin, T. 1995, Conceptual Schema and Relational Database Design, 2nd edn, Prentice
Hall Australia.

5. Halpin. T.A. 1995, ‘Subtyping: conceptual and logical issues’, Database Newsletter, ed.
R.G. Ross, Database Research Group Inc., vol. 23, no. 6, pp. 3-9, reproduced by permission
on www.orm.net.

6. Halpin, T. & Proper, H. 1995, ‘Subtyping and polymorphism in object-role modelling’,
Data & Knowledge Engineering 15, 3 (June), 251-281, reproduced by permission on
www.orm.net.

7. OMG-UML v1.2, OMG UML Revision Task Force website,
http://uml.systemhouse.mci.com/.

This paper is made available by Dr. Terry Halpin and is downloadable from www.orm.net.

UML data models from an ORM perspective (part 6) 8



UML data models from an ORM perspective:
Part 7

by Dr. Terry Halpin
Director of Database Strategy, Visio Corporation

This paper appeared in the February 1999 issue of the Journal of Conceptual Modeling, published by
InConcept.

This paper is the seventh in a series of articles examining data modeling in the Unified
Modeling Language (UML) from the perspective of Object Role Modeling (ORM). Part 1
discussed historical background, design criteria for modeling languages, object reference
and single-valued attributes. Part 2 covered multi-valued attributes, basic constraints,
and instantiation using UML object diagrams or ORM fact tables. Part 3 compared UML
associations and related multiplicity constraints with ORM relationship types and related
uniqueness, mandatory role and frequency constraints, as well as how associations may be
instantiated. Part 4 contrasted ORM nesting with UML association classes, ORM co-
referencing with UML qualified associations, and ORM exclusion constraints with UML
or-constraints. Part 5 discussed ORM subset and equality constraints, and how to specify
these in UML. Part 6 discussed subtyping. Part 7 discusses some other graphic
constraints (value, ring and join constraints).

Value constraints

An ORM value constraint restricts the population of a value type to a finite set of values
specified either in full (enumeration), by start and end values (range), or some combination
of both (mixture). The values themselves are primitive data values, typically character
strings or numbers. The constraint is shown by declaring the possible values in braces
besides either the value type, or an entity type with a reference mode. In the latter case,
the constraint is understood to apply to the implicit value type. For example, in Figure 1
the constraints apply to Sexcode, RatingNr and SQLchar.

UML data models from an ORM perspective (part7) 1



enumeration Sex {M', 'F}
(code)

range {1..7}

mixture (/ SQLChar ) {'a'..'Z', ‘ALZ'09 ._.}
N s

~
~ //

Figure 1. Value constraints in ORM

In UML, enumeration types may be modeled as classes, stereotyped as enumerations,
with their values listed (somewhat unintuitively) as attributes. Ranges and mixtures may
be specified by declaring a textual constraint in braces, using any formal or informal
language. For example, see Figure 2.

«enumeration» Paper
Sexcode
paperNr {P}
][n rating { value in range 1.7 }

Figure 2: Data value restrictions declared as enumerations or textual constraints in UML

Value constraints other than enumeration, range and mixture may be declared in
either ORM or UML as textual constraints, e.g. {committeeSize must be an odd number}.
For further UML examples, see [EI pp. 236, 268].

Ring constraints

A ring fact type has at least two roles played by the same object type (either directly, or
indirectly via a supertype). ORM allows various ring constraints to be applied to such role-
pairs. For example, in Figure 3, the isParentOf association is declared to be acyclic (®ac)
and intransitive (it). Here “acyclic” means nobody can be one of his/her own
descendants. A satisfying population is shown in the fact table below the schema. In the
population graph shown at the right of the figure, people are denoted by circular nodes
containing the first letter of their name, and the directed arrows denote the “is parent of”
relationship. The acyclic constraint means there can’t be any cycles or loops in the graph.

In this example, “intransitive” means nobody is a parent of any of his/her
grandchildren. In terms of the graph, it means we can’t add any arrows that jump over
one node to provide an alternate path to the target node. By default, ORM constraints are
“hard”, meaning no violation is permitted. If we did accept that incest might occur in the
UoD, and wanted to record any cases of it, this intransitive constraint should be down-
graded to a “soft constraint”, where violations are accepted but other action is taken to
minimize their occurrence (e.g. send message to police).

UML data models from an ORM perspective (part7) 2



Person
(firstname)

AL E

%ac it <2
| is parent of| G @
Ann Bill e
Fred Bill
Ann Eve @
Bill Colin
Colin Dolly

Figure 3: Some ring constraints in ORM

ORM provides six built-in ring constraints: antisymmetric (°ans), asymmetric (°as),
acyclic (ac), irreflexive (°ir), intransitive (°it), and symmetric (°sym). Because of their
underlying logic, various implications exist between the constraints, and some
combinations are impossible. To save you having to worry about these complexities, |
designed the ring-constraint interface for VisioModeler so that you can’t enter a ring
constraint that is implied by, or incompatible with, one that you have already chosen (see
Figure 4).

S’

Figure 4: Ring constraint interface in VisioModeler

If you are mapping your model to a relational database, some ring constraints are
very efficiently enforced. For example, irreflexivity typically maps to a simple check
clause like “check (parent <> child)”. On the other hand, some ring constraints can be
very expensive (e.g. acyclicity). In this case, a conscious decision needs to be taken as to
whether to have the constraint enforced at all by the system (e.g. in batch mode overnight)
or to have users instructed that they are responsible for enforcing the constraint.

UML does not provide ring constraints built-in, so the modeler needs to specify these
as a textual constraint in some chosen language. In UML, if a textual constraint applies to
just one model element (e.g. an association path), it may be added in braces beside that
element. For example, the ORM parenthood schema might be recast in UML as shown in
Figure 5(a). It is the responsibility of the software tool (used to work with the diagram) to
ensure the constraint is linked internally to the relevant model element, and to interpret
any textual constraint expressions. If the tool cannot interpret the constraint, it should be
placed inside a note, without braces, showing that it is merely a comment, and explicitly
linked to the relevant model element, as shown in Figure 5(b).

UML data models from an ORM perspective (part7) 3



(@) (b)
Person Person

firstname {P} IsParentOf P firsthame {P} IsParentOf P
0..2 0..2

{acyclic, intransitive} I
acyclic and
intransitive

Figure 5: Ring constraints expressed in UML as (a) textual constraints and (b) comments

Join constraints

In ORM, a join constraint applies to one or more role sequences, at least one of which is
projected from a path from one predicate through an object type to another predicate. The
act of passing from one role through an object type to another role invokes a conceptual
join, since the same object instance is asserted to play both the roles. The external
uniqueness constraint (discussed in a earlier article) is actually a very simple case of this,
in which there is just one argument. For example, in Figure 6 suppose we start at
Employee, then follow the path to Date. This gives us the path: Employee was issued a
ParkPermit that was issued on a Date. The “that” in this path expression asserts that the
parking permit issued to the employee is the same one issued on the date. This identity
claim is a conceptual join—Ilike an equi-join in relational theory, except that it is over
objects, not attribute values. In a later issue, we briefly discuss how such path expressions
are used in ConQuer, an ORM conceptual query language. Now that the path is known,
we project on the first and last roles (those played by Employee and Date) and assert
uniqueness over this combination. In other words, a given employee on a given date can
be issued at most one parking permit. This is the most fundamental way to understand
external uniqueness constraints.

was issued to / was issued

ParkPermit

was issued on / is issueDate of

Figure 6: An external uniqueness constraint is a simple join constraint over one path

UML data models from an ORM perspective (part7) 4



Role sequences featuring as arguments in set comparison constraints (subset, equality,
exclusion) may also arise from projections over a join path. For example, in Figure 7, the
subset constraint runs from the (Room, Facility) role-pair projected from the path: Room
at a Time is used for an Activity that requires a Facility. This path includes a conceptual join
on Activity. Since the subset constraint involves at least one join path, it is called a join-
subset constraint. The constraint may be verbalized as: if a Room at a Time is used for an
Activity that requires a Facility then that Room provides that Facility.

This example is based on a room scheduling application at a university with built-in
facilities in various lecture and tutorial rooms (PA = Personal Address system, DP = Data

Projection facility, INT = Internet access). w includes a satisfying population for the
three fact types.

10 PA

20 DP

20 INT DP IM class
33 DP DP AQ demo
33 INT INT AQ demo
(code)

| requires |

Activity
(name)

...at...is used for ...

20 | Mon 9am | IM class
20 | Mon 4pm | AQ demo
20 | Tue 2pm | IM class
33 [ Mon 9am | AQ demo
33 | Fri 5pm Party

Figure 7: A join-subset constraint in ORM

Although join constraints arise frequently in real applications, UML has no graphic
symbol for them. Nevertheless, they may be declared on UML diagrams by writing a
textual constraint or comment in a note (dog-eared rectangle), attached by a dashed line to
the model elements involved (here, three associations). Figure 8 uses a comment.

UML data models from an ORM perspective (part7) 5



Provides p- Facility <« Requires
*| facilityCode {P} | *

Time
dhCode {P}

*

* *

Room |0..1 0..1 Activity

roomNr {P} activityName {P}

Ushge
|
]

T T T

if a Room at a Time is used for an ]
Activity that requires a Facility then -0~
that Room provides that Facility

Figure 8: Join constraint specified as a comment in UML

Figure 7 again illustrates how ORM facilitates validation constraints via sample
populations. The UML associations in Figure 8 are not so easily populated on the
diagram. When attributes are used, the situation worsens considerably. As another
example, consider the UML Employee class shown in Figure 9. This is nice and compact,
but it makes it hard to express the common business rule that certain titles apply to only
one sex (e.g. Lady applies only to females). In ORM this can be captured by a populated
join-subset constraint as shown in the right hand side of the figure. In ConQuer, this
constraint verbalizes as: if Personl has a Title that applies only to Sex1 then Personl is of
Sex1. Step 5b of ORM’s conceptual schema design procedure prompts the modeler to add
the extra association between Title and Sex, and in this case the population becomes part
of the rule. It is unclear as to how to approach this problem in UML, other than by
converting title and sex to classes and writing down a population somewhere in a note.

Employee Employee
(empNr)
empNr {P}
title
sex: Sexcode I

Figure 9: ORM makes it easy to capture the constraint between title and sex

UML data models from an ORM perspective (part7) 6



As an example of a join-exclusion constraint, consider the following rule from a
conference paper review application; no Person who works at an Institute that employs a
Person who wrote a Paper may review that paper. As discussed in a later article, subset and
equality constraints also provide one way of specifying derivation rules. In the absence of
further marks on the schema diagram, ORM join constraint paths may sometimes be
ambiguous. This problem may easily be resolved by having the modeler indicate the path
in some way (e.g. by shift-clicking the predicates on the path) and then displaying this
path in some way when the constraint is inspected (e.g. by shading).

Later issues

Later issues will discuss aggregation, initial value declarations, derivation rules and
changeability settings in ORM and UML.

References

1. Booch, G., Rumbaugh, J. & Jacobson, I. 1999, The Unified Modeling Language User Guide,
Addison-Wesley, Reading MA, USA.

2. Blaha, M. & Premerlani, W. 1998, Object-Oriented Modeling and Design for Database
Applications, Prentice Hall, New Jersey.

3. Halpin, T. 1995, Conceptual Schema and Relational Database Design, 2nd edn (revised 1999),
WytLytPub, Bellevue WA, USA.

4. OMG-UML v1.2, OMG UML Revision Task Force website,
http://uml.systemhouse.mci.com/.

5. Rumbaugh, J., Jacobson, I. & Booch, G. 1999, The Unified Modeling Language Reference
Manual, Addison-Wesley, Reading MA, USA.

This paper is made available by Dr. Terry Halpin and is downloadable from www.orm.net.

UML data models from an ORM perspective (part7) 7



UML data models from an ORM perspective:
Part 8

by Dr. Terry Halpin
Director of Database Strategy, Visio Corporation

This paper first appeared in the April 1999 issue of the Journal of Conceptual Modeling, published by
InConcept.

This paper is the eighth in a series of articles examining data modeling in the Unified
Modeling Language (UML) from the perspective of Object Role Modeling (ORM). Part 1
discussed historical background, design criteria for modeling languages, object reference
and single-valued attributes. Part 2 covered multi-valued attributes, basic constraints,
and instantiation using UML object diagrams or ORM fact tables. Part 3 compared UML
associations and related multiplicity constraints with ORM relationship types and related
uniqueness, mandatory role and frequency constraints, as well as how associations may be
instantiated. Part 4 contrasted ORM nesting with UML association classes, ORM co-
referencing with UML qualified associations, and ORM exclusion constraints with UML
or-constraints. Part 5 discussed subset and equality constraints. Part 6 discussed
subtyping. Part 7 discussed value, ring and join constraints. Part 8 covers some recent
updates to the UML standard, then discusses aggregation.

Updates to the UML standard

Recently Visio became a member of the Object Management Group (OMG), and began
participating in the ongoing work to refine the UML standard. Within the OMG, the UML
standard is the responsibility of the Analysis and Design Task Force (ADTF, formerly
OOA&DTF), chaired by Jim Odell and Cris Kobryn. Minor changes to the UML standard
that lead to point releases (e.g. 1.1, 1.2, 1.3) are managed by a subgroup of the ADTF
known as the UML RTF (Revision Task Force), chaired by Cris Kobryn. The latest release
of UML (version 1.2) is fully supported by Visio Enterprise, including all nine diagram
types. Currently, the UML RTF is working on a draft of version 1.3, and some further
point releases might be considered later (e.g. version 1.4). The next major release (2.0) is
not expected to be forthcoming from the ADTF for quite some time (e.g. late 2001). As a
result of recent email discussions and meetings of the UML RTF team, several revisions to
the UML 1.3 draft have been made, including two that | will comment on here, since they
relate to issues discussed in earlier articles in this series.

UML data models from an ORM perspective (part8) 1



The “{or}” constraint discussed in Part 4 of this series has been renamed “{xor}” (short
for “exclusive or”), and has been redefined to mean exactly one of the association roles is
chosen. This means it is equivalent to ORM'’s exclusive-or constraint, which is a
combination of a disjunctive mandatory role constraint and an exclusion constraint. For
example, consider the following constraint

(1) each Vehicle is either leased from a Company or was purchased from a Company, but
not both.

In ORM, this may be expressed by the following two constraints:

(2) each Vehicle is leased from a Company or was purchased from a Company.
(3) no Vehicle is leased from a Company and was purchased from a Company.

Constraint (2) is a disjunctive mandatory role constraint, shown as a black dot on the
object type connected to the two roles, or by a circled black dot “®” connected to the
roles. Constraint (3) is an exclusion constraint, shown as a circled ex “[0” connecting the
two roles. The constraints are orthogonal, and may be shown either separately as in
ma or by combining the two symbols as in Figure 1 (b).

(@) is leased from (b) is leased from

was purchased from was purchased from

Figure 1: Exclusive-or constraint depicted in ORM using (a) separate or (b) combined symbols

In UML, the constraint is displayed by connecting the relevant association-ends (roles
in ORM) by a dashed line, labeled “{xor}” (see Figure 2). Although the current wording of
the UML standard describes the constraint as applying to a set of associations, we need to
apply the constraint to a set of association-ends to avoid ambiguity in cases like this with
multiple common classes. Visually this could be shown by attaching the dashed lines near
the relevant ends of the associations, as we have done here.

*  Is-leased-from 0.1
T

Vehicle |{xor} Company

* | 0.1

Was-purchased-from

Figure 2: Exclusive-or constraint depicted in UML

UML data models from an ORM perspective (part8) 2



As discussed in previous issues, UML has no symbols for exclusion or disjunctive
mandatory role constraints. If ever UML symbols for these constraints are considered,
then “{x}” and “{or}” respectively seem appropriate—this choice also exposes the
composite nature of “{xor}”. Even if such a proposal were accepted as a UML extension,
this would capture only a fragment of ORM'’s expressive power in this area—recall that
ORM’s exclusion constraint applies not just to a set of roles, but a set of role-sequences,
and hence is far more general than the kind of case considered here. Moreover, ORM roles
include unary predicates, and ORM needs no additional notations to constrain attributes.

The second proposed revision to UML concerns the semantics of the “{complete}”
constraint for subtyping. This constraint, discussed in Part 6, was formerly described as
indicating that the modeler intended to add no more subtypes. This weak notion of
completeness does not entail that the constrained subtypes collectively exhaust the
supertype, but this latter notion is far more useful in practice and is called a totality
constraint in ORM. Although typically implied by other constraints, a totality constraint
may be explicitly depicted in ORM by connecting the mandatory symbol “®” to the
relevant subtype links (it is mandatory for each instance of the supertype to be an instance
of at least one of the subtypes). Hence the supertype equals the union of the constrained
subtypes. Recall that a type is the set of all possible instances, while a population is the set
of current instances. The practical way to enforce the constraint is to check that for each
state of the database, the population of the supertype equals the union of the populations
of the constrained subtypes. At the UML RTF meeting in March it was agreed that the
UML notion of subtype completeness would be redefined as this set-theoretic notion, thus
making it equivalent to ORM'’s subtype totality constraint. With this understanding, the
ORM and UML schemas in Figure 3 are equivalent.

(b) N

{complete}

Figure 3: The subtype totality constraint A = B 0 C expressed in (a) ORM and (b) UML.

Aggregation

In UML, the term *“aggregation” is used to describe a whole/part relationship. For
example, a team of people is an aggregate of its members, so this membership may be
modeled as an aggregation association between Team and Person. Several different forms
of aggregation might be distinguished in real world cases. For example, Jim Odell and
Conrad Bock discuss the following six varieties of aggregation: component-integral;
material-object; portion-object; place-area; member-bunch; and member-partnership @ Ei
Currently, UML associations are classified into one of three kinds: ordinary association

UML data models from an ORM perspective (part8) 3



(no aggregation); shared (or simple) aggregation; composite (or strong) aggregation.
Hence UML version 1.x recognizes only two varieties of aggregation: shared and
composite. Although early planning for UML version 2.x foreshadows further kinds of
aggregation being introduced, we confine our attention here to shared and composite
aggregation. Some versions of ER include an aggregation symbol (typically only one
kind). ORM, as well as many versions of ER, includes no special symbols for aggregation.

These different stances with respect to aggregation are somewhat reminiscent of the
different modeling positions with respect to null values. Although over twenty kinds of
null have been distinguished in the literature, the relational model recognizes only one
kind of null, Codd’s version 2 of the relational model proposes two kinds of null, and
ORM argues that nulls have no place in base conceptual models (because all its base facts
are elementary). But let’s return to the topic at hand.

Shared aggregation is denoted in UML as a binary association, with a hollow
diamond at the “whole” or “aggregate” end of the association. Composition (composite
aggregation) is depicted with a filled diamond. For example, Figure 4 depicts a
composition association from Club to Team, and a shared aggregation association from
Team to Person.

1 * * *

Club @— Team K >————— Person

Figure 4: Composition (composite aggregation) and shared aggregation in UML

In ORM, this situation would be modeled as shown in Figure 5. As we see, ORM has
no special notation for aggregation. Does Figure 4 convey any extra semantics, not
captured in Figure 5? At the conceptual level, it is doubtful whether there is any
additional useful semantics. At the implementation level however, there is additional
semantics. Let’s discuss this in more detail.

@

has /isin

includes / is in

Figure 5: The Figure 4 example modeled in ORM

The UML standard declares that “both kinds of aggregation define a transitive ...
relationship” [Ej. The use of “transitive” here is somewhat misleading, since it refers to
indirect aggregation associations rather than base aggregation associations. For example,
if Club is an aggregate of Team, and Team is an aggregate of Person, it follows that Club
is an aggregate of Person. However if we wanted to discuss this result, it should be
exposed as a derived association. In UML, derived associations are indicated by prefixing
their names with “/”. The derivation rule can be expressed as a constraint, either
connected to the association by a dependency arrow, or simply placed beside the
association as in Figure 6.

UML data models from an ORM perspective (part8) 4



{ Club.member = Club.team.member }

/Includes
* member| *
1 * * *
Club @—— ] Team K >——— Person
team member

Figure 6: A derived aggregation in UML

In ORM, derived fact types may be diagrammed by marking them with an asterisk,
and derivation rules may be specified in an ORM textual language such as ConQuer (see
Figure 7). In many cases, derivation rules may also be diagrammed as a join-subset or
join-equality constraint. As this example illustrates, the derived transitivity of
aggregations can be captured in ORM without needing a special notation for aggregation.

includes *
‘ —»
has /is in includes / is in

* define Club includes Person as
Club has a Team that includes Person

Figure 7: The derived aggregation of Figure 6 modeled in ORM

More fully, the UML standard declares that “both kinds of aggregation define a
transitive, antisymmetric relationship (i.e. the instances from a directed, non-cyclic
graph)” [Ej. Recall that a relation R is antisymmetric if and only if, for all x and vy, if x is
not equal to y then xRy implies that yRx. It would have been better to simply state that
paths of aggregations must be acyclic. At any rate, this rule is designed to stop errors such
as that shown in Figure 8. If a person is part of a team, and a team is part of a club, it
doesn’t make sense to say that a club is part of a person.

* 3

Club @— Team K >———— Person

Figure 8: lllegal UML model. Aggregations should not form a cycle.

Since ORM does not specify whether an association is an aggregation, illegal
diagrams like this can’t occur in ORM. Of course, it is possible for an ORM modeler to
make a silly mistake by adding an association such as Club is part of Person, where “is part

UML data models from an ORM perspective (part8) 5



of” was informally understood in the aggregation sense, and this would not be formally
detectable. But avoidance of such a bizarre occurrence doesn’t seem to be a compelling
reason to add aggregation to ORM'’s formal notation. There are plenty of associations
between Club and Person that do make sense, and plenty that don’t. In some cases
however, it is important to assert constraints such as acyclicity, and this is handled in
ORM by ring constraints (see Part 7).

Composition does add some important semantics to shared aggregation. To begin
with, it requires that each part belongs to at most one whole at a time. In ORM, this is
captured by adding a uniqueness constraint to the role played by the part (e.g. see the role
played by Team in Figure 5). In UML, the multiplicity at the whole end of the association
must be 1 or 0..1. If the multiplicity is 1 (as in Figure 4), the role played by the part is both
unique and mandatory (as in Figure 5). As an example where the multiplicity is 0..1 (i.e.
where a part optionally belongs to a whole), consider the ring fact type of Figure 9:
Package contains Package. Here “contains” is used in the sense of “directly contains”. The
UML standard notes that “composition instances form a strict tree (or rather a forest)” [Ei
This strengthening from directed acyclic graph to tree is an immediate consequence of the
functional nature of the association (each part belongs to at most one whole), and hence
ORM requires no additional notation for this. In this example, the ORM model explicitly
includes an acyclic constraint. Note that this direct containment association is intransitive
by implication (acyclicity implies irreflexivity, and any functional, irreflexive association
is intransitive).

@ (b)

Package
i [\ e

O..lt *
-«

Contains » contains / is contained in

Figure 9: Direct containment modeled in (a) UML and (b) ORM

UML allows some alternative notations for aggregation. If a class is an aggregate of
more than one class, the association lines may be shown joined to a single diamond (see
Figure 10(a)). For composition, the part classes may be shown nested inside the whole by
using role names, and muiltiplicities of components may be shown in the top right hand
corners (see Figure 10(b)).

UML data models from an ORM perspective (part8) 6



@ Book ®) Book

1 1.*
chapter: TextBody

1.* [chapter index| 0.1

index: Index
TextBody Index

Figure 10: Alternative UML notations for aggregation

Some authors list kinds of association that are easily confused with aggregation but
should not be modeled as such (e.g. topological inclusion, classification inclusion,
attribution, attachment and ownership [El E]). For example, Finger belongs to Hand is an
aggregation, but Ring belongs to Finger is not. There is some disagreement among authors
about what should be included on this list. For example, attribution is treated by some as
a special case of aggregation (a composition between a class and the classes of its
attributes) [ﬂ My own viewpoint is that for conceptual modeling purposes, agonizing
over such distinctions doesn’t seem to be worth the trouble. This position seems to be
taken by some other authors. For example, E| p. 148] argues that “Aggregation conveys
the thought that the aggregate is inherently the sum of its parts. In fact, the only real
semantics that it adds to association is the constraint that chains of aggregate links may
not form cycles ... Some authors have distinguished several kinds of aggregation, but the
distinctions are fairly subtle and probably unnecessary for general modeling”.

Indeed there seems little justification for introducing the notion of aggregation at all
as a separate concept at the conceptual level. There are plenty of other distinctions (apart
from aggregation) we could make about associations, but we don’t feel compelled to do
so. At the implementation level however, composite aggregation does add important
semantics. “A composite implies propagation semantics ... For example, if the whole is
copied or deleted, then so are the parts as well” [Eh Clearly this dynamic semantics has
nothing to do with a conceptual view of the domain area, and it would be unreasonable to
introduce this notion when validating the business model with the subject matter expert.
However, once a decision is made to implement the conceptual model in an object-
oriented system, it is important to capture this semantics. One way of doing this would be
to convert a conceptual ORM model to a UML model, and then add aggregation at that
stage.

Obviously there are different stances one could take about how, if at all, aggregation
should be included in the conceptual modeling phase. My position is one of many. You
can decide what’s best for you.

UML data models from an ORM perspective (part8) 7



Later issues

Later issues will discuss default values, changeability settings, derived data, derivation
rules and queries in ORM and UML.

References

1. Booch, G., Rumbaugh, J. & Jacobson, I. 1999, The Unified Modeling Language User Guide,
Addison-Wesley, Reading MA, USA.

2. Blaha, M. & Premerlani, W. 1998, Object-Oriented Modeling and Design for Database
Applications, Prentice Hall, New Jersey.

3. Halpin, T. 1995, Conceptual Schema and Relational Database Design, 2nd edn (revised 1999),
WytLytPub, Bellevue WA, USA.

4. Martin, J. & Odell, J. 1998, Object-Oriented Methods: a Foundation, UML edn, Prentice Hall,
Upper Saddle River, New Jersey. { Ch. 18 discusses aggregation }

5. Odell, J. 1998, Advanced Object-Oriented Analysis & Design using UML, Cambridge
University Press, & SIGS Books, New York. { Part V (pp. 137-65) discusses aggregation }

6. OMG-UML 1.3 draft, OMG UML Revision Task Force  website,
http://uml.systemhouse.mci.com/.

7. Rumbaugh, J., Jacobson, I. & Booch, G. 1999, The Unified Modeling Language Reference
Manual, Addison-Wesley, Reading MA, USA.

This paper is made available by Dr. Terry Halpin and is downloadable from www.orm.net.

UML data models from an ORM perspective (part8) 8



UML data models from an ORM perspective:
Part 9

by Dr. Terry Halpin

Director of Database Strategy, Visio Corporation

This paper first appeared in the June 1999 issue of the Journal of Conceptual Modeling, published by
InConcept.

This paper is the ninth in a series of articles examining data modeling in the Unified
Modeling Language (UML) from the perspective of Object Role Modeling (ORM). Part 1
discussed historical background, language design criteria, object reference and single-
valued attributes. Part 2 covered multi-valued attributes, basic constraints, and
instantiation using UML object diagrams or ORM fact tables. Part 3 compared UML
associations and related multiplicity constraints with ORM relationship types and related
uniqueness, mandatory role and frequency constraints, as well as how associations may be
instantiated. Part 4 contrasted ORM nesting, co-referencing and exclusion constraints
with UML association classes, qualified associations, and xor-constraints respectively.
Part 5 discussed subset and equality constraints. Part 6 discussed subtyping. Part 7
discussed value, ring and join constraints. Part 8 listed some recent updates to the UML
standard, then discussed aggregation. Part 9 examines initial values and derived data in
ORM and UML.

Initial values

The syntax of an attribute specification in UML includes six components as shown below.
Square and curly brackets are used literally here as delimiters (not as BNF symbols to
indicate optional components).

visibiliity name [multiplicity] : type-expression = initial-value {property string}

If an attribute is displayed at all, its name is the only thing that must be shown. The
visibility marker (+, #, — denote public, protected, and private respectively) is an
implementation concern, and will be ignored in our discussion. Multiplicity has been
discussed earlier and is specified for attributes in square brackets, e.g. [1..*]. For attributes,
the default multiplicity is 1, i.e. [1..1]. The type expression indicates the domain on which
the attribute is based (e.g. String, Date). Initial-value and property string declarations may

UML data models from an ORM perspective (part9) 1



optionally be declared. Property strings may be used to specify changeability (see next
article in this series). We now turn to a consideration of initial values.

An attribute may be assigned an initial value by including the value in the attribute’s
declaration after an equals sign (e.g. diskSize = 9; country = USA, priority = normal). The
language in which the value is written is an implementation concern. In m the
nrColors attribute is based on a simple domain (e.g. Positivelnteger) and has been given an
initial value of 1. The resolution attribute is based on a composite domain (e.g. PixelArea)
and has been assigned an initial value of (640,480).

ClipArt

pictureNr {P}

topic

nrColors =1
resolution = (640,480)

Figure 1: Attributes may be assigned initial values in UML

Unless over-ridden by another initialization procedure (e.g. a constructor), declared
initial values are assigned when an object of that class is created. This is at least similar to
the database notion of default values, where during the insertion of a tuple an attribute
may be assigned a predeclared default value if a value is not supplied by the user.
However UML uses the term “default value” in other contexts only (e.g. template and
operation parameters) [E], and some authors claim that default values are not part of UML
models [Q) p. 249]. The SQL standard treats null as a special instance of a default value,
and this is supported in UML, since the standard notes that “a multiplicity of 0..1 provides
for the possibility of null values: the absence of a value” @ p. 3-41]. So an optional
attribute in UML can be used to model a feature that will appear as a column with the
default value of null, when mapped to a relational database. Presumably a multiplicity of
[0..¥] or [0..n] for any n > 1 also allows nulls for multi-valued attributes, even though an
empty set could be used instead.

Currently, ORM does not provide explicit support for initial/default, values.
However UML initial values and relational default values could be supported by allowing
default values to be specified for ORM roles. At the meta-level, we add the fact type: Role
has default- Value. At the external level, instances of this could be specified on a predicate
properties sheet, or even entered on the schema diagram (e.g. by attaching an annotation
such as d: value to the role, and preferably allowing this display to be toggled on/off). SQL
default values are simple, so their source ORM roles need to be played by a simply
identified object type. For example, the role played by NrColors in m has been
allocated a default value of 1. When mapped to SQL-92, this should add the declaration
“default 1” to the column definition for ClipArt.nrColors.

To support the composite initial values allowed in UML, composite default values
could be specified for ORM roles played by compositely identified object types (co-
referenced or nested). When co-referencing involves at least two roles played by the same
or compatible object types, an order is needed to disambiguate the meaning of the
composite value. For example, in he role played by Resolution has been assigned

UML data models from an ORM perspective (part9) 2



a default composite value of (640,480). To ensure that the 640 applies to the horizontal
pixelcount and the 480 applies to the vertical pixelcount (rather than the other way
round), this ordering needs to be applied to the defining roles of the external uniqueness
constraint. In VisioModeler, this ordering is determined by the order in which the roles
are selected when entering this constraint; although the display of this order is normally
suppressed, the order can be displayed by right-clicking the constraint and choosing
SelectRoleSequence from the pop-up menu.

illustrates

\
]

has horizontal-

1 7/ Y
Resolution l\ PixelCount+)

d: (640,480)

has vertical-

Figure 2: A possible extension to ORM to capture simple and composite default values

If all or most roles played by an object type have the same default, it may be useful to
allow a default value to be specified for the object type itself. This could be supported in
ORM by adding the meta-fact-type ObjectType has default- Value, and proving some
notation for instantiating it (e.g. by an entry in the Object Type Properties sheet, or by
annotating the object type ellipse with d: value). This corresponds to the default clause
permitted in a create-domain statement in SQL-92. Note that an object-type default can
always be expressed instead by role-based defaults, but not conversely (since the default
may vary with the role).

Specification of default values does not cover all the cases that can arise with regard to
default information in general. A detailed proposal for providing greater support for
default information in ORM s discussed in [Ej but this goes beyond the built-in support
for defaults in either UML or SQL. Default information can be modeled informally by
using a predicate name to convey this intention to a human. For example, we might
specify default medium (e.g. ‘CD’, ‘DVD’, ‘T’) preferences for delivery of soft products
(e.g. music, video, software) using the 1:n fact type: Medium is default preference for
SoftProduct. In cases like this where default values overlap with actual values, we may
also wish to classify instances of relevant fact types as actual or default (e.g. Shipment
used Medium). For the typical case where the uniqueness constraint on the fact type spans
n-1 roles, this can be achieved by including fact types to indicate the default status (e.g.
Shipment was based on Choice {actual, default}), resulting in extra columns in the database
to record the status. While this approach is generic, it requires the modeler and user to
take full responsibility for distinguishing between actual and default values.

UML data models from an ORM perspective (part9) 3



Derived data

In UML, derived elements (e.g. attributes, associations or association-roles) are indicated
by prefixing their names with “/”. Optionally, a derivation rule may be specified as well.
The derivation rule can be expressed as a constraint or note, connected to the derived
element by a dashed line. This line is actually shorthand for a dependency arrow,
optionally annotated with the stereotype name «derive». Since a constraint or note is
involved, the arrow-tip may be omitted (the constraint or note is assumed to be the
source). For example, mmcludes area as a derived attribute.

Window

windowNr {P}
height

width

/area — — — —|—| {area = height * width }

Figure 3: Area depicted as a derived attribute in UML, with derivation rule declared in a note

The dependency line may also be omitted entirely, with the constraint shown in
braces beside the derived element (in this case, it is the modeling tool’s responsibility to
maintain the graphical linkage implicitly). A club-membership example of this was
included in Part 8 of this series. As another example, Figure 4 expresses uncle information
as a derived association. For illustration purposes, rolenames have been included for all
association ends. Although precise rolenames are not always elegant, the use of rolenames
in derivation rules corresponding to a path projection can facilitate concise expression of
rules, as shown here. More complex derivation rules can be stated informally in English
or formally in a language such as the Object Constraint language (OCL) [Ei.

{ Person.uncle = Person.parent.brother }

/UncleOf »
/uncle /niece_or_nephew
- - « brother

Person

* sibling_with_brother

0..2 *
parent child

Figure 4: Derived uncle association (and roles) in UML, with derivation rule declared as a constraint

In ORM, a fact type that is primitive (i.e. not defined in terms of others) is said to be a
base fact type. Derived fact types are defined in terms of other fact types (base or derived).
If displayed on a diagram, derived fact types are marked with an asterisk. Constraints on
derived fact types are typically implied. Whether or not a fact type is displayed on a
diagram, a rule for deriving it should be declared. For example, Figure 5 includes a
derivation rule to define the fact type Window has Area. The rule is specified here using
ConQuer, an ORM conceptual query language supported in Visio’s ActiveQuery tool. A

UML data models from an ORM perspective (part9) 4



comment in braces has been prepended to the formal definition. Although automatic
translation from ConQuer to SQL is provided in ActiveQuery, VisioModeler does not
currently support this, so it is the developer’s responsibility to implement any derivation
rules entered in predicate property sheets.

An alternative ORM syntax for derivation rules uses “... iff ...” (if and only if) instead
of “define ... as ...”. This syntax is useful if we wish to declare the underlying constraint
before deciding which fact type is to be the definiendum (what is required to be defined).
For example, the following logical constraint involves three fact types with one degree of
freedom:

Window has Area iff Window has height of Length; and
Window has width of Length, and
Area = Length; * Lengths.

Any one of the fact types could be chosen to be derived from the other two. Given
height and width, we can compute area; given area and height, we can compute width;
and given area and width, we can compute height. Listing the area fact type before the
“iff” doesn’t conceptually require us to make that the derivable one. However, once the
definiendum has been selected, it should be written as the head of the definition. In cases
like this, where there really is a choice as to which is the definiendum, the decision is often
based more on performance than on conceptual issues. In many cases however, there
simply is no choice. For example, facts about sums and averages are derivable from facts
about individual cases, but except for trivial cases we cannot derive the individual facts
from such summaries.

has height of

* { area = height x width }

define Window has Area(sg_cm)

as
Window has height of Length, and
Window has width of Length, and
Area = Length, * Length,

Figure 5 Window area depicted in ORM using a derived fact type with its derivation rule

It is an implementation issue whether a derived fact type is derived-on-query (lazy
evaluation) or derived-on-update (eager evaluation). In the former case, the derived
information is not stored, but computed only when the information is requested. For
example, if our Window schema is mapped to a relational database, no column for area is
included in the base table for Window (see Figure 6(a)). The rule for computing area may
be included in a view definition or stored query, and is invoked only when the view is

UML data models from an ORM perspective (part9) 5



queried or the stored query is executed. In most cases, lazy evaluation is preferred (e.g.
computing a person’s age from their birthdate and current date).

Sometimes eager evaluation is chosen because it offers significantly better
performance (e.g. computing account balances). In this case, the information is stored as
soon as the defining facts are entered, and updated whenever they are updated. In
VisioModeler this option is chosen by selecting “Derived and Stored” from the Derived
pane of the predicate properties sheet. As a sub-conceptual annotation, VisioModeler uses
a double-asterisk “**” to indicate this choice. When the schema is mapped to a relational
database, a column is created for the derived fact type (e.g. see Figure 6(b)), and the
computation rule should be included in a trigger that is fired whenever the defining
columns are updated (including inserts or deletes).

(@) < >
has height or
<> Window
has width of‘ PK |windowNr
height

> width
‘ }—@
has
(sq_cm)+
(b)

has helght 0
Window
PK |windowNr
has width of‘ height

width

<>
has
sq cm)+

Figure 6 As an implementation issue, derived fact types may be evaluated lazily (a) or eagerly (b)

Some but not all derivations can be modeled graphically in ORM using equality
constraints. In other cases, a fact type may be partly base and partly derived. These are
sometimes called hybrid fact types. Although a notation has been suggested for them [El p.
56], this is not yet included in UML. Some hybrid fact types may be handled in ORM
using a subset constraint, e.g. see @ p. 239]. As an example of a hybrid fact type, suppose
that we know somebody’s uncles but not his/her parents, and we wish to record this
information about uncles. In this case, some uncle facts may be derived (as discussed
earlier) while others must be entered directly. One way of dealing with this is to stored
the entered facts in a base uncle fact type, separate from the derived fact type discussed
earlier, which might be renamed, and specify the disjunction of these two fact types as
another derived fact type.

UML data models from an ORM perspective (part9) 6



We have seen that UML and ORM both provide support for derived information. As
the examples illustrate, the use of attributes and association role names in UML often
enables derivation rules to be expressed concisely using a functional notation. In contrast,
the predicate-based derivation rules of ORM may appear somewhat verbose, especially
for derivations of a mathematical rather than logical nature. While it is easy to come up
with ORM derivation rules that are neater than the corresponding UML rules, the
functional style of UML is definitely more convenient in many cases. To address this
reality, ORM now allows rolenames as well as predicate names, and ConQuer has been
enhanced to support this alternative notation. The main advantage of ORM’s predicate-
based notation is that it is more stable than an attribute-based notation, since it is not
impacted by schema changes such as attributes being remodeled as associations. So the
choice of a functional or relational style for derivation rules can involve a trade-off
between convenience and stability.

Next issue

The next article in this series will discuss changeability and collection types in UML and ORM.

References

Booch, G., Rumbaugh, J. & Jacobson, I. 1999, The Unified Modeling Language User Guide,
Addison-Wesley, Reading MA, USA.

Halpin, T. 1995, Conceptual Schema and Relational Database Design, 2nd edn (revised 1999),
WytLytPub, Bellevue WA, USA.

Halpin, T.A. & Vermeir, D. 1997, ‘Default reasoning in information systems’, Database
Applications Semantics, Chapman & Hall, London, pp. 423-41.

Martin, J. & Odell, J. 1998, Object-Oriented Methods: a Foundation, UML edn, Prentice Hall, Upper
Saddle River, New Jersey.

OMG-UML Specification v. 1.3 beta R6 draft, OMG UML Revision Task Force website,
http://uml.systemhouse.mci.com/artifacts.htm.

Rumbaugh, J., Jacobson, I. & Booch, G. 1999, The Unified Modeling Language Reference Manual,
Addison-Wesley, Reading MA, USA.

Warmer, J. & Kleppe, A. 1999, The Object Constraint Language: precise modeling with UML,
Addison-Wesley, Reading MA, USA.

This paper is made available by Dr. Terry Halpin and is downloadable from www.orm.net.

UML data models from an ORM perspective (part9) 7



UML data models from an ORM perspective:
Part 10

by Dr. Terry Halpin
Director of Database Strategy, Visio Corporation

This paper first appeared in the August 1999 issue of the Journal of Conceptual Modeling, published by
InConcept.

This paper is the tenth in a series of articles examining data modeling in the Unified
Modeling Language (UML) from the perspective of Object Role Modeling (ORM). Part 1
discussed historical background, language design criteria, object reference and single-
valued attributes. Part 2 covered multi-valued attributes, basic constraints, and
instantiation using UML object diagrams or ORM fact tables. Part 3 compared UML
associations and related multiplicity constraints with ORM relationship types and related
uniqueness, mandatory role and frequency constraints, as well as how associations may be
instantiated. Part 4 contrasted ORM nesting, co-referencing and exclusion constraints
with UML association classes, qualified associations, and xor-constraints respectively.
Part 5 discussed subset and equality constraints. Part 6 discussed subtyping. Part 7
discussed value, ring and join constraints. Part 8 listed some recent updates to the UML
standard, then discussed aggregation. Part 9 examined initial values and derived data in
ORM and UML. Part 10 discusses changeability and collection types in UML and ORM.

Changeability properties

In UML, restrictions may be placed on the changeability of attributes, as well as the roles
(ends) of binary associations. It is unclear whether changeability may be applied to the
ends of n-ary associations, but my guess is that this is currently forbidden. The following
three values for changeability are recognized, only one of which can apply at a given time:

e changeable
o frozen

e addOnly

The value “changeable” was previously called “none”. Although the new term
“changeable” was approved for UML 1.3 ﬂ] some instances of “none” still occur in the
standard; this oversight should be remedied in a later version. The default changeability is
“changeable” (any change is permitted). Although the UML standard [EI p. 2-25] and

UML data models from an ORM perspective (part 10) 1



some authors [E'] p. 166] indicate that “changeable” is a value, the standard also says
“there is no symbol for whether an attribute is changeable”, so it appears that this default
cannot be explicitly declared. However it makes sense to allow explicit declaration of this
default, and it would not be surprising to see the standard revised to permit it. The other
settings (frozen and addOnly) may be explicitly declared in braces. For an attribute, the
braces are placed at the end of the attribute declaration. For an association, the braces are
placed at the opposite end of the association from the object instance to which the
constraint applies.

Recall that a “link” is an instance of an association. The term “frozen” means that
once an attribute value or link has been inserted, it cannot be updated or deleted, and no
additional values/links may be added to the attribute/association (for the constrained
object instance). The term “addOnly” means that although the original value/link cannot
be deleted or updated, others values/links may be added to the attribute/association (for
the constrained object instance). Clearly, addOnly is only meaningful if the maximum
multiplicity of the attribute/association-role exceeds its minimum multiplicity.

As a simple if unrealistic example, see m Here empNTr, birthDate and country
of birth are frozen for Employee, so they cannot be changed from their original value. For
instance, if we assign an employee the empNr 007, and enter his/her birthdate as
02/15/1946 and birth country as ‘Australia’, then we can never make any changes or
additions to that.

Notice also that for a given employee, the set of languages and the set of countries
visited are addOnly. Suppose that when facts about employee 007 are initially entered, we
set his/her languages to {Latin, Japanese} and countries visited to {Japan}. So long as
employee 007 is referenced in the database, these facts may never be deleted. However we
may add to these (e.g. later we might add the facts that employee 007 speaks German and
visited India).

Wants to visit

* *
Employee Country
empNr {P} {frozen} x  Wasbornin 1 | countryName {P}
empName {frozen} | Population
birthDate {frozen}
languages [*] {addOnly} .

Visited {addOnly}

*

Figure 1  Changeability of attributes and association roles may be specified in UML

By default, the other properties are changeable. For example, employee 007 might
change his name by deed poll from ‘Terry Hagar’ to ‘Hari Seldon’, and the set of countries
he wants to visit might change, after some traveling, from {Ireland, Italy, USA} to {Greece,
Ireland,}.

UML data models from an ORM perspective (part 10) 2



Some traditional data modeling approaches also note some restrictions on
changeability. For example, Oracle’s ER notation includes a diamond to mark a
relationship as non-transferable (once an instance of an entity type plays a role with an
object, it cannot ever play this role with another object). Although changeability
restrictions may at first appear very useful, in practice their application in database
settings is limited. One reason for this is that we almost always want to allow facts
entered into a database to be changed. With snapshot data, this is the norm, but even with
historical data, changes can occur. The most common occurrence of this is to allow for
corrections of mistakes, which might be because we were told the wrong information
originally or because we carelessly made a misspelling or typo when entering the data.

In exceptional cases, we might require that mistakes of a certain kind be retained in
the database (e.g. for auditing purposes) but be corrected by entering later facts to
compensate for the error. This kind of approach makes sense for bank transactions (see

. For example, if a deposit transaction for $100 was mistakenly entered as $1000,
the record of this error is kept, but once the error is detected it can be compensated for by
a bank withdrawal of $900. As a minor point, the balance is both derived and stored, and
its frozen status is typically implied by the frozen settings on the base attributes, together
with a rule for deriving balance.

Transaction

tranNr {P} {frozen}
accountNr {P} {frozen}
tranDate {frozen}
tranType {frozen}
tranAmount {frozen}
/balance {frozen}

Figure 2  All attributes of Transaction are frozen

Although not stated in UML 1.3, some authors allow changeability to be specified
for a class, as an abbreviation for declaring this for all its attributes and opposite
association ends ﬁl p. 184]. For instance, all the {frozen} constraints in Mmight be
replaced by a single {frozen} constraint below the name “Transaction”. While this
notation is neater, it would be rarely used. Even in this example, we would probably want
to allow for the possibility of adding non-frozen information later (e.g. a transaction might
be audited by zero or more auditors).

Changeability settings may have more use in the design of program code than in
conceptual modeling (e.g. {frozen} corresponds to const in C++). Although changeability
settings are not supported in ORM, which focuses on static constraints, such features
could easily be added as role properties if desired. In the wider picture, being able to
completely model security issues (e.g. who has the authority to change what) would
provide greater value. This view is nicely captured by the following comment of John
Harris, in a recent thread on the InConcept website: “Rather than talk of "immutable" data
| think it is better to talk of a privilege requirement. For instance, you can't change your
recorded salary but your boss can, whether it's because you've had a pay rise or because

UML data models from an ORM perspective (part 10) 3



there's been a typing error. Privileges can be as complicated or as simple as they need to
be, whereas "immutable” can only be on or off. Also, privileges can be applied to the
insertion of new data and removal of old data, not just to updates”.

Collection types

Though collection types (e.g. sets, bags, sequences and arrays) are commonly used in
programming, their use as record components in database schemas largely disappeared
with the widespread acceptance of relational databases, where each table column is based
on an atomic domain. However, the recent emergence of object-relational and object
databases has once again allowed collection types to be embedded as database fields.
Although a number of collection types were slated for inclusion in the object-relational
database standard SQL3, the only one that made it was array (a one dimensional array
with a maximum number of elements). It is anticipated that three further collection types
will be added in SQL4: set (unordered collection with no duplicates); multiset (bag, i.e.
unordered collection that allows duplicates); and list (sequence, i.e. an ordered bag). Some
commercial systems already support these. Experience with these systems indicates that
little performance gain is actually achieved by use of collection types; but this may change
as the technology matures. Array, set, bag and list are also included as collection types in
the object database standard ODMG 2.0 [E]

UML includes none of these as standard notations, but does include the {ordered}
constraint to indicate mapping to an ordered set (i.e. a sequence with no duplicates); and
its associated textual language OCL (Object Constraint Language) includes set, bag and
sequence types as well as collection as their abstract supertype [El pp. 38-49]. While UML
allows collection types to be specified as stereotypes of classes, and realized as
implementation classes [E] pp. 485-6], this usage seems geared toward code design so will
not be elaborated here.

Different approaches have arisen as to how collection types should be specified
within the conceptual analysis and logical design of data. Some proposals use collections
directly within the conceptual schema, some introduce them only at the logical schema
level, while some specify them as annotations to the conceptual schema to guide the
mapping to the logical level. As a simple example, consider m The ORM schema (a)
and UML schema (b) depict driving as a many-to-many association. The employee name
information is modeled as a functional fact type in ORM and as an attribute in UML. If
this is mapped to a relational database system, then by default the m:n association maps
to a separate table, resulting in a 2-table schema (c).

UML data models from an ORM perspective (part 10) 4



(@ A ol (b)

EmpName)
\
Employee Seo_- Employee * Drives * Car
(empNr) J empNr {P} vin {P}
drves| | empName
(c) Employee Drives
P PK,FK1 [ empNr
PK'| empNr b PK carVin
empName

Figure 3  ORM schema (a) and UML schema (b) map by default to relational schema (c)

Now suppose that for some reason we wish to map both fact types into the same
table, as shown in Md). Some object-relational databases support this option.
Clearly this mapping decision is an implementation, not a conceptual, issue, but how do
we specify it? Visio Enterprise 5 lets you do this at the logical level (d), and VisioModeler
lets you specify it either at the logical level or as an annotation to the ORM schema. The
annotation shown in mm differs from that of VisioModeler (which uses a box
between the role and its object type), but the idea is the same (indicating that this role
maps to a set field of the co-role’s table). The display of such annotations should be
hidden during conceptual analysis, and toggled on only when we wish to discuss
overrides to the default logical mapping. In UML we could invent a similar annotation, as
in mb), or instead use a multi-valued attribute, as in m(c), with this display
being used only for discussing the logical mapping. As discussed in an earlier article,
multi-valued attributes should never be used in conceptual analysis.

@) A T

4
- EmpName}  (®)
N 7/

Employee Y )
(empNn) Employee Drives . Car
drives empNr {P} _>set| Vin {P}
aves| | e (->set
c d
© Employee () Employee
empNr {P} PK [ empNr
empName emoName
cars [*] p
cars : [Set]

Figure 4  Some possible ways of indicating that driving should map to a set-valued column

UML data models from an ORM perspective (part 10) 5



@

Some extensions of ORM (e.g. PSM [Ei) allow collection types (e.g. set, bag, sequence
and schema) to be modeled as first class object types, using constructors often shown as a
shape around the member object type. A sequence is an ordered bag, and in extended
ORM its collection type may be marked “seq”. If the sequence cannot have duplicates, it is
a “unique sequence” (or ordered set) and is marked “seq”. As an example of the unique
sequence (or ordered set) constructor, see mm. Here an author list is a sequence of
authors, each of whom may appear at most once on the list. This may be modeled in flat
ORM by introducing a Position object type to store the sequential position of any author
on the list, as shown in Mb).

(b) Person
(nn)
"AuthorList"

was written by
E—

“«—>
-~
Paper | | Position
(nr) (nr)

... was written by ... in ...

{for each Paper: Position values are sequential from 1}

Figure 5  Unique sequence modeled in ORM with a constructor (a) or by introducing Position (b)

The uniqueness constraint on the first two roles declares that for each paper an
author occupies at most one position; the constraint covering the first and third roles
indicates that for any paper, each position is occupied by at most one author. The textual
constraint below the graphic indicates that the positions in any list are numbered
sequentially from 1. Although this ternary representation may appear awkward, it is easy
to populate and it facilitates any discussion involving position (e.g. who is the second
author for paper 21?). From an implementation perspective, a sequence structure could
still be chosen: this can simplify updates by localizing their impact. However the update
overhead of the positional structure is not onerous anyway, given set-at-a-time processing
(e.g. to delete author n, simply set position to position—1 for position > n).

Though not shown here, the ternary solution can also be modeled in UML. If the
ternary model is chosen as the base model, it would be useful to support the annotated
binary shown in |Ei.g.u.LLGka) or |Ei.g.u.r_e_ﬁkb) as a view of the base model. In ORM we have
shown a unique sequence annotation connected to the relevant role. This representation is
equivalent to the {ordered} constraint in UML, as shown inmm, indicating that the
authors are to be stored as a unique sequence. The unique sequence annotation is not yet
supported by Visio. UML does include “{ordered}” as a standard notation, but it does not
yet include notations for other collections, although obvious ones suggest themselves (e.g.
{sequence}).

UML data models from an ORM perspective (part 10) 6



(a) (b)

was written by

Paper « {ordered}
(nF;) -- Paper * 1.* Person
paperNr

author | personName

Figure 6  Unique sequence modeled with an annotation in ORM (a) and UML (b)

Flat models (no constructors) substantially simplify the declaration of constraints
(which typically apply to members, not collections), derivation rules (and hence queries),
and avoid arbitrary or non-conceptual decisions about how to store (and possibly
duplicate) fact types and constraints. For example, in |Ei.gu—|:e_2| the ORM exclusion
constraint may be verbalized: no Person wrote and reviewed the same Book. Although
one could use collection types here (e.g. sets of books for an author, or sets of authors of a
book) this would be extremely unwise, since it would complicate verbalization,
validation, fact expression (possibly duplicated) and constraint expression (possibly
duplicated). In conceptual modeling, we should not have to concern ourselves about how
individual fact types might be stored in structures, or where the constraint code will
reside. Such concerns are implementation details, and should be delayed until a clear
conceptual picture of the world is obtained.

(b)

Person i\uthor " Book
personName {P} BF— * | isbn {P}
reviewer

reviewed

Figure 7  Pair-exclusion constraint in ORM (a) needs to be captured textually in UML

Since UML does not provide a graphical notation for such an exclusion constraint, it
should be specified either informally as a note, or formally using a language of choice.
Since OCL includes collection types with predefined operations, and the population of the
association roles author and reviewer are sets, this constraint can be expressed in OCL as
follows:

Book
self.author -> intersection(self.reviewer) -> isEmpty

Although this constraint expression is clear enough to somebody with a formal
background, it is of little use for validating the rule with the subject matter expert

UML data models from an ORM perspective (part 10) 7



(typically a business person with little formal training). For such purposes, ORM’s
ConQuer language is far more suitable.

Next issue

The ten articles in this series have covered UML data modeling issues from an ORM
perspective. My next couple of articles will consider other data modeling notations
(flavors of ER, as well as IDEF1X) from an ORM viewpoint. Later on, | may return to UML
to discuss its behavioral side.

References

Booch, G., Rumbaugh, J. & Jacobson, I. 1999, The Unified Modeling Language User Guide,
Addison-Wesley, Reading MA, USA.

Cattell, R.G.G. (ed.) 1997, The Object Database Standard: ODMG 2.0, Morgan Kaufmann
Publishers, San Francisco.

Halpin, T. 1995, Conceptual Schema and Relational Database Design, 2nd edn (revised 1999),
WytLytPub, Bellevue WA, USA.

ter Hofstede, A.H.M., Proper, H.A. & Weide, th.P. van der 1993, ‘Formal definition of a
conceptual language for the description and manipulation of information models’,
Information Systems, vol. 18, no. 7, pp. 489-523.

Martin, J. & Odell, J. 1998, Object-Oriented Methods: a Foundation, UML edn, Prentice Hall, Upper
Saddle River, New Jersey.

OMG, UML Specification v. 1.3 final draft, OMG UML Revision Task Force website,
http://uml.systemhouse.mci.com/artifacts.htm.

OMG, UML 1.3 Revisions and Recommendations, Appendix A, issues 35-6, document ad/99-06-
11, http://uml.systemhouse.mci.com/artifacts.htm.

Rumbaugh, J., Jacobson, I. & Booch, G. 1999, The Unified Modeling Language Reference Manual,
Addison-Wesley, Reading MA, USA.

Warmer, J. & Kleppe, A. 1999, The Object Constraint Language: precise modeling with UML,
Addison-Wesley, Reading MA, USA.

This paper is made available by Dr. Terry Halpin and is downloadable from www.orm.net.

UML data models from an ORM perspective (part 10) 8



A comparison of UML and ORM for data
modeling

by Dr. Terry Halpin

Director of Database Strategy, Visio Corporation

and Dr. Anthony Bloesch

Director of Database Software Modeling, Visio Corporation

This paper first appeared in Proc. EMMSAD’98 3™ IFIP WG8.| International Workshop on Evaluation of
Modeling Methods in Systems Analysis and Design, Pisa, Italy, in June, 1998.

The Unified Modeling Language (UML) is becoming widely used for both database and
software modeling, and is being evaluated by the Object Management Group as a
standard language for object-oriented analysis and design. For data modeling purposes,
UML includes class diagrams, that may be annotated with expressions in a textual
constraint language. Although facilitating the transition to object-oriented code, UML’s
implementation concerns render it less suitable for developing and validating a conceptual
model with domain experts. This defect can be remedied by using a fact-oriented approach
for the conceptual modeling, from which UML class diagrams may be derived. Object-
Role Modeling (ORM) is currently the most popular fact-oriented approach to data
modeling. This paper examines the relative strengths and weaknesses of ORM and UML
for data modeling, and indicates how models in one notation can be translated into the
other.

Introduction

The Unified Modeling Language (UML) is gaining wide popularity, and has been adopted
by the Object Management Group as a standard for object-oriented (OO) modeling. Much
of UML has a programming flavor, with many constructs designed to assist developers of
object-oriented code. However, this paper focuses on the suitability of methods for
developing a conceptual model of the data perspective. Hence we restrict our discussion
of UML to its class and object diagrams, as supplemented by textual annotations. Some
empirical studies indicate that Entity Relationship (ER) schemas are often more correct,
understandable and easy to develop than a corresponding OO schema . There are
many OO approaches however, and UML may be used for analysis by ignoring its
implementation features. When used purely for analysis, UML class diagrams provide an
extended ER notation.

A comparison of UML and ORM for data modeling 1



UML’s object-oriented approach facilitates the transition to object-oriented code, but
can make it awkward to capture and validate data concepts and business rules with
domain experts, and to cater for structural changes in the application. These problems can
be remedied by using a fact-oriented approach where communication takes place in
simple sentences, each sentence type can easily be populated with multiple instances, and
attributes are eschewed in the base model. Object Role Modeling (ORM) is a fact-oriented
approach that harmonizes well with UML, since both approaches provide direct support
for roles, n-ary associations and objectified associations. ORM pictures the world simply
in terms of objects (entities or values) that play roles (parts in relationships). For example,
you are now playing the role of reading, and this paper is playing the role of being read.

The following section discusses some basic criteria for evaluating the suitability of a
conceptual modeling language. These design principles are used in later sections to
examine the relative strengths and weaknesses of UML and ORM for data modeling,
focusing first on the data structures, and then moving on to constraints. Along the way,
we outline how models in one notation can be translated into the other. The conclusion
summarizes the main points and identifies topics for future research. Appendix 1
provides further background on UML and ORM, and Appendix 2 evaluates textual
language support in UML and ORM for constraints, derivation rules and queries.

Conceptual modeling language criteria

A modeling method comprises both a language and a procedure to guide the modeler in
using the language to construct models. A language has associated syntax (marks),
semantics (meaning) and pragmatics (use). Written languages may be graphical
(diagrams) and/or textual. The terms “abstract syntax” and ‘“concrete syntax” are
sometimes used to distinguish underlying concepts (e.g. class) from their representation
(e.g. named rectangle). Conceptual modeling portrays the application at a fundamental
but high level, using terms and concepts familiar to the application users. A conceptual
model ignores logical and physical level aspects such as the underlying database
structures to be used for implementation, and also ignores external level aspects such as
what screen forms will be used for data entry. The following criteria provide a useful
basis for evaluating conceptual modeling methods:

e Expressibility e Validation mechanisms
e Clarity e Abstraction mechanisms
e Semantic stability e Formal foundation

*  Semantic relevance

The expressibility of a language is a measure of what it can be used to say. Ideally, a
conceptual language should be able to completely model all details about the application
domain that are conceptually relevant. This is called the 100% Principle @] ORM is a
method for modeling and querying an information system at the conceptual level, and for
mapping between conceptual and logical levels. Although various ORM extensions have

A comparison of UML and ORM for data modeling 2



been proposed for object-orientation and dynamic modeling [e.g. El |Z| |T_9|] the focus of
ORM is on data modeling, since the data perspective is more stable and it provides a
formal foundation on which operations can be defined. In this sense, UML is generally
more expressive than standard ORM, since its use case, behavior and implementation
diagrams model aspects beyond static structures. An evaluation of such additional
modeling capabilities of UML and ORM extensions is beyond the scope of this paper. We
show later that ORM diagrams are graphically more expressive than UML class diagrams.
In addition, ORM can be used in conjunction with the other UML diagrams, since ORM
diagrams may be abstracted to attribute views or transformed into UML class diagrams.

The clarity of a language is a measure of how easy it is to understand and use. To
begin with, the language should be unambiguous. Ideally, the meaning of diagrams or
textual expressions in the language should be intuitively obvious. At a minimum, the
language concepts and notations should be easily learnt and remembered. Semantic
stability is a measure of how well models or queries expressed in the language retain their
original intent in the face of changes to the application. The more changes one is forced to
make to a model or query to cope with an application change, the less stable it is. Semantic
relevance requires that only conceptually relevant details need be modeled. Any aspect
irrelevant to the meaning (e.g. implementation choices, machine efficiency) should be
avoided. This is called the conceptualization principle [m.

Validation mechanisms are ways in which domain experts can check whether the model
matches the application. For example, static features of a model may be checked by
verbalization and multiple instantiation, and dynamic features may be checked by
simulation.

Abstraction mechanisms allow unwanted details to be removed from immediate
consideration. This is very important with large models. ORM diagrams tend to be more
detailed and take up more space than corresponding UML models, so abstraction
mechanisms are often used. Various mechanisms such as modularization, refinement
levels, feature toggles, layering, and object zoom can be used to hide and show just that
part of the model relevant to a user’s immediate needs [E| Eh With minor variations,
these techniques can be applied to both ORM and UML. ORM also includes an attribute
abstraction procedure to automatically generate a UML or ER diagram as a view.

A formal foundation is needed to ensure unambiguity and executability (e.g. to
automate the storage, verification, transformation and simulation of models). One
particular benefit is to allow formal proofs of equivalence and implication between
alternative models for the same application [m Although ORM’s richer graphic
constraint notation provides a more complete diagrammatic treatment of schema
transformations, use of textual constraint languages can partly offset this advantage. With
respect to their data modeling constructs, both UML and ORM have an adequate formal
foundation. Since the ORM and UML languages are roughly comparable with regard to
abstraction mechanisms and formal foundations, our evaluation in the following sections
will focus on the criteria of expressibility, clarity, stability, relevance and validation.

A comparison of UML and ORM for data modeling 3



Data structures

m summarizes the main correspondences between conceptual data modeling
concepts in ORM and UML. In this section we consider the left half of the table. In UML
and ORM, objects and data values are both instances. Each object is a member of at least
one type, known as class in UML and an object type in ORM. ORM classifies objects into
entities (UML objects) and values (UML data values—constants such as character strings
or numbers).

Table 1 Basic correspondence between ORM and UML conceptual concepts for data models

Data instances/structures

Constraints

ORM UML ORM UML

Entity Object Internal uniqueness Multiplicity of ..1 §

Value Data value External uniqueness — {'use qualified assoc. § }
Object Object or Data value Simple mandatory role Multiplicity of 1..

Entity type Class Disjunctive mandatory —

Value type Data type Internal frequency Multiplicity §

Obiject type Class or Data type External frequency —

— { use relationship type } | Attribute Subset Subset §

Unary relationship type — {use Boolean attribute} | Exclusion Xor-constraint §

2+-ary relationship type

Association

Subtype link & definition

Subclass discriminator etc. §

2+-ary relationship instance

Link

Ring constraints

Nested object type

Association class

Join constraints

Co-reference

Qualified association §

— {use unig. and mand.}

Aggregation/composition

Initial/changeability

Textual constraints

Textual constraints

§ = incomplete coverage of corresponding concept

In UML, entities are identified by oids, but in ORM they must have a reference
scheme for human communication (e.g. employees might be referenced by social security
numbers). UML classes must have a name, and may also have attributes, operations
(implemented as methods) and play roles. ORM object types must have a name and play
roles. Since our focus is on the data perspective, we avoid any detailed discussion of
operations, except to note that some of these may be handled in ORM as derived
relationship types. A relationship instance in ORM is called a link in UML (e.g. Employee
101 works for Company ‘Visio’). A relationship type in ORM is called an association in UML
(e.g. Employee works for Company). Object types in ORM are depicted as named ellipses,
and simple reference schemes may be abbreviated in parentheses below the type name.
Classes in UML are depicted as named rectangles to which attributes and operations may
be added.

Apart from object types, the only data structure in ORM is the relationship type. In
particular, attributes are not used at all in base ORM. This is one of the fundamental

A comparison of UML and ORM for data modeling 4




differences between ORM and UML (and ER for that matter). Wherever an attribute is used
in UML, ORM uses a relationship instead. The advantages of this are not fully recognized,
despite debates in the past over the issue. Firstly, attribute-free models and queries are
more stable, because they are free of changes caused by attributes evolving into entities or
relationships, or vice versa. An ORM model is essentially a connected network of object
types and relationship types. The object types are the semantic domains that glue things
together, and are always visible. This connectedness reveals relevant detail and enables
ORM models to be queried directly, using traversal through object types to perform
conceptual joins [Ej In addition, attribute-free models are easy to populate with multiple
instances, facilitate verbalization, are simpler and more uniform, facilitate constraint
specification and avoid arbitrary modeling decisions. Suppose we need to record the title
and sex of each employee. A complete model should include a relationship type to
indicate which titles are restricted to which sex (e.g. “Mrs”, “Miss”, “Ms” and “Lady”
apply only to the female sex). In ORM this constraint can be captured graphically as a
join-subset constraint between the relevant fact types, or textually as a constraint in a
formal ORM language (e.g. if Person; has a Title that is restricted to Sex; then Person; is
of Sexy). If we instead model title and sex as attributes, it is unclear how to express
relevant restriction association.

Attributes however have two advantages: they often lead to a more compact diagram,
and they can simplify arithmetic derivation rules (see later). For this reason, ORM
includes algorithms for dynamically generating attribute-based diagrams as views [EI m
These algorithms assign different levels of importance to object types depending on their
current roles and constraints, redisplaying minor fact types as attributes of the major
object types. Elementary facts are the fundamental conceptual units of information, are
uniformly represented as relationships, and how they are grouped into structures is not a
conceptual issue. Apart from standard ORM, the OSM modeling method also rejects the
use of attributes because of their inherent instability [Ej.

ORM allows relationships of any arity (number of roles). Each relationship type has at
least one reading or predicate name. An n-ary relationship may have up to n readings
(one starting at each role), to provide more natural verbalization of constraints and
navigation paths in any direction. ORM also allows role names to be added. A predicate is
an elementary sentence with holes in it for object terms. These object holes may appear at
any position in the predicate (mixfix notation), and are denoted by an ellipsis “...” if the
predicate is not infix-binary. Mixfix notation enables natural verbalization of sentences in
any language (e.g. in Japanese, verbs come at the end of sentences). ORM includes various
procedures to assist in the creation and transformation of models. A key step in its design
procedure is the verbalization of information examples relevant to the application, such as
sample reports expected from the system. This is in the spirit of UML’s use cases, except
the focus is on the underlying data.

ORM sentence types (and constraints) may be specified either textually or graphically.
Both are formal, and can be automatically transformed into the other. In an ORM
diagram, roles appear as boxes, connected by a line to their object type. A predicate
appears as a named, contiguous sequence of role boxes. Since these boxes are set out in a
line, fact types may be conveniently populated with tables holding multiple fact instances,

A comparison of UML and ORM for data modeling 5



one column for each role. This allows all fact types and constraints to be validated by
verbalization as well as sample populations. Communication between modeler and
domain expert takes place in a familiar language, backed up by population checks.

UML uses Boolean attributes instead of unary relationships, but allows relationships
of all other arities. Each association may be given at most one name, and this is optional.
Binary associations are depicted as lines between classes, with higher arity associations
depicted as a diamond connected by lines to the classes. Roles are simply the line ends,
but may optionally be given names. Verbalization into sentences is possible only for infix
binaries, and then only by naming the association with a predicate name (e.g. “employs”)
and using an optional marker “»” to denote the direction. Since roles for ternaries and
higher arity associations are not on the same line, directional verbalization is ruled out.
This non-linear layout also makes it impractical to conveniently populate associations
with multiple instances. Add to this the impracticality of displaying multiple populations
of attributes, and it is clear that class diagrams are almost useless for population checks
(e.0. [@ p. 62). UML does provide object diagrams for instantiation, but these are
convenient only for populating associations with a single instance. Adding multiple
instances leads to a mess (e.g. [Ei p. 31). Hence, “the use of object diagrams is fairly

limited” ([, p. 23).

Both UML and ORM allow associations to be objectified as first class object types,
called association classes in UML and nested object types in ORM. UML requires the same
name to be used for the original association and the association class, impeding natural
verbalization, in contrast to ORM nesting based on linguistic nominalization (a verb
phrase is objectified by a noun phrase). UML allows objectification of n:1 associations.
Currently ORM forbids this except for 1:1 cases, since attached roles are typically best
viewed as played by the object type on the “many” end of the association [m However,
ORM can be relaxed to downgrade this error to a warning, and mapping algorithms can
add a pre-processing step to re-attach roles and adjust constraints internally. In spite of
identifying association classes with their underlying association, UML displays them
separately, making the connection by a dashed line. In contrast, ORM intuitively envelops
the association with an object type frame (see Figure 1).

UML ORM

"Writing !"

Person 1.% * | Paper Person

personName | guthor | paperNr (name)

Writing

period [0..1]

Figure 1: Writing is depicted as an objectified association in UML and ORM

A comparison of UML and ORM for data modeling 6



CONSTRAINTS

In Figure 1, the UML diagram includes multiplicity constraints on the association roles. The
“1..*” indicates that each paper is written by one or more persons. In ORM this is captured
as a mandatory role constraint, represented graphically by a black dot. InfoModeler allows
this constraint to be entered graphically, or by answering a multiplicity question, or by
induction from a sample population, and can automatically verbalize the constraint. If the
inverse predicate “is written by” has been entered (its display may be suppressed for
tidiness, as in Figure 1), InfoModeler verbalizes the constraint as “each Paper is written by
at least one Person”.

In UML the “*” on the right hand role indicates that each person wrote zero or more
papers. In ORM the lack of a mandatory role constraint on the left role indicates it is
optional (a person might write no papers), and the arrow-tipped line spanning the
predicate is a uniqueness constraint indicating the association is many:many (when the fact
table is populated, each whole row is unique). A uniqueness constraint on a single role
means that entries in that column of the associated fact table must be unique. Figure 2
summarizes the equivalent constraint notations for binary associations, read from left to
right. The third case (m:n optional) is the weakest constraint pattern. Though not shown
here, 1:n cases are the reverse of the n:1 cases, and 1:1 cases combine the n:1 and 1:n cases.

UML ORM

n:1

0..1
* "
both roles A B --
optional
n:1 % 1 —
first role A B --
mandatory
mn - * -~
both roles A B
m:n N 4 * i —.
first role =

A B

Figure 2: Some equivalent representations in UML and ORM

An internal constraint applies to roles in a single association. For an n-ary association,
each internal uniqueness constraint must span at least n-1 roles. Unlike many ER
notations, UML and ORM can express all possible internal uniqueness constraints. For
example, Figure 3 is a UML diagram for a ternary association in which both Room-Time
and Time-Activity pairs are unique.

A comparison of UML and ORM for data modeling 7



Time

0.1 0.1 .
Room Activity

Figure 3: Multiplicity constraints on a ternary in UML

An ORM depiction of the same association is shown in Figure 4, along with two other
associations and sample populations. Note how useful the population of the ternary is for
checking the constraints. For example, if Time-Activity is not really unique, this can be
tested by adding a counterexample.

10 PA

20 DP

20 INT DP IM class
33 DP DP AQ demo
33 INT INT AQ demo

(code)

<

>

| requires |

Activity
(name)
...at...is used for ...

provides | isin

Room

(nr)

< >

20 | Mon 9am | IM class
20 | Mon4pm | AQ demo
20 | Tue 2pm | IM class
33 | Mon 9am | AQ demo
33 | Fri5pm Party

Figure 4: An ORM diagram with sample populations

Multiplicity constraints in UML may specify any range of occurrence frequencies (e.g. 1,
3..7) but each is applied to a single role (for n-aries, the range indicates what is possible
when the other n-1 classes have a fixed value). ORM allows the same ranges, but
partitions the multiplicity concept into the two orthogonal notions of mandatory role
constraints and frequency constraints. This separation is useful in localizing global
impact to just the mandatory role constraint (e.g. every population instance of an object
type A must play every mandatory role of A). Because of its non-local impact, modelers
need to be careful not to specify this constraint unless it is really needed. ORM frequency
constraints apply only to populations of the constrained roles (e.g. if an instance plays that
role, it does so the specified number of times) and hence have only local impact.
Frequency constraints in ORM are depicted as number ranges next to the relevant roles.

A comparison of UML and ORM for data modeling 8



Unigueness constraints are just frequency constraints with a frequency of 1, but are given
a special notation because of their importance and ubiquity.

Attribute multiplicity constraints in UML are placed in square brackets after the
attribute name (e.g. Figure 1). If no such constraint is specified, the attribute is assumed to
be single-valued and mandatory. Multi-valued attributes are arguably an implementation
concern. Mandatory role constraints in ORM may apply to a disjunction of roles. In Figure
5, for example, each academic is either tenured or contracted till some date. UML cannot
express disjunctive mandatory role constraints graphically. Perhaps influenced by oids,
UML does not specify any standard notation to mark attribute uniqueness constraints
(candidate keys). It suggests that boldface might be used for this (or other purposes) as a
tool extension ([@, p. 25). Another alternative is to annotate unique attributes with
comments (e.g. {CK1}). It seems strange to have a standard notation for uniqueness when
the feature is modeled as an association but not when it is modeled as an attribute.

Academic
(empnr)

is contracted till

Figure 5: Disjunctive mandatory role constraint and exclusion constraint.

Frequency and uniqueness constraints in ORM may apply to a sequence of any
number of roles from any number of predicates. This goes far beyond the graphic
expressibility of UML. ORM constraints that span different predicates are called external
constraints. Only a few of these can be graphical expressed or emulated in UML. For
example, subset and equality constraints in ORM may be expressed between two
compatible role-sequences, where each sequence is formed by projection from possibly
many connected predicates. For example, the dotted arrow in Figure 4 expressed the
following join-subset constraint: if a Room at a Time is used for an Activity that requires a
Facility then that Room provides that Facility. UML is capable of expressing only basic
subset constraints between binary associations, and its inability to project on the relevant
roles invites modeling errors (e.g. [Ei, p. 68).

ORM allows exclusion constraints over a set of compatible role-sequences, by
connecting “00” by dotted lines to the relevant role-sequences. A trivial example is given
in Figure 5: no academic is both tenured and contracted. UML supports exclusion
constraints only between roles played by the same object type, by connecting “OR” to the
relevant associations by dashed lines ([R8], p. 52). This notation is confusing (e.g. “or” here
means “xor”)I. Also consider the difference between the following two constraints: no
person both wrote and reviewed; no person wrote and reviewed the same paper (ORM

! Subsequent to the original publication of this paper, version 1.3 of UML renamed the constraint “xor”

A comparison of UML and ORM for data modeling 9



clearly distinguishes these by noting the precise arguments of the constraint). UML has no
graphic notation for exclusion between attributes, or between attributes and associations
(e.g. in Figure 5, the unary predicate must be modeled in UML as a boolean attribute, and
the contract predicate would probably be modeled as a date attribute).

UML uses qualified associations in many cases where ORM uses an external uniqueness
constraint for co-referencing. Figure 6 is based on an example from the standard document
([@, p. 59), along with the ORM counterpart. Qualified associations are shown as named,
smaller rectangles attached to a class. ORM uses a circled “u” to denote an external
uniqueness constraint (the bank name and account number uniquely define the account).

Bank
accountNr
’ \
* AccountNr )
\ /
is used
0.1 by
uses
Person
Person
UML (custnr) ORM

Figure 6: Qualified association in UML, and co-referenced object type in ORM

The UML notation is not only less clear, but less adaptable. For example, if we now
want to record something about the account (e.g. its balance) we need to introduce an
Account class, and the connection to accountNr is unclear. As a complicated example of
this deficiency, see [ﬂ] (p. 51, Fig. 3.14) where the semantic connection between Node and
nodeName is lost. The problem can be solved in UML by using an association class
instead, though this is not always natural.

Both UML and ORM provide support for subtyping, including multiple inheritance.
Both show subtypes outside, connected by arrows to their supertype(s), and both allow
declaration of constraints between subtypes such as exclusion and totality. However UML
provides only weak support for defining subtypes: a discriminator label may be attached to
subtype arrows to indicate the basis for the classification (e.g. a “sex” discriminator might
be to subtype Man and Woman from Person). This is not enough to formally guarantee
that instances that populate these subtypes have the correct values for a sex attribute that
might apply to Person. Moreover, much more complicated subtype definitions are
sometimes required. Finally, subtype constraints such as exclusion and totality are
typically implied by subtype definitions in conjunction with existing constraints on the
supertypes; these implications are formally captured in ORM but are ignored in UML,

A comparison of UML and ORM for data modeling 10



leading to the possibility of inconsistent UML models. For further discussion on these

issues see [@@

ORM includes a number of other graphic constraints with no counterpart in UML. For
example, ring constraints such as irreflexivity, asymmetry, intransitivity and acyclicity,
may be specified over a pair of roles played by the same object type (e.g. Person-is-parent-
of-Person is acyclic and deontically intransitive). Such constraints can be specified as
comments in UML. UML treats aggregation as a special kind of whole/part association,
attaching a small diamond to the role at the “whole” end of the association. In ORM this is
shown as an m:m association Whole-contains-Part. UML treats composition as a stronger
form of aggregation in which each part belongs to at most one whole (in ORM the
“contains” predicate becomes 1:n). Whole and Part are not necessarily disjoint types, so
ring constraints may apply (e.g. Part contains Part). However UML makes the rather
strange demand that both aggregation and composition be transitive and antisymmetric.
ORM’s modeling guidelines favor direct containment for base predicates (marked as
intransitive and acyclic), defining full containment recursively as a derived predicate in
the usual fashion to compute the transitive closure.

UML allows collection types to be specified as annotations. For example, if we wish to
record the order in which authors are listed for any given paper, the UML diagram in
Figure 1 can have its author role annotated by “{ordered}”. This denotes a sequence with
unique members. In ORM there are two approaches to handle this. One way is to keep
base predicates elementary, and annotate them with the appropriate constructor as an
implementation instruction to the mapper. In this case we use the ternary fact type
Person-wrote-Paper-in-Position, place uniqueness constraints over Person-Paper and
Paper-Position, and annotate the predicate with “{seq}” to indicate mapping the positional
information as a unique sequence. Sets, sequences and bags may be treated similarly. This
is the method we recommend, partly because elementarity allows individual instantiation
and simplifies the semantics. The other way is to allow complex object types in the base
model by applying constructors directly to them (e.g. [@).

UML allows default and initial values to be declared for attributes, as well as allowing
some attributes to be specified as immutable. Though not part of standard ORM, proposals
to extend ORM to handle default information have been made ﬁ] and it would be a
trivial extension to cater for specification of initial values and immutability.

ORM includes various sub-conceptual notations that allow a pure conceptual model
to be annotated with implementation detail (e.g. indexes, subtype mapping choices,
constructors). UML includes a much vaster set of such annotations for class diagrams, that
go into intricate detail for implementation in object-oriented code (e.g. navigation
directions across associations, attribute visibility (public, protected, private), etc.). These
are irrelevant to conceptual modeling and are hence ignored in this paper. Both UML and
ORM include formal textual languages for expression of constraints, derivation rules and
queries (see Appendix 2 for a comparative evaluation).

A comparison of UML and ORM for data modeling 11



Conclusion

This paper identified a set of principles for evaluating modeling languages and applied
them in evaluating UML and ORM for conceptual data modeling. ORM was generally
found to be more expressive graphically, simpler, easier to validate (through verbalization
and multiple instantiation) and more stable for both modeling and queries. However
UML can offer a more compact notation, is gaining wide support in industry, especially
for the design of object-oriented software, and includes several mechanisms for modeling
behavior. Hence it seems worthwhile to provide tool support that would allow users to
gain the advantages of performing conceptual modeling in ORM, while still allowing
them to work with UML. Tool support is already available to transform between ORM,
ER, Relational and Object-Relational models, and this is currently being extended to
provide extensive support for UML, including transformations to and from ORM. Once
this support is widely available, empirical studies are planned to study why and how
practitioners choose and/or integrate modeling methods in practice.

Appendix 1: Background on UML and ORM

The Unified Modeling Language (UML) is largely derivative of earlier object-oriented
modeling techniques. In 1996, a team at Rational Corporation led by Grady Booch, Jim
Rumbaugh and Ivar Jacobson released an initial UML proposal that synthesized the
Booch, OMT (Object Modeling Technique) and OOSE (Object-Oriented Software
Engineering) methods. In September 1997, version 1.1 of UML was published by a
consortium of several companies, who collaborated to refine and extend UML for
evaluation by the Object Management Group (OMG) as a standard language for object-
oriented analysis and design [@ E| @l |2_91 Version 1.1 was added to the list of OMG
Adopted Technologies in November 1997. UML is currently undergoing minor revisions
by the OMG Revision Task Force, with versions 1.2 through 1.4 expected to be completed

by April 1999 [R3].

Any complete information modeling method must address the data, process and
behavioral perspectives |12_2] and cover both analysis and design. To this end, UML
provides a large suite of concepts and notations, including the following diagram types:
Use case diagram; Static Structure diagrams (Class diagram, Object diagram); Behavior
diagrams (Statechart diagram, Activity diagram); Interaction diagrams (Sequence
diagram, Collaboration diagram); and Implementation diagrams (Component diagram,
Deployment diagram). As an extension, UML diagrams may be annotated with
constraints in a textual language. UML provides the textual language OCL (Object
Constraint Language) to enable constraints to be formally expressed, but does not
mandate its use. Users may choose other formal languages or even informal, natural
languages for this purpose. UML does not mandate a modeling process, but generally
encourages a use-case driven, architecture-centric, iterative and incremental process.

A comparison of UML and ORM for data modeling 12



Object Role Modeling (ORM) originated in the mid-1970s as a semantic modeling
method, one of the early versions being NIAM @] and has since been extensively
revised and extended by many researchers. Overviews of ORM may be found in [|El @
@ and a detailed treatment in [El]. To better exploit the benefits of UML, or ER for that
matter, ORM can be used for the conceptual analysis of business rules, and if desired, the
resulting ORM model can be easily transformed into a UML class diagram or ER diagram.
Although all versions of ORM are based on the same framework, minor variations do
exist. For the purposes of this paper we focus on the most popular version_of ORM as
supported in modeling and query tools such as InfoModeler and ActiveQueryZ.

Appendix 2: Textual languages for constraints, derivation rules and queries

Graphical languages are convenient for expressing common constraints. However, their
simplicity comes at the cost of expressive power. The common solution is to add textual
constraint annotations to the notation. UML allows informal, semi-formal, and formal
constraints. As an extension, UML includes OCL (Object Constraint Language) as a formal
textual constraint language. OCL was part of a joint submission, by IBM and ObjecTime
Limited, to the OMG in January 1997. OCL was developed by Jos Warmer and is based on
the Syntropy method of Steve Cook and John Daniels. Constraint languages tend to be
either algebraic (e.g. OBJ) or model based (e.g. Z and VDM). OCL is a model based
constraint language. Constraints define the set of legal models. For example, a stack pop
operation could be specified as:

Stack::pop() : Element
pre: elements->notEmpty
post: elements@pre = elements->append(result)

By contrast, in an algebraic language we would use axioms like:

0 s:Stack; e:Element »
s.push(e).pop() = e and
s.push(e).pop().self = s

Any practical constraint language must deal with undefined values. For example, the
following specification should have the obvious meaning.

Real::safeDiv(denom:Real) : Real
post: self@pre = self and
denom = 0.0 implies result = 0.0 and
denom <> 0.0 implies result = value@pre / denom

In OCL, expressions containing undefined expressions are themselves undefined. To
stop the entire expression above becoming undefined, logical operators follow Kripke’s
strong three valued logic (K3). In K3, a inplies bistrue exactly when aisfal se ora
and b are t r ue; thus the above specification is defined for denom = 0. 0. In practice, much
more careful handling of undefined expressions is required ﬂ For example, using Ks

2 InfoModeler and ActiveQuery are trademarks of Visio Corporation.

A comparison of UML and ORM for data modeling 13



instead of classical logic means that theorems from standard mathematics do not apply—a
high price to pay.

UML attributes and associations may be derived (e.g. / count ). OCL can be used to
express the derivation rules through constraints. For example, the following invariant
expresses a derivation rule for / count .

Stack
count = elements->size

Various textual languages have been defined to express constraints, derivation rules
and queries in ORM (e.g. RIDL E'] PSM @] and ConQuer [El a). Of these, only
ConQuer has been implemented in a conceptual query tool. ConQuer is essentially
classical logic with set theory. Unlike OCL, ConQuer is based on standard mathematics
and thus can use all the theorems of standard mathematics. Also unlike OCL, ConQuer is
designed to take advantage of modern user interfaces. Derivation rules are expressible in
ConQuer using set comprehension, since an ORM fact table is essentially a set of tuples. In
ConQuier, the derived fact: ‘Product has gross margin of MoneyAmount.’ is expressible as:

Product has cost of MoneyAmount as Cost

L— has wholesale price of MoneyAmount as Price
L— v Price - Cost

Or mathematically, as:
{ p:Product; m:MoneyAmount | O c: MoneyAmount; w: MoneyAmount ¢

p has cost of ¢ O p has wholesale price of wOm=w-c}

Similarly, the constraint: ‘No product may have a gross margin under 30%.’ is
expressible as:
for no Product
Product has cost of MoneyAmount as Cost

L— has wholesale price of MoneyAmount as Price
L— Price / Cost < 1.3

Or mathematically, as:
- Op:Product « Oc: MoneyAmount; w: MoneyAmount

p has cost of ¢ O p has wholesale price of w Ow/c < 1.3

By using a ‘.’ notation, OCL is able to express mathematical expressions more
succinctly than ConQuer. However, since ORM already supports named roles, ConQuer
could be extended to support expressions like:

v Product
L— v Product.Price - Product.Cost

A disadvantage of the dot notation is its reliance on functional attributes. Constraint
changes and schema additions might require attributes to be remodeled, making the
expression obsolete. ConQuer’s predicate-based notation is immune to such changes.

A comparison of UML and ORM for data modeling 14



Nevertheless, some features may reliably remain functional (e.g. birthdate), and for
mathematical operations functional notation is certainly convenient.

References

10.

11.

12.

13.

Barros, A., ter Hofstede, A. & Proper, H. 1997. ‘Towards real-scale business transaction
workflow modelling’, Proc. CAISE'97 (Barcelona, Spain, June), A. Olive, J. Pastor eds,
Springer Verlag, Berlin, 437-450.

Blaha, M. & Premerlani, W. 1998, Object-Oriented Modeling and Design for Database
Applications, Prentice Hall, New Jersey.

Bloesch, A. 1995, ‘The Standard Ergo Theories’, Technical Report 95-43, Software
Verification Research Centre, The University of Queensland, Brisbane, Australia (Oct.).

Bloesch, A. & Halpin, T. 1996, ‘ConQuer: a conceptual query language’, Proc. 15th
International Conference on Conceptual Modeling ER'96 (Cottbus, Germany), B. Thalheim ed.,
Springer LNCS 1157 (Oct.) 121-133.

Bloesch, A. & Halpin, T. 1997, ‘Conceptual queries using ConQuer-1I’, Proc. 16th Int. Conf.
on Conceptual Modeling ER'97 (Los Angeles), D. Embley, R. Goldstein eds, Springer LNCS
1331 (Nov.) 113-126.

Campbell, L., Halpin, T. & Proper, H. 1996, ‘Conceptual schemas with abstractions:
making flat conceptual schemas more comprehensible’, Data & Knowledge Engineering, 20,
1, 39-85.

De Troyer, O. & Meersman, R. 1995, ‘A logic framework for a semantics of object oriented
data modeling’, OOER’95: Object-Oriented and Entity-Relationship Modeling, Springer LNCS.
1021, (Dec.) 238-49.

Embley, D. 1998, Object Database Management, Addison-Wesley.
Fowler, M. with Scott, K. 1997, UML Distilled, Addison-Wesley.

Halpin, T. 1993, ‘What is an elementary fact?’, Proc. First NIAM-ISDM Conf., G.Nijssen, J.
Sharp eds, Utrecht.

Halpin, T. 1995, Conceptual Schema and Relational Database Design, 2nd edn, Prentice Hall
Australia.

Halpin, T. 1996, ‘Business rules and object-role modeling’, Database Prog. & Design, 9, 10,
Miller Freeman, 66-72.

Halpin, T. 1998, ‘Object Role Modeling: an overview’, white paper,
www.visio.com/infomodeler.

A comparison of UML and ORM for data modeling 15



14,

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Halpin, T. 1998, ‘Object Role Modeling (ORM/NIAMY)’, Handbook on Architectures of
Information Systems, Springer (to appear).

Halpin, T. & Proper, H. 1995, ‘Subtyping and polymorphism in object-role modelling’,
Data & Knowledge Engineering 15, 3 (June), 251-281.

Halpin, T. & Proper, H. 1995, ‘Database schema transformation and optimization’,
OOER’95: Object-Oriented and Entity-Relationship Modeling, Springer LNCS, 1021 (Dec.) 191-
203.

Halpin, T. & Vermeir, D. 1997, ‘Default reasoning in information systems’, Database
Application Semantics, R. Meersman & L. Mark eds, Chapman & Hall, London, 423-442.

ter Hofstede, A., Proper, H. & van der Weide, T. 1993, ‘Formal definition of a conceptual
language for the description and manipulation of information models’, Information Systems
18, 7 (Oct.), 489-523.

ter Hofstede, A. & van der Weide, T. 1994, ‘Fact orientation in complex object role
modelling techniques’, Proc. First Int. Conf. on Object-Role Modelling (Magnetic Island,
Australia, July), T. Halpin, R. Meersman eds, 45-59.

ISO 1982, Concepts and Terminology for the Conceptual Schema and the Information Base, J. van
Griethuysen ed., ISO/TC97/SC5/WG3-N695 Report, ANSI, New York.

Meersman, R. 1982, ‘The RIDL conceptual language’, Research report, Int. Centre for
Information Analysis Services, Control Data Belgium Inc., Brussels, Belgium.

Olle, T.W., Hagelstein, J., Macdonald, I.G., Rolland, C., Sol, H.G., Van Assche, F.JM., &
Verrijn-Stuart, A.A. 1991, Information Systems Methodologies: a framework for understanding,
2nd edn, Addison-Wesley.

OMG UML Revision Task Force website, http://uml.systemhouse.mci.com/.

Shoval, P. & Shiran, S. 1997, ‘Entity-relationship and object-oriented data modeling—an
experimental comparison of design quality’, Data & Knowledge Engineering, 21, 3 (Feb.) 297-
315.

Silberschatz, A., Korth, F. & Sudarshan, S. 1996, ‘Data models’, ACM Computing Surveys,
28,1 (Mar.), 105-8.

UML Partners 1997, UML Summary, version 1.1, OMG document ad/97-08-03,

s omg org]

UML Partners 1997, UML Semantics, version 1.1, OMG document ad/97-08-04,

fanvwy omg org]

UML Partners 1997, UML Notation Guide, version 1.1, OMG document ad/97-08-05,

L omg org]

A comparison of UML and ORM for data modeling 16


http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

29. UML Partners 1997, Object Constraint Language Specification, version 1.1, OMG document
ad/97-08-08,

30. Wintraeken, J. 1990. The NIAM Information Analysis Method: Theory and Practice, Kluwer,
The Netherlands.

This paper is made available by Dr. Terry Halpin and Dr. Anthony Bloesch and is downloadable from
www.orm.net.

A comparison of UML and ORM for data modeling 17


http://www.omg.org/

Data modeling in UML and ORM revisited

by Dr. Terry Halpin
Director of Database Strategy, Visio Corporation

This paper first appeared in Proc. EMMSAD’98 4th IFIP WG8.1International Workshop on Evaluation of
Modeling Methods in Systems Analysis and Design, Heidelberg, Germany in June 1999.

Although the traditional entity relationship approach is still the most widely applied
technique for modeling database applications, object-oriented approaches and fact-oriented
approaches are being increasingly used for data modeling in general. The most popular
exemplars of the latter two approaches are respectively the Unified Modeling Language
(UML) and Object-Role Modeling (ORM). An initial, comparative evaluation of these
approaches indicated that UML has benefits for object-oriented code design (e.g.
implementation detail, including behavior), while ORM has advantages for conceptual
data modeling (e.g. semantic stability, graphical expressibility; clarity and validation
mechanisms). This paper further examines the relative strengths and weaknesses of ORM
and UML for data modeling, focusing on attribute multiplicity, association arity,
advanced constraints and subtyping. This analysis is given wider generality by
addressing various language design principles (e.g. parsimony, orthogonality,
convenience, expressibility) and illustrating how metamodel extensibility can be used to
capture some features of one approach within the other.

Introduction

Although most suited to the design phase of object-oriented (OO) programming, the
Unified Modeling Language (UML) can be used for database design in general, since
when stripped of OO implementation details, its class diagrams provide an extended
Entity-Relationship (ER) notation that can be annotated with database constructs (e.g. key
declarations). As an Object Management Group standard [@ the UML notation includes
diagrams for use cases, static structures (class, object), behavior (state chart, activity),
interaction (sequence, collaboration), and implementation (component, deployment).
Detailed discussion of these diagram types can be found in [ﬂ m Since this paper
focuses on conceptual data modeling, we restrict our discussion of UML to its class and
object diagrams, as supplemented by textual annotations.

While UML’s object-oriented approach facilitates the transition to object-oriented
code, a fact-orientated approach as exemplified by Object-Role Modeling (ORM) arguably
provides a better way to capture and validate data concepts and business rules with
domain experts, and to cater for structural changes in the application. By omitting the

Data modeling in UML and ORM revisited 1



attribute concept as a base construct, ORM allows communication in simple sentences,
where each sentence type is easily populated with multiple instances. ORM pictures the
world simply in terms of objects (entities or values) that play roles (parts in relationships).
Overviews of ORM may be found in [[0] {I] and a detailed treatment in [p].

A previous, comparative evaluation of these approaches [Ei indicated that UML has
benefits for object-oriented code design (e.g. implementation detail, including behavior),
while ORM has advantages for conceptual data modeling (e.g. semantic stability,
graphical expressibility; clarity and validation mechanisms). This result is perhaps not
surprising, given that UML is primarily intended to support object-oriented software
design, while ORM is intended primarily for conceptual analysis of data. There is no
guestion that UML provides more complete support than ORM does for developing
object-oriented code. However, UML is also promoted for conceptual data analysis and
designing database applications in general [E, and it is in this area that we believe ORM is
superior. This paper further examines the relative strengths and weaknesses of ORM and
UML for data modeling, focusing on attribute multiplicity (section 2), association arity
(section 3), advanced constraints and subtyping (section 4). An earlier version of some of
this work and related topics is accessible in online form [@.

In [E] the following language design criteria, drawn from several sources (e.g. [m),
were used to compare the data modeling capabilities of UML and ORM: expressibility;
clarity; semantic stability; semantic relevance; validation mechanisms; abstraction
mechanisms; formal foundation. The following alternative yardsticks for language design
are discussed in [El]: orthogonality; generality; parsimony; completeness; similarity;
extensibility; openness. Some of these criteria (e.g. completeness, generality, extensibility)
may be subsumed under expressibility. Language orthogonality, and to a lesser extent,
parsimony, may be viewed as sub-principles of clarity (a measure of how easy it is to
understand and use). To this list, we may add the sub-principle of convenience (how
convenient, suitable or appropriate a language feature is to the user). The analysis in
sections 2-4 pays especial attention to design principles of parsimony, orthogonality,
convenience, and expressibility. We also illustrate how metamodel extensibility can be
used to capture some features of one approach within the other (section 5). The conclusion
summarizes the main points and identifies topics for future research.

Multi-valued attributes

Language design often involves a number of trade-offs between competing criteria. One
well known trade-off is that between expressibility and tractability [@: the more
expressive a language is, the harder it is to make it efficiently executable. Another trade-
off is between parsimony and convenience: although ceteris paribus, the fewer concepts the
better (cf. Occam’s razor), restricting ourselves to the minimum possible humber of
concepts may sometimes be too inconvenient. For example, two-valued propositional
calculus allows for 4 monadic and 16 dyadic logical operators. All 20 of these operators
can be expressed in terms of a single logical operator (e.g. nand, nor), but while this might
be useful in building electronic components, it is too inconvenient for direct human

Data modeling in UML and ORM revisited 2



communication. For example, “not p” is far more convenient than “p nand p”. In practice,
we use several operators (e.g. not, and, or, if-then) since their convenience far outweighs
the parsimonious benefits of having to learn only one operator such as nand. When it
comes to proving meta-theorems about a given logic, it is often convenient to adopt a
somewhat parsimonious stance regarding the base constructs (e.g. treat “not” and “or” as
the only primitive logical operators), while introducing other constructs as derived (e.g.
define “if p then g” as “not p or g”). Similar considerations apply to modeling languages.

One basic question relevant to the parsimony-convenience trade-off is whether to use
the attribute construct in base modeling. A detailed argument in [|;L_3! favors a negative
answer to this question, and is not repeated here. ORM models attributes in terms of
relationships in its base model (for capturing, validating and evolving the conceptual
schema), while allowing attribute-views to be displayed in derived models (in this case,
compact views used for summary or implementation purposes). Traditional ER supports
single-valued attributes, while UML supports single-valued and multi-valued attributes.
Are multi-valued attributes a good idea in modeling? Let’s consider an example.

Suppose we wish to record the names of employees, as well as the sports they play (if
any). In ORM, we might model this situation as shown in Figure 1(a). ORM depicts entity
types as named, solid ellipses, value types as named broken ellipses, and associations as
named sequences of role boxes. If an entity type has a simple reference scheme, this may
be shown implicitly in parentheses below the entity type name, or shown explicitly as a
reference association. The implicit notation does not denote an attribute; it is just
shorthand for the reference association. For example, “Sport(name)” abbreviates the
injective association Sport is identified by SportName. The black dot is a mandatory role
constraint indicating that each employee has a name. The absence of a mandatory role dot
on the first role of the Plays fact type indicates that this role is optional (it is possible that
some employee plays no sport). The arrow-tipped bar spanning the first role of Employee
has EmpName is a uniqueness constraint indicating that each employee has at most one
name. The unigueness constraint spanning both roles of the plays predicate indicates this
association is m:n (an employee may play many sports, and vice versa).

@ 101 | Smith J ®F empioyee
102 |Jones E
103 |SmithJ empNr {P} 101: Employee
empName
sports [0..*] empNr = 101
empName = 'Smith J'
sports = null
102: Employee 103: Employee
empNr = 102 empNr =103
empName ='Jones E'| | empName = 'Smith J'
sports = (‘judo’) sports = (‘judo’, 'soccer’)

Figure 1. Employee plays Sport depicted as (a) ORM fact type and (b) UML multi-valued attribute.

Data modeling in UML and ORM revisited 3



One way of modeling the same situation in UML is shown in Figure 1(b). In the
absence of any standard UML notation for primary reference, we use “{P}” for this
purpose. The information about who plays what sport is modeled as the multi-valued
attribute “sports”. The “[0.*]” appended to this attribute is a multiplicity constraint
indicating how many sports may be entered here for each employee. The “0” indicates
that it is possible that no sports might be entered for some employee. Unfortunately, the
UML standard uses a null value for this case, just like the relational model. The presence of
nulls in the base UML model exposes users to implementation rather than conceptual
issues, and adds considerable complexity to the semantics of updates and queries [El E
By restricting its base structures to elementary fact types, and eschewing attributes, ORM
avoids the notion of null values, enabling users to understand models and queries in
terms of simple 2-valued logic. The “*” in “[0..*]” indicates there is no upper bound on the
number of sports of a single employee. In other words, an employee may play many
sports, and we don’t care how many. The “0..*” constraint may be abbreviated as “*”.

As Figure 1 shows, ORM allows sample populations to be displayed as fact tables,
while UML shows populations as a set of object diagrams. Notice how much easier it is to
check the constraints on the ORM diagram than on the UML diagram.

UML gives us the choice of modeling a multi-valued attribute as an association (as in
ORM). For conceptual analysis and querying, this choice helps us verbalize, visualize and
populate the associations. It also enables us to express various constraints involving the
“role played by the attribute” in standard notation, rather than resorting to some non-
standard extension (e.g. consider modeling the 1:n association Person is the best player of Sport
using a multi-valued attribute). Associations also offer more stability. For example,
consider the association Employee plays Sport in Figure 1(a). If we now want to record a skill
level for this play, we can simply objectify this association as Play, and attach the fact
type: Play has SkillLevel. Using an association class, a similar move can be made in UML if
the play feature has been modeled as an association. In Figure 1(b), however, this feature
has been modeled as the sports attribute; so this attribute needs to be removed and
replaced by the equivalent association before we can add the new details about skill level.

Another problem with multi-valued attributes is that queries (and updates and
constraints) on them need some way of extracting the components, and hence complicate
formulation for users. As a trivial example, compare queries Q1, Q2 expressed in ORM’s
ConQuer language [E] E] with their counterparts in OQL (the Object Query language
proposed by ODMG [8]):

(Q1) Listeach Employee who plays Sport ‘judo’.

(Q2) Listeach Sport that is played by Employee 103.

(Qla) select x.empNr from x in Employee where “judo” in x.sports

(Q2a) select x.sports from x in Employee where x.empNr = 103

Data modeling in UML and ORM revisited 4



Although this example is trivial, the use of multi-valued attributes in more complex
structures can make it harder for users to express their requirements. If we choose to
avoid multi-valued attributes in our conceptual model, we still have the option of using
them in the actual implementation. Both ORM and UML allow schemas to be annotated
with instructions to over-ride the default actions of whatever mapper is used to transform
the schema to an actual implementation. Since multi-valued attributes add complexity
without adding expressibility, we suggest they be avoided in the conceptual model that is
being validated by the domain expert.

Association arity

Some early versions of ORM [@, as well as most current versions of ER, restrict
associations to binaries (arity = 2). UML allows binary and longer associations (arity > 1).
ORM allows unary, binary and longer associations (arity > 0). Associations of any arity
may be transformed into equivalent binary associations (possibly nested), so no
expressibility is added by permitting non-binaries. On parsimony grounds, should we
then restrict ourselves to binaries? We think not, since the convenience of using non-
binaries is well worth it.

Consider the ternary association Room at Time is used for Activity, and suppose that each
room at a time is used for at most one activity, and that at most one room is used at a
iven time for a given activity. Diagrams of this in both UML and ORM may be found in
[L3]. We could binarize this ternary by objectifying the sub-association between room and
time and attaching activity to it as an attribute or association. Alternatively we could
objectify the sub-association between time and activity and attach room to it. We could
also create an artificial Schedule object type, and model the room, time and activity details
as binary associations or attributes. However these choices complicate validation by
verbalization and population, and make it difficult to express the constraints. Hence being
able to express the association directly as a ternary has obvious benefits at the conceptual
modeling phase.

What about unaries? You can replace them by binary associations, enumerated
attributes (e.g. Booleans) or subtypes, but this can make it harder to express constraints or
validate the model. As a trivial example, consider MZ(a), where the rule that patients
who smoke are cancer-prone is expressed directly in ORM using two unaries and a subset
constraint (shown as a dashed arrow). M(b) shows the same rule expressed in UML,
using boolean attributes and a note. Apart from diagrammatic simplicity, ORM
verbalizes the constraint formally as each Patient who smokes is cancer prone, and facilitates
checking the rule with same populations.

Data modeling in UML and ORM revisited 5



a i b
@) is cancer prone (b) Patient

patientNr {P}
! isCancerProne
! isSmoker
|

{Patient.isSmoker = false
or
Patient.isCancerProne = true}

Figure 2: Patients who smoke are cancer prone, modeled in (a) ORM and (b) UML

Advanced constraints and subtyping

m is the UML version of an OMT diagram used in E p. 68] to illustrate a subset
constraint between associations. There are some obvious problems with the multiplicity
constraints. For example, the “1” on the primary key association should be “0..1” (not all
columns belong to primary keys), and the “*” on the define association should
presumably be “1..*” (unless we allow tables with no columns). Assuming that tables and
columns are identified by oids or artificial identifiers, the subset constraint makes sense,
but the model is arguably sub-optimal since the primary key (PK) association and subset
constraint can be replaced by a Boolean isaPKfield attribute on Column.

Define {ordered}
Table 1 A % | Column
| {subset}
1 1 *
1
primaryKeyField

Figure 3: Spot anything wrong?

From an ORM perspective, heuristics lead us to initially model the situation using
natural reference schemes as shown in m Here ColName denotes the local name of
the column in the table, and we have simplified reality by assuming tables may be
identified just by their name. As seen by the external uniqueness constraints (circled “u”),
two natural reference schemes for Column suggest themselves (name plus table, or position
plus table). We can choose one of these as primary, or instead introduce an artificial
identifier. The unary predicate indicates whether a column is, or is part of, a primary key.
If desired, we could derive the association Column is a primary key field of Table from the path:
Column is in Table and Column isaPKcol (the subset constraint from the previous model is then
implied).

Data modeling in UML and ORM revisited 6



< » - ~<

V N
ColName
7/

Position
(nr)+

Figure 4: Alternative ORM model for schema shown in m

What is interesting about this example is not that the authors of the earlier model may
have made some trivial errors with constraints, but rather the difference in modeling
approaches. Most UML modelers seem to assume that oids will be used as identifiers in
their initial modeling, whereas ORM modelers like to expose natural reference schemes
right from the start, and populate their fact types accordingly. These different approaches
often lead to different solutions. The main thing is to first come up with a solution that is
natural and understandable to the domain expert, because here is where the most critical
phase of model validation should take place. Once a correct model has been determined,
optimization guidelines can be used to enhance it.

Another feature of the example is worth mentioning. The UML solution in |Eig+ur_e_13
uses the annotation “{ordered}” to indicate that a table is comprised of an ordered set (i.e. a
sequence with no duplicates) of columns. In the ORM community, a long-standing debate
has considered what is the best way to deal with collection type constructors (e.g. set, bag,
sequence, unique sequence) at the conceptual level (e.g. [IL6]). Our view is that such
constructors should not appear in the base conceptual model. Hence the use of Position in

to convey column order (the uniqueness of the order is conveyed by the
uniqueness constraint on Column has Position). Keeping fact types elementary has so many
advantages (e.g. validation, constraint expression, flexibility and simplicity) that it seems
best to relegate constructors to derived views. Constructors may also be added as an
adornment to a pure conceptual model to specify implementation choices.

In ORM, an equality constraint between two compatible role sequences is shorthand for
two subset constraints (one in either direction), and is shown as a double-headed arrow.
Such a constraint indicates that the populations of the role-sequences must always be
equal. If two roles played by an object type are mandatory, then an equality constraint
between them is implied (and hence not shown). As a simple example of an equality
constraint, consider Figure 5(a). Here the equality constraint indicates that if a patient’s
systolic blood pressure is measured, so is his/her diastolic blood pressure (and vice
versa). In other words, either both measurements are taken, or neither. This kind of
constraint is fairly common. Less common are equality constraints between sequences of
two or more roles.

Data modeling in UML and ORM revisited 7



UML has no graphic notation for equality constraints. For whole associations we
could use two separate subset constraints, but this would be messy. We could add a new
notation, using “{equality}” besides a dashed arrow between the associations, but this
notation would be unintuitive, since the direction of the arrow would have no significance
(unlike the subset case). In general, equality constraints in UML would normally be
specified as textual constraints (in braced comments). For our current example, the two
blood pressure readings would typically be modeled as attributes of patient, and hence a
textual constraint is attached to the Patient class as shown in Figure 5(b). This is awkward
compared to the corresponding ORM constraint (graphic or verbalized). The situation
could also be modeled in UML using a subtype for patients with blood pressure tested, or
by introducing a blood pressure class with the pressures shown as attributes; however
these approaches are rather artificial, and hinder validation.

(b)

Patient {Patient.systolicBP is not null
and
patientNr {P} Patient.diastolicBP is not null
patientName L _for
systolicBP [0..1] Patient.systolicBP is null
diastolicBP [0..1] and
Patient.diastolicBP is null}

has diastolic-

Figure 5: A simple equality constraint modeled in (a) ORM and (b) UML

In [E it was shown that, apart from validation benefits, ORM’s graphical constraint
language is more expressive for conceptual data modeling than UML’s graphical
constraint notation (excluding notes). ORM'’s notation is also more orthogonal and general
than UML’s. To begin with, ORM mandatory constraints may be applied to a set of one or
more roles (each object of that type must play at least of the indicated roles). UML allows
mandatory constraints to be applied only to single association roles or single attributes, by
declaring a minimum multiplicity above 0: for attributes, 1 is the default minimum
multiplicity, but for association roles 0 is the default minimum. ORM’s exclusion
constraint (shown as () may be applied to any set of compatible role sequences, indicating
at most one of these can be instantiated at a time, and its subset and equality constraints
may be applied between any pair of compatible role sequences. UML allows subset
constraints only between whole associations, and the only form of an exclusion constraint
that it does provide is an exclusive-or constraint between single roles (shown as {xor},
with the meaning that exactly one is played). In ORM, an xor constraint is declared by
orthogonally combining an exclusion constraint with a disjunctive mandatory role
constraint.

In principle, an inclusive “{or}” constraint could be added to UML to express a
mandatory disjunction between association roles; but this would not enable us to express
a mandatory disjunction between attributes (or between association roles and attributes).
A similar comment applies if we wish to extend UML with a mutual exclusion constraint.

Data modeling in UML and ORM revisited 8



And so on. In contrast, ORM'’s parsimonious decision to exclude attributes from its base
constructs enables it to achieve great expressibility without undue complexity.

ORM’s generic approach to constraints enables various classes of schema
transformations to be stated and visualized in their most general form. For example,
depicts a basic ORM equivalence @, p. 331]. As an illustration of this theorem,
consider the fact types Driver has Status {main, backup} and Driver drives Car, where each driver
has exactly one status and drives exactly one car, and each car has two drivers, one main
and one backup. Now transform this schema into the 1:1 fact types Driver is main driver of Car
and Driver is backup driver of Car, where each driver plays exactly one role and each car plays
two roles [El p. 330]. For a formal discussion of ORM schema equivalence and
optimization, see [E.

Each S; corresponds to R where T is restricted to B = b,

Figure 6: A basic schema equivalence in ORM

Both UML and ORM support subtyping, including multiple inheritance, using
substitutability (“is-a”) semantics. Both show subtypes outside, connected by arrows to
their supertype(s), and allow declaration of constraints between subtypes such as
exclusion and totality. In ORM, a subtype inherits all the roles of its supertypes. In UML, a
subclass inherits all the attributes, associations and operations/methods of its
supertype(s). Since our focus is on data modeling, not behavior modeling, we restrict our
attention to inheritance of static properties (attributes and associations), ignoring
operations or methods.

Subtypes are used in data modeling to assert typing constraints, encourage reuse of
model components and show a classification scheme (taxonomy). In this context, typing
constraints ensure that subtype-specific roles are played only by the relevant subtype.
Using subtypes to show taxonomy is of little use, since taxonomy is often more efficiently
captured by predicates. For example, the fact type Person is of Sex {male, female} implicitly
provides the taxonomy for the subtypes MalePerson and FemalePerson.

Like other ER notations, UML provides only weak support for defining subtypes. A
discriminator label may be placed near a subtype arrow to indicate the basis for the
classification. For example, Figure 7 includes a “sex” discriminator to specialize Person
into MalePerson and FemalePerson. This attribute is based on the enumerated type
Sexcode, which has been defined using the stereotype «enumeration», and listing its
values as attributes.

Data modeling in UML and ORM revisited 9



Patient «enumeration»
Sexcode

patientNr : Integer {P}

sex : Sexcode m

f

PaN
{disjoint, complete}
| sex
MalePatient FemalePatient
prostateStatus [0..1] nrPregnancies

Figure 7: Subtyping in UML

By itself, this model fails to ensure that instances populating these subtypes have the
correct sex. For example, there is nothing to stop us populating MalePatient with some
patients that have the value ‘f’ for their sexcode. ORM overcomes this problem by
requiring that formal subtype definitions be declared for all subtypes. These definitions must
refer to roles played by the supertype(s). An ORM version of the correct schema is shown
in Figure 8, together with a satisfying population. Note that an ORM partition (exclusion
and totality) constraint is implied by the combination of the subtype definitions and the
three constraints on the fact type Patient is of Sex.

Prostate
Status
(name)

Male
Patient

OK 101 102 5

each MalePatient is a Patient who is of Sex 'M'
each FemalePatient is a Patient who is of Sex 'F'

Figure 8: Formal subtype definitions are needed, and subtype partition constraints are implied

While the subtype definitions in Figure 8 are trivial, in practice more complicated
subtype definitions are sometimes required. As a basic example, consider a schema with
the fact types City is in Country, City has Population, where certain facts are to be recorded
only for US cities with over a million people. The required subtype, LargeUScity, may be
formally defined in ORM using the following ConQuer expression:

each LargeUScity is a City that is in Country ‘US’ and has Population > 1000000

Data modeling in UML and ORM revisited 10



There does not seem to be any convenient way of doing this in UML, at least not with
discriminators. One could perhaps add a derived Boolean isLarge attribute, with an
associated derivation rule in OCL, and then add a final subtype definition in OCL, but
this would be less readable than the ORM definition above. For a detailed ORM
perspective on these and other subtyping issues see [E] m

Meta-modeling

Because of ORM'’s greater expressive power, it is reasonably straightforward to capture
UML models with an ORM framework. Though less convenient, it is possible to work in
the other direction as well. To begin with, UML’s graphic constraint notation can be
supplemented by textual constraints in a language of choice (e.g. OCL). Moreover, the
UML metamodel itself has built-in extensibility that allows many constraints specific to
ORM to be captured within a UML based repository. As an example, the ORM model in
Figure 9(a) contains four constraints numbered C1..C4, and four roles numbered rl..r4.
Constraint C1 allows that a person wrote many books, and that a book was written by
many persons. Constraint C2 asserts that each book was proofed by at most one person.
Constraint C3 declares that if a book was proofed by somebody, it was also written by
somebody (in this example, recorded authorship is optional, e.g. a book might be planned
before assigning writers). The UML metamodel fragment in Figure 9(b) extends the
standard UML metamodel by adding constraintNr, constraintKind and elementNr
attributes, and adding ArgConstraint as a subtype along with the nrArguments attribute.

(@) wrote / was written by (b) Spans

C1l Constraint
{ordered}l ModelElement

constraintNr {P} - T I Ny P
constraintKind " eemet P}

AssociationEnd

ArgConstraint 2..* |{ordered}
nrArguments

proofed / was proofed by

Association

Figure 9: These ORM constraints (a) may be stored in an extended UML metamodel fragment (b)

The full UML metamodel [m is very large, and we have included only that fragment
relevant to our example. The attribute constraintKind stores the kind of constraint (subset,
exclusion, mandatory etc.) and nrArguments is the number of arguments governed by the
constraint. In this example, each argument is a sequence of one or more roles (in UML, a
role is called an AssociationEnd). The four ORM constraints may now be stored as in the
following object-relation:

Data modeling in UML and ORM revisited 11



Constraint: constraintNr | constraintKind nrArguments argumentsSpanned
C1 uniquenessinternal 1 (r1, r2)
C2 uniquenessinternal 1 (rd)
C3 subset 2 (rd, r2)
C4 exclusion 2 (r1,r2,r3,r4)

Although nrArguments is partly determined by constraintKind, it is not fully
determined (e.g. exclusion constraints may have two or more arguments). The argument
list is divided by the number of arguments to determine the individual arguments, and
constraintKind is used to determine the appropriate semantics. Though this simple
example illustrates the basic idea, transforming the complete ORM metamodel into UML
is complex. For example, as the UML metamodel fragment indicates, UML associations
must have at least two roles (association ends), so rather artificial constructs must be
introduced for dealing with unaries.

Conclusion

This paper extended a prior comparative evaluation of the data modeling facilities within
UML and ORM, by examining multi-valued attributes, association arities, advanced
constraints and subtyping, with particular reference to the language design principles of
parsimony, expressibility, orthogonality and convenience. The following parsimonious
approach to multi-valued attributes seems judicious: multi-valued attributes should be
avoided in conceptual analysis, but may be used at the implementation level. A similar
view was reached with regard to collection types (sets, bags etc.). Convenience dictates
that associations of any arity (1 or above) should be allowed in conceptual modeling.
ORM’s constraint notation was found to be more orthogonal, partly because its notion of
role unifies a concept treated as two separate notions in UML (within attributes and
associations) and partly because its constraint primitives were chosen to apply
orthogonally over sets of sequences or one or more roles. In spite of ORM'’s graphical
advantages, UML can be used to capture specific ORM constraints either by use of a
supplementary textual language, or by adapting its underlying metamodel using its built-
in extensibility mechanisms.

For data modeling, ORM offers several advantages at the conceptual analysis phase,
while UML provides greater functionality for specifying a data model at an
implementation level suitable for the detailed design of object-oriented code. Hence both
methods have value, and a complete development cycle may well profit by using ORM as
a front end to UML. Automatic transformations between the two notations seems
desirable, and research is currently under way to provide this. Once this support becomes
available, empirical studies are planned to study why and how practitioners choose
and/or integrate these modeling methods in practice.

Data modeling in UML and ORM revisited 12



References

10.

11.

12.

13.

14,

15.

16.

Bentley, J. 1988, ‘Little languages’, More Programming Pearls, Addison-Wesley, Reading MA, USA.

Booch, G., Rumbaugh, J. & Jacobson, I. 1999, The Unified Modeling Language User Guide,
Addison-Wesley, Reading MA, USA.

Blaha, M. & Premerlani, W. 1998, Object-Oriented Modeling and Design for Database Applications,
Prentice Hall, New Jersey.

Bloesch, A. & Halpin, T. 1996, ‘ConQuer: a conceptual query language’, Proc. 15th International
Conference on Conceptual Modeling ER'96 (Cottbus, Germany), B. Thalheim ed., Springer LNCS
1157 (Oct.) 121-133.

Bloesch, A. & Halpin, T. 1997, ‘Conceptual queries using ConQuer-1I’, Proc. 16th Int. Conf. on
Conceptual Modeling ER'97 (Los Angeles), D. Embley, R. Goldstein eds, Springer LNCS 1331
(Nov.) 113-126.

Cattell, R. & Barry, D. 1997, The Object Database Standard: ODMG 2.0, Morgan Kaufmann, San
Francisco, CA.

Date, C. 1995, Relational Database Writings 1991-1994, Addison-Wesley, Reading MA, USA (see
chapter 9).

Date, C. & Darwen, H. 1998, Foundation for Object/Relational Databases: the Third Manifesto,
Addison-Wesley, Reading, MA, USA .

Halpin, T. 1995, Conceptual Schema and Relational Database Design, 2nd edn (revised 1999),
WytLytPub, Bellevue WA, USA.

Halpin, T. 1998, ‘Object Role Modeling: an overview’, white paper, www.orm.net.

Halpin, T. 1998, ‘Object Role Modeling (ORM/NIAM)’, Handbook on Architectures of Information
Systems, P. Bernus, K. Mertins & G. Schmidt eds, Springer-Verlag, Berlin, 81-101.

Halpin, T. 1998-9, ‘UML data models from an ORM perspective’, Journal of Conceptual Modeling,
article series published online at www.inconcept.com.

Halpin, T. & Bloesch, A. 1998, ‘A comparison of UML and ORM for data modeling’, Proc.
EMMSAD-98: 3rd IFIP8.1 Int. Workshop on evaluation of modeling methods in systems analysis and
design, K. Siau, Y. Wand eds, Pisa, Italy.

Halpin, T. & Proper, H. 1995, ‘Subtyping and polymorphism in object-role modelling’, Data &
Knowledge Engineering 15, 3 (June), 251-281.

Halpin, T. & Proper, H. 1995, ‘Database schema transformation and optimization’, OOER’95:
Object-Oriented and Entity-Relationship Modeling, Springer LNCS, 1021 (Dec.) 191-203.

ter Hofstede, A. & van der Weide, T. 1994, ‘Fact orientation in complex object role modelling
techniques’, Proc. First Int. Conf. on Object-Role Modelling (Magnetic Island, Australia, July), T.
Halpin, R. Meersman eds, 45-59.

Data modeling in UML and ORM revisited 13



17. 1SO 1982, Concepts and Terminology for the Conceptual Schema and the Information Base, J. van
Griethuysen ed., ISO/TC97/SC5/WG3-N695 Report, ANSI, New York.

18. Levesque, H. 1984, ‘A fundamental trade-off in knowledge representation and reasoning’, Proc.
CSCSI-84, London, Ontario, 141-52.

19. Mark, L. 1987, ‘The binary relationship model — 10 anniversary’, Tech. Report CS-TR-1933,
Univ. of Maryland.

20. OMG UML Revision Task Force, OMG Unified Modeling Language Specification,
http://uml.systemhouse.mci.com/.

21. Rumbaugh, J., Jacobson, I. & Booch, G. 1999, The Unified Modeling Language Reference Manual,
Addison-Wesley, Reading MA, USA.

This paper is made available by Dr. Terry Halpin and is downloadable from www.orm.net.

Data modeling in UML and ORM revisited 14



In workshop proceedings: UML: acritical evaluation and suggested future, HICCS-34 conference (Maui, January 2001), © 2000 | EEE.

Augmenting UML with Fact-orientation

Terry Halpin
Microsoft Corporation, USA
TerryHa@microsoft.com

Abstract

The Unified Modeling Language (UML) is more useful for
object-oriented code design than conceptual information
analysis. Its process-centric use-cases provide an
inadequate basis for specifying class diagrams, and its
graphical language is incomplete, inconsistent and
unnecessarily complex. For example, multiplicity
constraints on n-ary associations are problematic, the
constraint primitives are weak and unorthogonal, and the
graphical language impedes verbalization and multiple
instantiation for model validation. This paper shows how
to compensate for these defects by augmenting UML with
concepts and techniques from the Object Role Modeling
(ORM) approach. It exploits "data use cases' to seed the
data model, using verbalization of facts and rules with
positive and negative examples to facilitate validation of
business rules, and compares rule visualizations in UML
and ORM. Three possible approaches are suggested: use
ORM for conceptual analysis then map to UML;
supplement UML with population diagrams and user-
defined constraints, enhance the UML metamodel.

1. Introduction

The Unified Modeling Language (UML) was adopted
in 1997 by the Object Management Group (OMG) as a
language for object oriented (OO) analysis and design.
This paper is concerned with UML version 1.3, the latest
approved version at the time of writing. A minor revision
(1.4) should be approved around December 2000, and a
major revision (2.0) should be completed a few years
later. Though not yet a standard, UML has been proposed
for standardization by the International Standards
Organization, with approval likely around 2001 [8].

The UML notation includes the following kinds of
diagram for modeling different perspectives of an
application: use case diagrams, class diagrams, object
diagrams, dstatecharts, activity diagrams, sequence
diagrams, collaboration diagrams, component diagrams
and deployment diagrams. This paper focuses on
conceptual data modeling, so considers only the static
structure (class and object) diagrams. Class diagrams are
used for the data model, and object diagrams for data

populations. Although not yet widely used for designing
database applications, UML class diagrams effectively
provide an extended Entity-Relationship (ER) notation
that can be annotated with database constructs (e.g. key
declarations). Background on UML may be found in its
specification , asimple introduction [ or adetailed
treatment || . In-depth discussions of UML for
database design may be found in [@ and (with a dlightly
different notation) [J3].

UML has become popular for designing OO program
code. It is well suited for this purpose, covering data,
behavior, and OO-implementation details (e.g. attribute
visibility and directional navigation across associations).
However, UML is less suitable for developing and
validating a conceptual data model with domain experts.
Its use-cases are process-centric, and in practice the move
from use cases to class diagrams is often little more than a
black art. Moreover, the UML notation prevents many
common business rules from being diagrammed.

We believe these defects are best avoided by using
fact-oriented modeling as a precursor to object-oriented
modeling in UML. Object-Role Modeling (ORM) is the
main exemplar of the fact-oriented approach, and is
supported by CASE tools such as Microsoft Visio
Enterprise [@. For data modeling, ORM’s graphical
notation is more expressive and orthogonal than UML'’s,
its models and queries are semantically stabler, and its
design procedures fully exploit data examples using both
verbalization and multiple instantiation to help capture
and validate business rules with domain experts.

This paper identifies several weaknesses in the UML
graphical language and discusses how fact-orientation can
augment the object-oriented approach of UML. It shows
how verbalization of facts and rules, with positive and
negative examples, facilitates validation of business rules,
and compares rule visuaizations in UML and ORM on
the basis of specified modeling language criteria. The
following three approaches are suggested as possible ways
to exploit the benefits of fact-orientation: (1) use ORM for
conceptual information analysis and map the ORM maodel
to UML; (2) use UML in its current form, supplemented
by informal population diagrams and user-defined
congtraints; (3) correct and extend the UML metamodel to
better support businessrules.



The rest of this paper is structured as follows. Section 2
provides a brief comparative overview of UML and ORM,
based on linguistic design criteria. Section 3 discusses
verbalization issues related to multiplicity constraints on
binary associations. Section 4 illustrates how “data use
cases’ help guide the data modeling process as a joint
activity between modeler and domain expert. It aso
exposes problems with UML multiplicity constraints on n-
ary associations, and highlights the need for a richer
graphical constraint notation. Section 5 summarizes how
the lessons learned from fact-orientation can be used to
augment UML, identifies areas of future research, and
lists references for further reading.

2. ORM, UML and language criteria

Object-Role Modeling is a conceptua modeling
method that views the world as a set of objects (entities or
values) that play roles (parts in relationships). For
example, you are now playing the role of breathing (a
unary relationship involving just you), and also the role of
reading this paper (a binary relationship between you and
this paper). An entity in ORM corresponds to a UML
object, and a value to a UML data value. A role in ORM
corresponds to an association-end in UML, except that
ORM adlso allows unaries. The main structural difference
between ORM and UML is that ORM excludes attributes
as a base construct, treating them instead as a derived
concept. For example, Person.birthdate is modeled in ORM
as the fact type: Person was born on Date. Overviews of ORM
may be found in [[15] [.6] and a detailed treatment in [[L4].
The ORM notation uses only a handful of symbols,
readily mastered by UML modelers. Although various
ORM-based proposals for process/behavioral modeling
exist [e.g. , they areignored here.

The ORM language was designed from the ground up
to meet the following criteria: expressibility; clarity;
learnability (hence orthogonality, parsimony and
convenience); semantic stability (minimize the impact of
change); semantic relevance (scope views to just the
currently relevant task); validation mechanisms;
abstraction mechanisms, and formal foundation.
Background on these principles may be found in [E] E]
P6]. Practical trade-offs between design criteria can arise,
e.g. expressibility-tractability [@ and parsimony-
convenience [. In this paper our focus is on validation
mechanisms, expressibility and orthogonality.

The most debatable feature of ORM is its avoidance of
attributes in the base model. This omission was originally
made to avoid fuzzy and unstable distinctions about
whether a feature should be modeled as an attribute or
association [. Although this advantage is enjoyed by
some other semantic modeling approaches, such as OSM
[@, a disadvantage is that attribute-free diagrams often

take up more space. A detailed argument that this price is
worth paying can be found in [@. The main advantages
are that all facts and rules can be easily verbalized as
sentences, all data structures can be easily populated with
multiple instances, the metamodel is simplified, and
models and queries are stabler since they are immune to
changes that reshape attributes as associations. Finally the
compactness of attribute-based models can dtill be
achieved by deriving them as views (this is automatable).
[Table 1]summarizes the main correspondences between
conceptual data constructs in ORM and UML. Some
examples are given later, and complementary discussions
can be found in the references [ o] 1j. An
uncommented “—" indicates no predefined support for
the corresponding concept, and “1” indicates incomplete
support. Clearly, ORM’s built-in symbols provide greater
expressibility for conceptual constraints on data.

Table 1 Conceptual data constructs in ORM and UML

ORM UML
Data structures: Data structures:
object type: entity type; object class
valuetype datatype

attribute

— { use Boolean attribute }
2*-ary association
association class

qualified association T

— { use association }
unary association
2*-ary association
objectified association
co-reference
Predefined Constraints:
multiplicity of ..1*

Predefined Constraints:
internal uniqueness
external uniqueness — {usequalified assoc. } T
simple mandatory role multiplicity of 1%.. T
disjunctive mandatory role —

frequency: internal; external multiplicity T; —

value enumeration, and textual
subset and equality subset T

exclusion xor t

subtype link and definition subclass discriminator etc. T
ring constraints —

join constraints —

object cardinality class multiplicity

—{ use unique and ring} T aggregation/composition

Textual constraints Textual constraints

Because of its orthogonality and avoidance of
attributes, ORM achieves this greater expressibility
without adding complexity. For example, ORM includes a
digunctive mandatory role (inclusive-or) constraint to
constrain instances of an object type to play at least one of
a set of roles (eg. each Applicant must have a
Qualification or a JobReference or both). ORM aso
includes an exclusion constraint that may apply between
compatible role sequences (e.g. no Person who writes a
Paper may referee that Paper). In ORM an exclusion



congtraint between single roles may be orthogonally
combined with an inclusive-or constraint to form an
exclusive-or constraint (e.g. no Person may get a BusPass
and a ParkingPermit). In contrast, UML supports an
exclusive-or congtraint as a primitive, but no inclusive-or
and no general exclusion constraint.

Unlike UML, ORM allows constraints to be applied
wherever they makes sense. For example, subset
constraints may apply between compatible role sequences,
not just associations (e.g. if a Person drives a Car then that
Person has a DriverLicence). Ring constraints are logical
congtraints on ring associations (e.g. “no Person reports to
himself/herself” is an irreflexive ring constraint). Join
congtraints apply to roles from connected predicates, e.g.
each Employee who works in a Country also speaks a
Language that is spoken in that Country).

Although the additional constraints in ORM often
arise in practice, UML models often omit them unless the
modeler is very experienced. Both UML and ORM allow
the user to add constraints and derivation rulesin atextual
language of their choice. UML suggests OCL (Object
Congtraint Language) [ for this purpose, but does not
mandate its use. ORM’s conceptual query language,
ConQuer [f] F] BT], provides a formal but higher level
aternative to OCL. Although textual languages are
needed for completeness, it is easier for amodeler to think
of aruleif it ispart of his’her graphical rule language.

3. Binary associations

Since the domain expert is the person who understands
the universe of discourse (UoD) or application domain, it
is critical to promote good communication between the
modeler and the domain expert in the conceptual analysis
phase. Subject matter experts are often not technically
skilled in modeling notations, so any business rules should
be verbalized in their natural language for model
validation. This section discusses verbalization of binary
associations and their associated multiplicity constraints.

Consider a UoD in which employees must occupy a
room, possibly shared with another employee, and some
rooms may be unoccupied. For a given state of the
database, the population of atype isthe set of instances of
that type that are present in the database. For this UoD,
each population of the occupancy association is a total
function (mandatory n:1 relation) from the population of
Employee to the population of Room. A significant
sample population is included in the instance diagram at

the toi of Ei jure 1.|
igure 1(a) depicts this binary association in UML.

Classes are denoted by named rectangles, and binary
associations by connecting lines. The association ends
correspond to roles in ORM, and may be given a role
name (e.g. “office”). The association itself may be given a

name (e.g. “Occupies’) as well as a marker “*»” to
indicate the direction in which the association should be
read. So long as an association name is supplied, the
association can be verbalized as a sentence type (e.g.
Employee occupies Room).

The association roles (ends) may be adorned with
multiplicity constraints that specify the possible
multiplicities. For example, “1..*” means one or more (at
least one ), “0..1" means zero or one (at most one), “1”
abbreviates“1..1" (exactly one) and “*” abbreviates“0..*”
(zero or more). Like ORM, UML allows multiplicities to
include combinations of numbers and number ranges (e.g.
“2,4,6,10..20"), even if these would be rarely used.

pop(Employee) pop(Room)

)
o

occupies

@ N

s » 1
Employee Occupies

Room

office

b *
® Employee (4.1) @ ©7 Room

C .
© EMPLOYEE |an occupier of ROOM
occupied by

ccupies/ is occupied by

(d) 0
‘+——p
— T @

el rl
(€) e2 r2
e3 r2

Figure 1 Mandatory n:1 association in (a) UML (b)
DSB-ER (c) Barker-ER (d) ORM

UML places each multiplicity constraint on the “far
role”, in the direction in which the association is read.
Hence the multiplicity constraint on the Room role may be
verbalized thus; each Employee occupies exactly one Room. The
“*" constraint on the Employee role may be verbalized: it
is possible that more than one Employee occupies the same Room.
The “*” (zero or more) is the default multiplicity for a
role, and may be regarded as the absence of a constraint
rather than a constraint. Hence we could omit its



verbalization, but it is normally safer to provide it to
clarify itsimpact.

These verbalizations, which we developed for use in
ORM, rely on singular terms being used for class names
(e.g. “Employee” not “Employees’) for natural phrasing.
Words shown in bold type have formal meaning, allowing
an ORM tool to automatically generate an ORM diagram
from the textual formulation of the association and its
congtraints. Although UML does not have any formal
verbalization, a request for proposal has been issued by
the UML committee for a “Human Readable Textual
Notation”, so something like this could eventualy be
added to UML. ORM'’s verbalization patterns could
provide a good basis for extending UML in this way.

b) shows the same association in an ER
notation recently proposed by Dey, Storey and Barron for
work with binary and n-ary (n > 2) associations [. Let's
call this DSB-ER notation after its proponents. Here,
entity types are depicted as named rectangles and binary
relationships are depicted as named diamonds, as in
Chen’s origina ER [E. The congtraints are called
participation constraints. The association and its
congtraints may be verbalized as before. As with some
other versions of ER, this notation places the constraint on
the “near role”, to indicate the minimum and maximum
number of times each instance of the role player must
participate in that role. Hence the “(1, 1)” and “(0,*)” on
the left and right roles correspond to UML’s “1” and “*”
placed on the right and left roles respectively (the
opposite).

c) shows the same example in the Barker-ER
notation popularized by Richard Barker [ﬂ and Oracle
Corporation. Unlike UML and DSB-ER, but like ORM,
the Barker notation supports forward and inverse
readings of binary relationships. This is useful practice
facilitates navigation in different directions around a
schema, and often leads to improved verbalization of
rules. Some UML users have added their own notationsin
this regard, such as appending reverse readings in
parentheses to the association name [. However the
UML specification has no forma support for this. We
recommend that UML be extended by adding a dot in its
metamodel to store reverse readings, and provide a
standard syntax for their display.

Unlike the two previous notations, Barker-ER uses
Separate  notations for minimum and maximum
cardinalities. Minimum cardinalities of O (optional) or at
least 1 (mandatory) are specified as optional and
mandatory roles. A role that is optional for its entity type
is designated by a dashed line-half, and a role that is
mandatory is depicted by a solid line-half: these are
specified on the near role. A maximum cardinality of 1 is
the default (no explicit mark), and a maximum cardinality
of many is depicted as a crows-foot: these are shown on
thefar roleasin UML.

Barker [m suggests a relationship naming scheme
that, while awkward for verbalizing relationship types or
instances, does allow a structured means of verbalizing the
cardinality constraints. Let A R B denote an infix
relationship R from entity type A to entity type B. Name R
in such a way that each of the following four patterns
results in an English sentence: each A (must | may) be R (one

and only one B | one or more B-plural-form). Use “must” or
“may” when the first role is mandatory or optional
respectively. Use “one and only one” or “one or more”
when the cardinality on the second role is one or many
respectively. For example, the constraints in Figure 1(c)
verbalize as. each Employee must be an occupier of one and only

one Room; each Room may be occupied by one or more

Employees. This verbalization convention is good for basic
multiplicity constraints on infix binaries. However it is
less general than ORM’s approach, which applies to
instances as well as types, for predicates of any arity, with
no need for pluralization.

d) shows the same association in ORM. Entity
types are depicted as named, solid ellipses, and
relationships as named sequences of one or more roles,
with each role depicted as a box connected by aline to its
object type. A relationship is called a fact type unlessit is
used simply to provide a primary reference scheme. For
binary associations, forward and inverse readings may be
provided, separated by a slash. Asin UML, each role may
also be named, although ORM tools typically store role
names on property sheets rather than display them on the
diagram.

A black dot “¢” on arole connector indicatesthe roleis
mandatory (must be played by each instance in the
population of the object type). By default, a role is
optional (no black dot). ORM constraints were designed
to facilitate validation using sample populations. An
arrow-tipped bar over one or more roles is a uniqueness
congtraint declaring that each entry in the population of
that role sequence is unique (occurs there exactly once).
Any relationship may be populated with a table where
each column corresponds to the role in that position. So
the constraint over the left role of Figure 1{d) indicates
that entries in the left column of Figure 1{e) must be
unique, unlike the right column. If the association were
instead many-to-many, the constraint would span both
roles and only the entry-pairs making up the table rows
must be unique.

Of the four notations, only UML depicts a mandatory
role by a minimum multiplicity > 0 on the far role. As
we'll see in the next section, this leads to problems for n-
ary associations. As it turns out, of al the notations
discussed, only the ORM notation generalizes properly for
n-ary associations.




4. Data use cases and n-ary associations

Use cases in UML illustrate ways in which the required
information system may be used, so they are useful in
requirements analysis. However because they focus on
behavioral modeling, they can only go so far in helping
the modeler arrive at a data model. They should be
supplemented by examples of information that the system
is expected to manage. In ORM these examples have
traditionally been referred to as “information samples
familiar to the domain expert”. By analogy with the UML
term, we call them data use cases. They can be output
reports or input screens, and since they exist at the
external level they can present information in many
different ways (e.g. tables, forms, graphs, diagrams).

Whatever the appearance of a data use case, a subject
matter expert should be able to verbalize itsinformation in
The modeler then transforms that informal verbalization
into a formal yet natural verbalization that is clearly
understood by the domain expert. These two
verbalizations, one by the domain expert transformed into
one by the modeler, comprise step 1 of ORM’ s conceptual
analysis procedure. Here we use verbalization of
populations to arrive at the fact instances that are then
abstracted to fact types. Constraints and derivation rules
are meta-facts (facts about the object facts), which are
then added and themselves validated by verbalization and
population. This approach is very effective in practice,
and we believe it is an ideal precursor to the specification
of the datamodel in UML or any other language.

Suppose that our system is required to output reports
like that shown in We ask the domain expert to
read off the information contained in the tables and then
rephrase this in formal English. For example, the subject
matter expert might read off the facts on the top row of the
first table as follows: Archery is new (it's the first year it's
been included in the rankings); the US ranks first in
archery, and scored 10 points for that. As modelers, we
note that Rank functionally determines Points in the
population, so ask: Does the Rank (e.g. 1) determine the
Score (e.g. 10)? The domain expert replies in the
affirmative (if he/she gets this wrong, ORM's arity-check
can detect it |ater [[L4]).

We now rephrase the information into elementary
sentences. the Sport named ‘Archery’ is new; the Country
coded ‘US' has the Rank numbered 1 in the Sport named
‘Archery’; the Rank numbered 1 earns the Score 10
points. Similarly, the top row of the second table may be
verbalized as. the Country coded ‘AD’ has the
CountryName ‘Andorra’. If reference schemes are agreed
to up front, these long-winded verbalizations can be
abbreviated. Once the domain expert agrees with the
verbalization, we proceed to abstract from the fact
instances to the fact types.

(@ * new
Soort Rank | Country | Points
Archery * 1 us 10
Baseball 1 us 10
2 JP 5
Cricket 1 AU 10
1 GB 10
(b) Country
Code Name
AD | Andorra

AE United Arab Emirates

ZW | Zimbabwe

Figure 2 Two sample output reports for a data use case

We may now draw the conceptual schema and populate
it with sample facts. For discussion purposes, we consider
the ORM solution before the UML solution.
Simple reference schemes may be abbreviated in
parenthesis (e.g. “Country(code)” abbreviates the injective
association Country has Countrycode). Value types need no
reference scheme, and appear as named, dashed ellipses
(e.g. CountryName). Here we have one unary fact type,
Sport is new, two binary associations Country has CountryName,
Ranks earns Score, and one ternary association Country has
Rank in Sport.

AD
AE

Andorra
United Arab Emirates

has /refers to

earns /is for

Score
(points)

Sport -
ame)

Country
(code)

us 1 Archery Archery
us 1 Baseball

JP 2 Baseball

AU 1 Cricket

GB 1 Cricket

Figure 3 ORM schema for [Figure 2| with sample data



Unlike other approaches, ORM alows mixfix
predicates, which are sentences with object holes (denoted
by “...") that may appear anywhere in the sentence. In this
example, the ternary predicate is“... has ... in ..."”. This
allows verbalization of sentences of any arity in any
natural language, along with their associated constraints
and derivation rules. Other approaches use a simple name
for the verb phrase or assume binary infix predicates, that
support only SVO (Subject Verb Object) languages, not
SOV languages (e.g. Japanese) or VSO languages (e.g.
Tongan). In principle, mixfix predicates could be used in
UML, by extending its metamodel with positional
information to provide arole order for predicate readings.

For each fact type in a sample fact table has
been added to help validate the constraints. ORM schemas
can be represented in diagrammatic or textual form, and
tools such as Visio Enterprise can automatically transform
between the two representations. Models are validated
with domain experts in two ways: verbalization; and
population. For example, the uniqueness constraints on
the rank association in [Figure 3] verbalize as: each Rank
earns exactly one Score; each Score refers to at most one Rank.
The 1:1 nature of this association is illustrated by the
population, where each column is unique. A sample row
for rank 3 has been added to illustrate the mandatory and
optional nature of the roles played by Rank (arank’s score
must be recorded even if no country achieves this rank).

The uniqueness constraint on the first and last roles of
the ternary has a positive verbalization of: each Country has
at most one Rank in each Sport. This is illustrated by the
population, where the Country-Sport value pairs are
unique. To double check a constraint in ORM, a negative
verbalization of the constraint may be given, as well as a
counter-example to test whether the constraint may be
violated. For example, the uniqueness constraint on the
ternary may also be verbalized thus: it is impossible that the
same Country has more than one Rank in the same Sport. Adding
the counter-row (US, 2, Archery) to the sample population
of the ternary gives the US two ranks in archery, and
hence violates the uniqueness congtraint. Concrete
examples like this make it easier for domain experts to see
whether the constraint being tested really isarule.

Because all fact types are elementary, and no attributes
are used, populations never contain null values. Although
closed or open world semantics may be chosen, the
default semantics is closed world. For example Baseball
appears in the population of Sport but does not play the
role “is new”, so we know it is not new. This is less
confusing to the domain expert than assigning False to a
boolean attribute, as in UML For this reason, and to
support natural verbalization, we suggest that UML be
extended to alow unaries. A trivial change to the
metamodel would allow this (change the multiplicity on
Association-end from “2.*" to “1..*"). However,

pragmatism may require an inelegant alternative that is
easier for vendors to support.

Unlike other approaches, ORM allows n readings for
any n-ary predicate (n > 0), one starting at each role. This
facilitates constraint declaration, and navigation through
the information model from any starting position using
natural sentences [B] B]. In principle, the UML metamodel
could be extended to support this.

Figure 4]shows a UML schema for the same UoD. Al
the ORM binary fact types are modeled here as attributes.
In the absence of a standard UML syntax for primary
identification or uniqueness constraints on attributes, we
use our own notations “{P}” and “{U1}" respectively.
Such notations are needed if UML is to be used to
completely model even simple database applications.

Rank
rankNr {P}
score {U1}
0.1
Country Sport
countryCode {P} sportName {P}

countryName {U1} isNew: Boolean

each Sport must play this role %

Figure 4 UML schema form

The uniqueness constraint from the ORM ternary is
modeled in UML using the 0..1 multiplicity constraint on
the role played by Rank. The “*” multiplicities indicate
the absence of any other uniqueness constraint. If an n-ary
fact type is elementary, any internal uniqueness constraint
must span either n-1 or n roles. The UML notation for
multiplicity constraints can express these cases, but cannot
express uniqueness or frequency constraints on fewer than
n-1 roles. Hence unlike ORM it cannot be used to specify
compound fact types that may be required for derivation
or denormalization. The DSB-ER notation was developed
to cater for cardinalities on n-aries, but is even worse than
UML in this regard since it cannot express composite
uniqueness and frequency constraints. The Barker-ER
notation has the same problem if extended to n-aries.

Note that the simple mandatory role constraint on
Soort cannot be expressed by a multiplicity constraint in
UML. It might be thought that this constraint can be
expressed by changing the multiplicity on the Country role
to 1..*. But this would mean that each Sport-Rank pair
formed from the populations of Sport and Rank must be
associated with at least one country. But this is not true,
since the role played by Rank is optional. For example,
the pairs Archery-2 and Archery-3 have no associated
country in the sample population. As discussed later, any



attempt to redefine the semantics of multiplicity
congtraints in terms other than the populations of its object
types leads to other problems.

This exposes a fundamental problem with the
scaleability of UML’s multiplicity notation. Although it
caters adequately for binaries, it cannot express a simple
mandatory constraint on at least 1 and at most n-2 roles
within an n-ary association. If we are to use an n-ary in
UML, the only thing we can do in such casesis to add a
textual description of the constraint in a note, asin
E. This problem is a direct consequence of choosing to
attach minimum multiplicity to a far role instead of the
near role. The DSB-ER and ORM notations can express
mandatory constraints on roles of n-aries, and the Barker-
ER notation could be extended to do so, since each
attaches minimum multiplicity on the near role.

Sometimes, we can overcome this problem with UML
by binarizing the n-ary. For example, Figure 5]expresses
the fact type Country is ranked in Sport as a binary association,
that is objectified as the class Ranking. The mandatory
role for Sport is now catered for by the 1..* constraint on
the role for Country. However, this approach has
problems. To begin with, it is often too unnatural. If the
domain expert thinks in terms of a ternary, why force
him/her to rethink the model in terms of binaries? More
importantly, this solution does not always work in UML.
For example, suppose we have the additional constraint
that no ties are alowed for sport ranks. There is no
symbol in UML to express this rule on the binarized
solution (although it can be expressed on the ternary).

Country L . Sport

countryCode {P}
countryName {U1}

sportName {P}
isNew: Boolean

Rank

Ranking [0.* 1

rankNr {P}
score {U1}

Figure 5 Alternative UML schema form

The only way to express the no-ties rule with the
binarized model would be to extend UML with the
additional notion of an external multiplicity constraint that
can span model elements from different associations.
ORM adready includes such a constraint. For example,
Figure 6]shows the binarized solution in ORM with an
external uniqueness congtraint (circled “u”) to indicate
that each Sport-Rank pair is associated with at most one
Country in the overal association. ORM shows an
objectified association by enclosing the association in an
envelope. Although this works, it is more awkward to
think about than the ternary solution for this case.

Country
(code)

Figure 6 A nested ORM model that forbids ties

The next example illustrates the no-ties rule on the
ternary, as well as another defect of multiplicitiesin UML.
Consider the report shown in In this UoD, no ties
are alowed, and we are interested only in the first two
ranks. Moreover, we may list a sport before any other
details (e.g. ranking) are known for it. If a sport is ranked,
we must know both its first and second place getters.

Table 2 A data use case for a somewhat different UoD

Soort Rank | Country | Points
Aikido ? ? ?
Archery 1 us 10

2 GB 5
Baseball 1 us 10
2 JP 5
Basketball | ? ? ?
Cricket 1 AU 10
2 GB 5

An ORM schema for this situation is shown in
ﬂ', together with a sample population for the ternary
association and for the object type Sport. Here the “!” on
Sport indicates it is an independent object type (instances
of it can exist without playing any fact role). A meta-rule
in ORM implies that any population object must play in
some fact unless it is declared independent. There is no
space here to extol the virtues of this rule, but its practical
utility is such that we believe it should be added to UML.

Notice the uniqueness constraint over the roles played
by Rank and Sport in the ternary. This enforces the no-ties
rule. In ORM the positive verbalization of this constraint
is: given any Rank and Sport, at most one Country has that Rank in
that Sport. This is supported by the sample population. The
negative verbalization of the constraint is: it is impossible
that more than one Country has the same Rank in the same Sport.
The negative verbalization is especially useful in using
counter-examples to check the constraint. For instance, if
we gave both Australia and Great Britain the rank 1 in
cricket (as in Figure 3), this would violate the congtraint.
Such concrete counter-examples make it easy for domain
expertsto validate doubtful constraints.



has /refers to

(points)

Country | 2
(code) (name)
>

us 1 | Archery Aikido
GB | 2 Archery Archery
us 1 Baseballl Baseball
JP 2 Baseballl Basketball
AU 1 Cricket Cricket
GB 2 Cricket

Figure 7 ORM schema for with sample data

The frequency constraint of 2 on the Sport role means
any sport that plays that role does so exactly twice. In the
context of the uniqueness constraints and the value
congtraint of {1..2} on Rank, this ensures that both ranks
are recorded for any ranked sport. Again, the population
clarifies the constraint. Notice that some sports (e.g.
Aikido) have not yet been ranked. [Figure 8] shows the
UML solution. There is no way of specifying the
frequency constraint via a multiplicity constraint, so it has
been added informally in a note.

Rank «enumeration»
RankNr
rankld: RankNr {P} 1
score {U1} 5
0.1
Countr
i 0.1 * Sport
countryCode {P} :
countryName {U1} ! sportName {P}
1

does so twice

each Sport that plays this role ﬁ

Figure 8 UML schema for [fable 2]

The two uniqueness constraints are expressed using
0.1 multiplicity constraints. This is possible because
uniqueness is a case of maximum multiplicity. The
frequency constraint of 2 cannot be expressed on aternary
in UML because it involves a minimum occurrence
frequency of 2. An occurrence frequency of n means: if an
instance plays the role, it does so n times. Given any n-
ary association, UML multiplicity constraints cannot
express a minimum occurrence frequency above 1 for any
role (or combination of fewer than n-1 roles).

ORM allows mandatory and frequency constraints over
a set of roles (possibly from different associations).
Uniqueness constraints are just frequency constraints of 1
with a special notation because of their importance and
ubiquity. These constraints are orthogonal, and apply to
associations of any arity. UML’s multiplicity constraints
can express simple mandatory and frequency constraints
for binary associations, but cannot express mandatory role
congtraints or minimum occurrence frequencies above 1
for roles in n-ary associations. So UML’s multiplicity
notation is far weaker than expected.

In fact, the whole notion of a minimum multiplicity
above 0 is problematic for n-ariesin UML. The UML 1.3
specification offers only the following description for the
semantics of multiplicities in n-ary associations. “The
multiplicity of a role represents the potential number of
instance tuples in the association when the other n-1
values are fixed” [ p. 3-73]. Consider a ternary
association R(A, B, C). Let pop(A), pop(B) and pop(C)be
the populations of A, B and C (in the database, not
necessarily just in R), and pop(rA), pop(rB) and pop(rC)
be the populations of the roles in R. Let R have
multiplicities *, *, 2..* on theroles of A, B, C respectively.
What does the 2 mean? For consistency with the meaning
of multiplicities for binary associations, we should define
it thus: each pair (a, b), where a isin pop(A) and b isin
pop(B), is associated in R with at least 2 instances from
pop(C). But such a congtraint is in practice virtually
useless, since it far too strong to apply except in
pathological cases. To base the constraint on the types
rather than populations would be even worse in this
regard.

What we really need is away to define the constraint in
terms of R's population. For example, each pair (a, b) that
occurs in the projection pop(R)[a, b] is associated in R
with at least 2 instances from pop(C). This corresponds to
an ORM minimum frequency constraint of 2 on (rA, rB).
Although useful and desirable, this definition is
inconsistent with the whole approach to multiplicity
congtraints in UML. For example, if accepted it would
mean that minimum multiplicities of O could never occur.

Internal frequency (and uniqueness) constraints in
ORM can be efficiently implemented and validated
because they apply just to the local population of their
predicate. Mandatory constraints refer to the population of
an object type, so are ontologically distinct as well as
harder to enforce. Because of their global impact,
mandatory constraints need to be considered more
carefully. For such reasons, the separation of mandatory
and frequency congtraintsis highly desirable.

To address the problems with UML multiplicities on n-
aries, there are a number of possible solutions. Ideally,
multiplicity constraints for associations should be replaced
by ORM’'s mandatory and frequency/uniqueness
congtraints, at least for n-ary associations. However thisis



unlikely to ever happen, and would cause backward
compatibility headaches. We could try adding extra
congtraints for mandatory and frequency for n-ary
associations. This would achieve the required
expressibility but would make UML even more
unnecessarily complex than it is now (e.g. the concept of
mandatory role would be dealt with by a multiplicity
congtraint on binaries but by a mandatory constraint on n-
aries). A third solution is to use ORM for the original
analysis where the constraints can be easily declared and
validated, then map the ORM model to UML where the
congtraints would appear in notes. Since the ORM
notation is easily mastered, and requires no change to the
UML notation, the third solution seems attractive, and
could certainly be automated.

As afinal note on the no-ties example, we might try to
overcome the problem of expressing the frequency
congtraint in UML by transforming the ternary into two
binary associations: Country is first in Sport; Country is second in
Sport, as shown in However apart from the fact
that this transformation doesn’'t scale (e.g. large numbers
of ranks), there are now two constraints that get lost.

@ is ranked first in

is ranked second in

(b) is firstin
0.1 *
Country Sport
0.1 *
is second in

Figure 9 The exclusion and equality constraints in (a)
are lost in the UML model (b)

The ORM model in Figure 9fa) shows the missing
congtraints. The pair-exclusion constraint denoted by a

circled “X” enforces the no-ties rule that no country can
be ranked first and second in the same sport. The equality
constraint shown as a dashed line with arrowheads
indicates that if a sport has a winner it also has a runner-
up, and vice versa. Although these constraints can be
added informally in notes to the UML diagram, it would
be better to extend the UML metamodel to support them.
Currently UML is very unorthogonal and restrictive with
regard to constraints. It supports an exclusive-or (xor)
constraint but no exclusive constraint and no inclusive-or
congtraint. Although UML’s xor constraint is described as
applying between associations, it actually applies between

roles. UML supports a subset constraint between full
associations but not between parts of associations (e.g.
roles). The UML specification also contains a number of
inconsistencies in its handling of these constraints. For a
formal discussion of such inconsistencies and a means of
extending the UML metamodel to adequately capture such
constraints, see [fL9] section 5].

5. Conclusion

Fact-orientation, as exemplified by ORM, provides
many advantages for conceptual data analysis, including
expressibility, validation by verbalization and population
at both fact and constraint levels, and semantic stability
(e.g. avoiding changes caused by attributes evolving into
associations). ORM aso has a mature formal foundation
that may be used to refine the semantics of UML.

Object-orientation, as exemplified by UML, provides
severa advantages such as compactness, and the ability to
drill down to detailed implementation levels for object-
oriented code. If UML is to be used for conceptual
analysis of data, some ORM features can be adapted for
use in UML either as heuristic procedures or as
reasonably straightforward extensions to the UML
metamodel and syntax. These include mixfix verbalizat-
ions of associations and constraints for associations, and
exploitation of data use cases by populating associations
with tables of sample data using role names for the
column headers.

However there are some fundamental aspects that need
drastic surgery to the semantics and syntax of UML if itis
ever to cater adequately for non-binary associations and
some commonly encountered business rules. This paper
revealed some serious problems with multiplicity
congtraints on n-ary associations, especially concerning
non-zero minimum multiplicities. For example, they
cannot be used in general to capture mandatory and
minimum occurrence frequency constraints on even single
roles within n-aries, much less role combinations.
Moreover, UML’s treatment of set-comparison constraints
is defective. Although it is possible to fix these problems
by changing UML’s metamodel to be closer to ORM’s,
such a drastic change to the metamodel may well be ruled
out for pragmatic reasons (e.g. maintaining backward
compatibility and getting the changes approved).

In contrast to UML, ORM has only a small set of
orthogonal concepts that are easily mastered. UML
modelers willing to learn ORM can get the best of both
approaches by using ORM as a front-end to their data
analysis and then mapping the ORM models to UML,
where the additional constraints can be captured in notes
or textual constraints. Automatic transformation between
ORM and UML is feasible, and is currently being
researched.



References

1. Barker, R. 1990, CASE*Method: Tasks and Deliverables,
Addison-Wesley, Wokingham, England.

2. Bentley, J. 1988, ‘Little languages, More Programming
Pearls, Addison-Wesley, Reading MA, USA.

3. Blaha, M. & Premerlani, W. 1998, Object-Oriented
Modeling and Design for Database Applications, Prentice
Hall, New Jersey.

4. Bloesch, A. & Hapin, T. 1996, ‘ConQuer: a conceptual
query language’, Proc. 15th International Conference on
Conceptual Modeling ER96 (Cottbus, Germany), B.
Thalheim ed., Springer LNCS 1157 (Oct.) 121-133.

5. Bloesch, A. & Halpin, T. 1997, ‘Conceptua queries using
ConQuer-11’, Proc. 16th Int. Conf. on Conceptual Modeling
ER'97 (Los Angeles), D. Embley, R. Goldstein eds, Springer
LNCS 1331 (Nov.) 113-126.

6. Booch, G., Rumbaugh, J. & Jacobson, I. 1999, The Unified
Modeling Language User Guide, Addison-Wesley, Reading
MA, USA.

7. Campbell, L., Halpin, T. & Proper, H. 1996, ‘Conceptua
schemas with abstractions: making flat conceptua schemas
more comprehensible’, Data & Knowledge Engineering, 20,
1, 39-85.

8. Chen, PP. 1976, ‘The entity-relationship model—towards a
unified view of data, ACM Transactions on Database
Systems, vol. 1, no. 1, pp. 9-36.

9. Dey, D., Storey, V.C. & Barron, T.M. 1999, ‘Improving
database design through the analysis of relationships’, ACM
Transactions on Database Systems, vol. 24, no. 4, pp. 453-
486.

10.Embley, D. 1998, Object Database Management, Addison-
Wesley.

11.Eriksson, H. & Penker, M. 2000, Business Modeling with
UML — Business Patterns at Work John Wiley.

12.Falkenberg, E. 1976, ‘ Concepts for modelling information’,
Modelling in Data Base Management Systems, G. Nijssen
ed., North-Holland, Amsterdam, pp. 95-109 (see esp. p. 104,
where “properties’ means “ attributes’).

13.Fowler, M. with Scott, K. 1997, UML Distilled, Addison-
Wesley.

14.Halpin, T. 1995, Conceptual Schema and Relational
Database Design, 2nd edn (revised 1999), WytLytPub,
Bellevue WA, USA.

15.Halpin, T. 1998, ‘Object Role Modeling (ORM/NIAM)’,
Handbook on Architectures of Information Systems, P.
Bernus, K. Mertins & G. Schmidt eds, Springer-Verlag,
Berlin, pp. 81-101.

16.Halpin, T. 1998, ‘Object Role Modeling: an overview’,
available online at http://www.orm.net/overview.html.

17.Halpin, T.A. 1998-9, ‘UML data models from an ORM
perspective: Parts 1-10', Journal of Conceptual Modeling,
InConcept, Minneapolis USA, available online from
www.orm.net/uml_orm.html.

18.Halpin, T.A. 1999, ‘Data modeling in UML and ORM
revisited, Proc. EMMSAD'99: 4th IFIP WG8.1 Int.
Workshop on Evaluation of Modeling Methods in Systems
Analysis and Design, Heidelberg, Germany (June).

19.Halpin, T.A. 2000, ‘Integrating fact-oriented modeling with
object-oriented modeling’, Information Modeling in the New
Millenium, eds M. Rossi & K. Siau, Idea Group Publishing
Company, Hershey, USA.

20.Halpin, T.A. & Bloesch, A.C. 1998, ‘A comparison of UML
and ORM for data modeling’, Proc. EMMSAD’ 98: I IFIP
WG8.1 Int. Workshop on Evaluation of Modeling Methodsin
Systems Analysis and Design, Pisa, Italy (June).

21.Halpin, T.A. & Bloesch, A.C. 1999, ‘Data modeling in UML
and ORM: a comparison’, Journal of Database
Management, vol. 10, no. 4, Idea group Publishing
Company, Hershey, USA, pp. 4-13.

22.Halpin, T. & Proper, H. 1995, ‘ Subtyping and polymorphism
in object-role modelling’, Data & Knowledge Engineering
15, 3 (June), 251-281.

23.Hapin, T. & Proper, H. 1995, ‘Database schema
transformation and optimization’, OOER95: Object-
Oriented and Entity-Relationship Modeling, Springer LNCS,
1021 (Dec.) 191-203.

24.ter Hofstede, A.1993, Information Modelling in Data
Intensive Domains, PhD thesis, University of Nijmegen.

25.ter Hofstede, A., Proper, H. & van der Weide, T. 1993,
‘Formal definition of a conceptua language for the
description and manipulation of information models,
Information Systems 18, 7 (Oct.), 489-523.

26.1SO 1982, Concepts and Terminology for the Conceptual
Schema and the Information Base, J. van Griethuysen ed.,
ISO/TC97/SC5/WG3-N695 Report, ANSI, New Y ork.

27.Jacobson, 1., Booch, G. & Rumbaugh, J. 1999, The Unified
Software Development Process, Addison-Wesley, Reading
MA, USA.

28.Kobryn, C. 1999, ‘UML 2001: a standardization odyssey’,
Communications of the ACM, vol. 42, no. 10, pp. 29-37.

29.Levesque, H. 1984, ‘A fundamental trade-off in knowledge
representation and reasoning’, Proc. CSCS-84, London,
Ontario, 141-52.

30.Muller, R.J. 1999, Database Design for Smarties, Morgan
Kaufmann, San Francisco, CA.

31.0MG UML Revision Task Force, OMG Unified Modeling
Language Specification, version 1.3, available online from
http://omg.org/uml/.

32.Rumbaugh, J., Jacobson, |. & Booch, G. 1999, The Unified
Modeling Language Reference Manual, Addison-Wesley,
Reading MA, USA.

33.Warmer, J. & Kleppe, A. 1999, The Object Constraint
Language: precise modeling with UML, Addison-Wesley,
Reading MA, USA.

34.www.microsoft.com (online details about Visio Enterprise).



	orm.net
	ORM in Detail
	Modeling Issues
	Conceptual Queries
	UML and ORM
	Resources
	BRRM_2.qxp
	Microsoft Word - ORMwhitePaper.doc
	ORM/NIAM
	Object-Role Modeling (ORM/NIAM)
	Terry Halpin
	1	Introduction
	2	Data modeling in ORM

	4	Conclusion
	References



	JCM part 10
	UML data models from an ORM perspective: Part 10
	Barker ER: verbalization
	Exclusion constraints
	Frequency constraints
	Subtyping
	Non-transferable relationships


	Entity Relationship modeling from an ORM perspective: Part 3
	Entity types, attributes  and associations
	Advanced constraints and subtyping

	Metamodeling issues for ER, ORM and UML
	Introduction

	ConceptualQueriesArial.PDF
	ICMArticle1Arial.PDF
	ICMArticle2Arial.PDF
	ICMArticle3Arial.PDF
	Object Role Modeling (ORM/NIAM)
	Object Role Modeling (ORM/NIAM)
	Object Role Modeling (ORM/NIAM)
	Object Role Modeling (ORM/NIAM)
	Object Role Modeling (ORM/NIAM)
	Object Role Modeling (ORM/NIAM)
	JCM part 10
	Object Role Modeling (ORM/NIAM)
	Object Role Modeling (ORM/NIAM)
	Author Guidelines for 8


