Aggregate functions in MS Access

	Function
	Description

	AVG(column)
	Returns the average value of a column

	COUNT(column)
	Returns the number of rows (without a NULL value) of a column

	COUNT(*)
	Returns the number of selected rows

	FIRST(column)
	Returns the value of the first record in the specified field

	LAST(column)
	Returns the value of the last record in the specified field

	MAX(column)
	Returns the highest value of a column

	MIN(column)
	Returns the lowest value of a column

	STDEV(column)
	 

	STDEVP(column)
	 

	SUM(column)
	Returns the total sum of a column

	VAR(column)
	 

	VARP(column)
	 


Aggregate functions in SQL Server

	Function
	Description

	AVG(column)
	Returns the average value of a column

	BINARY_CHECKSUM
	 

	CHECKSUM
	 

	CHECKSUM_AGG
	 

	COUNT(column)
	Returns the number of rows (without a NULL value) of a column

	COUNT(*)
	Returns the number of selected rows

	COUNT(DISTINCT column)
	Returns the number of distinct results

	FIRST(column)
	Returns the value of the first record in the specified field

	LAST(column)
	Returns the value of the last record in the specified field

	MAX(column)
	Returns the highest value of a column

	MIN(column)
	Returns the lowest value of a column

	STDEV(column)
	 

	STDEVP(column)
	 

	SUM(column)
	Returns the total sum of a column

	VAR(column)
	 

	VARP(column)
	 




Scalar functions

Scalar functions operate against a single value, and return a single value based on the input value.

Useful Scalar Functions in MS Access

	Function
	Description

	UCASE(c)
	Converts a field to upper case

	LCASE(c)
	Converts a field to lower case

	MID(c,start[,end])
	Extract characters from a text field

	LEN(c)
	Returns the length of a text field

	INSTR(c)
	Returns the numeric position of a named character within a text field

	LEFT(c,number_of_char)
	Return the left part of a text field requested

	RIGHT(c,number_of_char)
	Return the right part of a text field requested

	ROUND(c,decimals)
	Rounds a numeric field to the number of decimals specified

	MOD(x,y)
	Returns the remainder of a division operation

	NOW()
	Returns the current system date

	FORMAT(c,format)
	Changes the way a field is displayed

	DATEDIFF(d,date1,date2)
	Used to perform date calculations


Aggregate functions (like SUM) often need an added GROUP BY functionality.



GROUP BY...

GROUP BY... was added to SQL because aggregate functions (like SUM) return the aggregate of all column values every time they are called, and without the GROUP BY function it was impossible to find the sum for each individual group of column values. 

The syntax for the GROUP BY function is:

	SELECT column,SUM(column) FROM table GROUP BY column




GROUP BY Example

This "Sales" Table:

	Company
	Amount

	W3Schools
	5500

	IBM
	4500

	W3Schools
	7100


And This SQL:

	SELECT Company, SUM(Amount) FROM Sales


Returns this result:

	Company
	SUM(Amount)

	W3Schools
	17100

	IBM
	17100

	W3Schools
	17100


The above code is invalid because the column returned is not part of an aggregate. A GROUP BY clause will solve this problem: 

	SELECT Company,SUM(Amount) FROM Sales

GROUP BY Company


Returns this result:

	Company
	SUM(Amount)

	W3Schools
	12600

	IBM
	4500




HAVING...

HAVING... was added to SQL because the WHERE keyword could not be used against aggregate functions (like SUM), and without HAVING... it would be impossible to test for result conditions. 

The syntax for the HAVING function is:

	SELECT column,SUM(column) FROM table

GROUP BY column

HAVING SUM(column) condition value


This "Sales" Table:

	Company
	Amount

	W3Schools
	5500

	IBM
	4500

	W3Schools
	7100


This SQL:

	SELECT Company,SUM(Amount) FROM Sales

GROUP BY Company

HAVING SUM(Amount)>10000


Returns this result

	Company
	SUM(Amount)

	W3Schools
	12600


The SELECT INTO Statement

The SELECT INTO statement is most often used to create backup copies of tables or for archiving records.

Syntax

	SELECT column_name(s) INTO newtable [IN externaldatabase] 

FROM source




Make a Backup Copy

The following example makes a backup copy of the "Persons" table:

	SELECT * INTO Persons_backup

FROM Persons


The IN clause can be used to copy tables into another database:

	SELECT Persons.* INTO Persons IN 'Backup.mdb'

FROM Persons


If you only want to copy a few fields, you can do so by listing them after the SELECT statement:

	SELECT LastName,FirstName INTO Persons_backup

FROM Persons


You can also add a where clause. The following example creates a "Persons_backup" table with two columns (FirstName and LastName) by extracting the persons who lives in "Sandnes" from the "Persons" table:

	SELECT LastName,Firstname INTO Persons_sandnes

FROM Persons

WHERE City='Sandnes'


Selecting data from more than one table is also possible. The following example creates a new table "Empl_Ord_backup" that contains data from the two tables Employees and Orders:

	SELECT Employees.Name,Orders.Product

INTO Empl_Ord_backup

FROM Employees

INNER JOIN Orders

ON Employees.Employee_ID=Orders.Employee_ID


