
1HW�([SUHVV�

Issue 8e, March 2002

GLDORJ�V\VWHP�XVHU
V�
JXLGH

'LDORJ�6\VWHP�
dspubb.book Page 1 Monday, May 13, 2002 8:57 AM

Copyright © 2002 Micro Focus International Limited.
All rights reserved.

Micro Focus International Limited has made every effort to ensure that this book is
correct and accurate, but reserves the right to make changes without notice at its sole
discretion at any time. The software described in this document is supplied under a
license and may be used or copied only in accordance with the terms of such license,
and in particular any warranty of fitness of Micro Focus software products for any
particular purpose is expressly excluded and in no event will Micro Focus be liable for
any consequential loss.

Animator®, COBOL Workbench®, EnterpriseLink®, Mainframe Express®,
Micro Focus®, Net Express®, REQL® and Revolve® are registered trademarks, and
AAI™, Analyzer™, Application to Application Interface™, AddPack™, AppTrack™,
AssetMiner™, CCI™, DataConnect™, Dialog System™, EuroSmart™, FixPack™,
LEVEL II COBOL™, License Management Facility™, License Server™,
Mainframe Access™, Mainframe Manager™, Micro Focus COBOL™, Object COBOL™,
OpenESQL™, Personal COBOL™, Professional COBOL™, Server Express™,
SmartFind™, SmartFind Plus™, SmartFix™, SourceConnect™, Toolbox™, WebSync™,
and Xilerator™ are trademarks of Micro Focus International Limited. All other
trademarks are the property of their respective owners.

No part of this publication, with the exception of the software product user
documentation contained on a CD-ROM, may be copied, photocopied, reproduced,
transmitted, transcribed, or reduced to any electronic medium or machine-readable
form without prior written consent of Micro Focus International Limited.

Licensees may duplicate the software product user documentation contained on a CD-
ROM, but only to the extent necessary to support the users authorized access to the
software under the license agreement. Any reproduction of the documentation,
regardless of whether the documentation is reproduced in whole or in part, must be
accompanied by this copyright statement in its entirety, without modification.

U.S. GOVERNMENT RESTRICTED RIGHTS. It is acknowledged that the Software and the
Documentation were developed at private expense, that no part is in the public
domain, and that the Software and Documentation are Commercial Computer
Software provided with RESTRICTED RIGHTS under Federal Acquisition Regulations
and agency supplements to them. Use, duplication or disclosure by the U.S.
Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of The
Rights in Technical Data and Computer Software clause at DFAR 252.227-7013 et. seq.
or subparagraphs (c)(1) and (2) of the Commercial Computer Software Restricted
Rights at FAR 52.227-19, as applicable. Contractor is Micro Focus, 9420 Key West
Avenue, Rockville, Maryland 20850. Rights are reserved under copyright laws of the
United States with respect to unpublished portions of the Software.

20020513085721

dspubb.book Page 2 Monday, May 13, 2002 8:57 AM

3

dspubb.book Page 3 Monday, May 13, 2002 8:57 AM
Table of Contents

Preface . 17

Audience . 17

Related Publications. 17

Notations and Conventions . 18

Part 1: Introduction

1 The Graphical User Interface 23

Terminology . 24

1.1 Why Use a GUI for Your Application? . 24

1.2 How Dialog System Helps . 25

1.3 Using a GUI System. 25
1.3.1 Mouse Actions. 26
1.3.2 Windows and Menus . 27

1.3.2.1 Manipulating Windows. 28
1.3.3 Dialog Boxes . 30
1.3.4 Message Boxes . 31
1.3.5 Controls . 31
1.3.6 Selecting Objects. 31
1.3.7 Scrolling . 32

1.4 Further Information . 33

2 Introduction to Dialog System 35

2.1 Benefits of Using Dialog System . 35

2.2 Overview of Dialog System’s Capabilities 36
2.2.1 Designing Your Interface . 37

2.2.1.1 Window Objects . 39
2.2.1.2 Control Objects . 39
Dialog System User’s Guide

4

dspubb.book Page 4 Monday, May 13, 2002 8:57 AM
2.2.1.3 Object Properties . 40
2.2.1.4 Working with Objects. 40
2.2.1.5 Naming Objects . 40

2.2.2 Using Dialog . 41
2.2.2.1 Events . 42
2.2.2.2 Functions . 43
2.2.2.3 Procedures. 43

2.2.3 Using the Data Block and Screenset 43

2.3 Steps for Creating an Application Using Dialog System 44

3 Creating a Data Definition and Screenset 47

3.1 Designing a Data Model . 47
3.1.1 Defining Data and Validations . 47

3.2 The Data Definition. 48
3.2.1 Prompted and Unprompted Mode 48
3.2.2 Comments. 48
3.2.3 Steps for Creating a Data Definition 49
3.2.4 The Data Block . 49

3.2.4.1 Data Block Copyfile . 50
3.2.4.2 Data Items . 51

3.2.5 Using Data Groups . 53
3.2.6 Dependencies . 53
3.2.7 Validating User Data . 54

3.2.7.1 Validation Criteria . 55
3.2.8 Error Message Definition. 56
3.2.9 Selecting Objects . 58
3.2.10 Further Information . 58

4 Window Objects . 59

4.1 Defining Objects for Your Screen Layout. 59

4.2 Components of a Window . 60

4.3 The Desktop . 62
4.3.1 Primary Windows . 62
4.3.2 Secondary Windows. 62
4.3.3 Relationship Between Primary and Secondary Windows . 63
Dialog System User’s Guide

5

dspubb.book Page 5 Monday, May 13, 2002 8:57 AM
4.4 Clipping. 63

4.5 Defining Windows . 64
4.5.1 Window Properties Dialog Box . 65
4.5.2 Manipulating a Window . 66

4.6 Dialog Boxes . 66
4.6.1 Modal Versus Modeless . 68
4.6.2 Dialog Boxes Versus Windows . 69

4.7 Message Boxes . 69

4.8 Menus . 71
4.8.1 The Menu Bar . 71
4.8.2 Pulldown Menus . 72
4.8.3 Context Menus . 73

4.9 Attaching an Icon . 74

5 Control Objects . 77

5.1 Control Objects . 77
5.1.1 Text and Entry Fields. 78

5.1.1.1 Displaying Text (Text Objects) 79
5.1.1.2 Getting Input Using Entry Fields. 80
5.1.1.3 Multiple Line Entry Fields . 83
5.1.1.4 Editing an MLE. 84
5.1.1.5 Refreshing an MLE. 85

5.1.2 Push Buttons . 85
5.1.2.1 Assigning Bitmaps to Push Buttons 86

5.1.3 Radio Buttons . 86
5.1.4 Check Boxes. 87
5.1.5 List Boxes . 88

5.1.5.1 Adding Items to a List Box . 89
5.1.6 Selection Boxes . 90

5.1.6.1 Entry Field . 92
5.1.7 Scroll Bars . 93
5.1.8 Group Boxes . 94
5.1.9 Tab Controls . 95
5.1.10 OLE2 Controls . 96
5.1.11 User Controls . 96
5.1.12 ActiveX Controls . 97
Dialog System User’s Guide

6

dspubb.book Page 6 Monday, May 13, 2002 8:57 AM
5.2 Grouping Controls . 98

5.3 Aligning Controls. 99

5.4 Sample Program . 101

5.5 Using Bitmaps . 101
5.5.1 Defining Bitmaps . 101

5.6 Bitmapped Push Buttons . 103

6 Using Dialog. 105

6.1 What is Dialog? . 105
6.1.1 Comments. 106
6.1.2 Levels of Dialog . 107

6.1.2.1 Control Dialog . 107
6.1.2.2 Window Dialog. 107
6.1.2.3 Global Dialog . 108
6.1.2.4 Where to Locate Your Dialog Statements. 108

6.1.3 Types of Dialog. 108
6.1.3.1 Events . 108
6.1.3.2 Functions . 110
6.1.3.3 Procedures. 111

6.2 Special Registers . 111

6.3 Important Dialog Events and Functions . 112
6.3.1 Initializing the Screenset . 113
6.3.2 Window Dialog . 114

6.3.2.1 Creating a Window . 114
6.3.2.2 Showing the First Window. 114
6.3.2.3 Showing a Window . 115
6.3.2.4 Unshowing a Window . 115
6.3.2.5 Changing the Default Parent Window 116
6.3.2.6 Deleting a Window . 117
6.3.2.7 Setting the Focus on a Window. 118
6.3.2.8 Moving a Window . 118
6.3.2.9 Changing the Title of a Window 118
6.3.2.10 Closing the Window . 119

6.3.3 Pressing Buttons . 119
6.3.3.1 Setting and Getting Button States 120
Dialog System User’s Guide

7

dspubb.book Page 7 Monday, May 13, 2002 8:57 AM
6.3.4 Menu Bar Dialog . 120
6.3.4.1 Enabling and Disabling Choices 121
6.3.4.2 Selecting Menu Choices . 122

6.3.5 Validating Input . 123
6.3.6 Using Procedures. 123
6.3.7 Returning Control to the Calling Program 124
6.3.8 Regaining Control from the Calling Program 125

6.4 Events Trapped by the Windows Operating System 126

6.5 Sample Programs . 126

6.6 Sample Dialog. 127

7 Using the Screenset. 129

7.1 The Call Interface . 129
7.1.1 Generating the Data Block Copyfile 129

7.1.1.1 Generating Copyfile Options 130
7.1.2 The Structure of the Call Interface 131

7.1.2.1 Controlling the Use of Screensets. 132
7.1.2.2 Using Multiple Screensets . 133
7.1.2.3 Using Multiple Instances of the Same Screenset . . . 134

7.1.3 Writing the COBOL Application Program 135
7.1.3.1 The Control Block . 135

7.1.4 Debugging and Animating the Screenset and Your
 COBOL Program . 137

7.1.4.1 Testing the Screenset. 137
7.1.4.2 Defining Dialog . 140
7.1.4.3 Testing the Screenset Again 140
7.1.4.4 Changing the Screenset . 141

7.1.5 Packaging Your Application . 141

7.2 Adding Help . 142

7.3 Optimizing the Application . 142
7.3.1 Limiting the Directory Search. 143
7.3.2 Searching for Event Dialog. 143
7.3.3 UNSHOW-WINDOW versus DELETE-WINDOW 144
7.3.4 Minimize Naming of Objects . 144
7.3.5 Run-time Save Format . 145
7.3.6 Using ds-no-name-info . 145
Dialog System User’s Guide

8

dspubb.book Page 8 Monday, May 13, 2002 8:57 AM
7.4 Further Information . 146

8 Windows GUI Application Wizard 147

8.1 Starting the Wizard . 148

8.2 Using the Wizard . 148
8.2.1 Step 1: Screenset Name . 148
8.2.2 Step 2: Interface Type . 148
8.2.3 Step 3: Class Library Features . 149
8.2.4 Step 4: Defining a Query . 150
8.2.5 Step 5: Extensions. 152
8.2.6 Step 6: Dialog System Run-time Configuration Options . . 152
8.2.7 Step 7: Generate COBOL Programs 152
8.2.8 Step 8: Validation of Selected Options 153

8.3 Output from the Wizard . 154

8.4 Running the Application. 154

8.5 Further Information . 154

Part 2: Advanced Features

9 Data Access . 157

9.1 The Windows GUI Application Wizard. 157

9.2 Accessing Installed Databases. 158

9.3 Manipulating the Data . 162
9.3.1 Edit Data . 163
9.3.2 Insert a New Row . 164
9.3.3 Delete a Row . 164

9.4 Viewing the Data. 164
9.4.1 Search for Data. 165
9.4.2 Sort Data. 165

10 Programming Your Own Controls 167

10.1 Control Programs. 167
10.1.1 Control Implementation Architecture 168
Dialog System User’s Guide

9

dspubb.book Page 9 Monday, May 13, 2002 8:57 AM
10.2 ActiveX Controls . 170
10.2.1 ActiveX Control Properties . 170
10.2.2 Tailoring Your ActiveX Control . 171

10.2.2.1 Selecting an ActiveX Control 171
10.2.2.2 Defining the ActiveX Control Properties 172
10.2.2.3 Customizing the ActiveX Control Program with
 the Programming Assistant. 173
10.2.2.4 Starting the Programming Assistant 174
10.2.2.5 Summary . 179

10.3 User Controls . 179
10.3.1 Specify the User Control . 180
10.3.2 User Control Types . 181

10.3.2.1 Spin Button . 181
10.3.2.2 Status Bar . 182
10.3.2.3 Tree View . 182
10.3.2.4 Toolbar . 183
10.3.2.5 User Defined . 183

10.3.3 Summary . 183

11 Multiple Screensets . 185

11.1 Dsrunner . 185
11.1.1 Dsrunner Architecture . 186
11.1.2 Dsrunner Operation . 186

11.1.2.1 Parameters . 187
11.1.2.2 Dsrunner Screensets . 188

11.1.3 Dsrunner Program and Functions 191
11.1.4 Using Dsrunner Functions. 191
11.1.5 Starting Screensets Using a Command Line 192
11.1.6 Starting Screensets in Net Express IDE. 192
11.1.7 Starting a Screenset from a Program. 193
11.1.8 Launching a Screenset . 193
11.1.9 Launching an Application . 193

11.1.9.1 Running the Sample Subprogram 195

11.2 Multiple Screensets and the Router Program. 195
11.2.1 Using Multiple Screensets. 196
11.2.2 Using Multiple Programs and Screensets 196
Dialog System User’s Guide

10

dspubb.book Page 10 Monday, May 13, 2002 8:57 AM
11.2.3 Terms and Concepts . 197
11.2.3.1 The Active Screenset. 197
11.2.3.2 Events for Other Screensets 197

11.2.4 Multiple Screenset Sample Application Using Router . . . 198
11.2.5 Using Multiple Instances of Screensets 199

11.2.5.1 Tracking the Active Instance Value 200
11.2.5.2 Using the Correct Data Block 201
11.2.5.3 Sample Programs for Multiple Instances. 202

11.2.6 The Router Program. 202
11.2.7 The Main Program . 204
11.2.8 Multiple Screenset Dialog . 206
11.2.9 The Sequence of Events . 207

11.2.9.1 Repeating the Event . 208
11.2.10 Setting the Focus . 209

11.3 Further Information . 209

12 Migrating to Different Platforms 211

12.1 Differences Across Environments . 211
12.1.1 Desktop Mode . 212

12.2 Developing for Graphical and GUI Emulation Environments . . 213

12.3 General Portability Guidelines . 213

12.4 Other Cross Environment Issues . 215

12.5 Backward Compatibility Issues . 216
12.5.1 Notebooks . 216
12.5.2 Containers. 217

12.6 Compatibility Chart . 218

13 Using Panels V2 . 221

13.1 Calling Panels V2 . 221

13.2 Dialog System and Panels V2 Events . 222

13.3 Copyfiles. 223
13.3.1 Panels V2 Copyfile (pan2link.cpy) 223
13.3.2 Dialog System Event Block (dssysinf.cpy) 224
Dialog System User’s Guide

11

dspubb.book Page 11 Monday, May 13, 2002 8:57 AM
13.4 Building a Dialog System/Panels V2 Application 225
13.4.1 Establishing Dialog System and Panels V2
 Communication . 225
13.4.2 Identifying Dialog System Objects to Panels V2 226
13.4.3 Perform Panels V2 functions . 227

13.5 Sample Program . 229

13.6 Panels V2 User Events. 229

14 Using the Client/Server Binding 231

14.1 Introduction . 231

14.2 How the Client/Server Binding Works. 232

14.3 Connecting Your Programs to the Generic Modules 235
14.3.1 Connecting Your Client Application to mfclient. 235
14.3.2 Connecting Your Server Application to mfserver 236
14.3.3 Preparing a Communications Link 238

14.4 Before Using the Client/Server Binding 239
14.4.1 The mfclisrv.cpy Copyfile . 240
14.4.2 The Client/Server Binding Configuration File 240

14.4.2.1 Possible Entries for the Configuration File 241
14.4.2.2 Minimum Required Configuration File Entries . . . 245
14.4.2.3 Locating The Configuration File 246

14.5 Connecting Your Client Program to mfclient 247

14.6 Connecting your Server Program to mfserver 250

14.7 Running a Client/Server Binding Application 251

14.8 Animating Your Application . 253

14.9 Managing the Server . 254
14.9.1 Shutting Down mfserver . 254
14.9.2 Managing Authorization Passwords 254
14.9.3 Setting the Maximum Number of Clients 255
14.9.4 Enabling Server Override . 255

14.10 Advanced Topics . 256
14.10.1 Creating Audit Trails . 257
14.10.2 Overriding Configuration File Entries 257
Dialog System User’s Guide

12

dspubb.book Page 12 Monday, May 13, 2002 8:57 AM
14.10.3 Using the In-line Configuration Facility 259
14.10.4 Reduced Data Transfer Facility . 261
14.10.5 Server Controlled File Management Facility 264

14.11 Running the Supplied Customer Example 265

14.12 The System Error/Message Log . 265

14.13 Client/Server Binding Limitations . 265

15 Advanced Topics . 267

15.1 Implementing Applications to Run on Multiple Resolutions . . 267
15.1.1 Enabling the Screenset for Multiple Resolutions 268
15.1.2 Enabling Font Mapping . 269
15.1.3 Setting the DSFNTENV Environment Variable Using
 COBOL . 271

15.2 Using the Dialog System Error Message File Handler 272
15.2.1 Using an Alternative Error Message File. 275

15.3 Building an Interface to a File Selection Facility 278
15.3.1 The Dirdemo Sample Screenset. 278
15.3.2 The Dirdemo Data Block . 279
15.3.3 The Dirdemo Dialog. 280

15.4 Modifying Menu Items at Run Time. 281

15.5 Using the Call Interface . 283

15.6 Adding Help. 284
15.6.1 Running the Helpdemo Sample . 284
15.6.2 The Helpdemo Data Block . 285
15.6.3 The Helpdemo Dialog . 285
15.6.4 Entry Field Dialog. 287

15.7 Further Information . 288

16 Questions and Answers . 289
Dialog System User’s Guide

13

dspubb.book Page 13 Monday, May 13, 2002 8:57 AM
Part 3: Programming Tutorials

17 Sample Programs. 299

17.1 Entry Fields . 299
17.1.1 Validating Entry Fields . 300

17.1.1.1 Complex Data Validation . 301
17.1.2 Editing Multiple Line Entry Fields 302

17.1.2.1 Moving Text Using Your Application Program . . . 302
17.1.2.2 Moving Text Using Dialog. 302

17.2 Push Buttons . 303
17.2.1 Dialog for a Pause Push Button . 303
17.2.2 Dialog for Dynamically Changing Bitmaps Assigned to
 a Push Button . 304

17.3 Check Boxes . 305
17.3.1 Selecting Items From a List . 305

17.4 List Boxes. 308
17.4.1 Adding Items Using Group Item 308
17.4.2 Adding Items Using Dialog. 312
17.4.3 Adding Items Using a Delimited String 313

17.5 Scroll Bars . 314
17.5.1 Events Associated with a Scroll Bar 314
17.5.2 Scroll Bar Properties . 315

17.6 Tab Controls . 316

17.7 The Call Interface . 318
17.7.1 Using Dsrnr . 318
17.7.2 The Push-pop Sample Program . 322

17.7.2.1 The Custom1 Sample Program 328

18 Tutorial - Creating a Sample Screenset 335

18.1 The Sample Data Definition . 335
18.1.1 Defining the Data Block . 335
18.1.2 Creating the Sample Window Object 337
18.1.3 Creating the Sample Control Objects 338
18.1.4 Creating a Message Box . 341
18.1.5 Saving Your Screenset. 341
Dialog System User’s Guide

14

dspubb.book Page 14 Monday, May 13, 2002 8:57 AM
18.1.6 Testing. 342
18.1.7 Defining Dialog . 343

18.1.7.1 The Sample Object Dialog Definitions 343
18.1.7.2 The Sample Global Dialog Definition 346

18.1.8 Testing the Screenset Again . 347
18.1.9 Changing the Screenset . 347
18.1.10 Summary . 347

18.2 Further Information . 348

19 Tutorial - Using the Sample Screenset 349

19.1 Generating the Data Block Copyfile. 349
19.1.1 Selecting Options and Generating the Copyfile 350

19.2 Writing the COBOL Application Program 350

19.3 Debugging and Animating the COBOL Program 357

19.4 Packaging Your Application . 358

20 Tutorial - Adding and Customizing a Status Bar . . . 359

20.1 Setting Up . 360

20.2 Adding a Status Bar to the Screenset. 360
20.2.1 Defining the Data Items . 360
20.2.2 Defining the Status Bar . 361

20.3 Running Your Screenset . 362

20.4 Manipulating the Status Bar. 363
20.4.1 Clock Time and Key State Maintenance 363

20.4.1.1 Using the Timeout Facility . 363
20.4.2 Window/Status Bar Section Resizing. 364
20.4.3 Adding Mouse-over Hint Text . 365

20.5 Registering Events for the Status Bar. 366

20.6 20.6 Customizing the Status Bar Control Program 367
20.6.1 Registering a Callback for the New Event 368
20.6.2 Adding a Left-mouse-button-double-click Event. 369

20.6.2.1 Adding the Code . 370
20.6.2.2 Adding Additional Dialog . 370
Dialog System User’s Guide

15

dspubb.book Page 15 Monday, May 13, 2002 8:57 AM
21 Tutorial - Adding and Customizing a Menu Bar and
Toolbar . 373

21.1 Setting Up . 374

21.2 Adding a Menu Bar and Toolbar to the Screenset 374
21.2.1 Defining the Data Items . 375
21.2.2 Defining the Menu Bar and Toolbar 377

21.3 Running Your Screenset . 378

21.4 Defining a Menu Structure . 378
21.4.1 Adding New Menu Options . 379

21.5 Defining a Toolbar Structure . 380
21.5.1 The Existing Toolbar Structure . 381
21.5.2 Adding New Toolbar Buttons. 382

21.6 Customizing theToolbar. 382
21.6.1 Setting up Resource Files . 383
21.6.2 Setting up Copyfiles . 384
21.6.3 Adding Dialog to the Screenset . 385

22 Tutorial - Adding an ActiveX Control 387

22.1 Screenset Alterations . 387

22.2 Using the Dialog System Clock ActiveX Control 390

23 Tutorial - Using Bitmaps to Change the Mouse
Pointer . 393

23.1 Changing the Mouse Pointer. 393
23.1.1 The Moudemo Sample Screenset. 393

23.1.1.1 Changing the Side File . 395

23.2 Programming Bitmaps . 396

A Fonts and Colors . 399

A.1 Setting Fonts . 399

A.2 Setting Colors . 400
Dialog System User’s Guide

16

dspubb.book Page 16 Monday, May 13, 2002 8:57 AM
Dialog System User’s Guide

17

dspubb.book Page 17 Monday, May 13, 2002 8:57 AM
Preface

This user guide introduces you to the subject of graphical user
interfaces and how to use Dialog System to full advantage. It gives you
a tour of the major menu choices, taking you through creating and
using a simple screenset, showing you the important features and
demonstrating the general sequence of events in developing an
application. The user guide also covers the more advanced features.
There are plenty of examples and sample programs, as well as hints and
tips on getting the most out of Dialog System.

Audience
This book is for all programmers and system designers using Dialog
System, whether experienced with Micro Focus’s earlier Dialog System
products or completely new to Micro Focus. It assumes you are familiar
with the general concepts of business computing and of using
Microsoft Windows.

Related Publications
• Help containing Dialog System Reference

• On-line help for Net Express and for other components of your
COBOL system
Dialog System User’s Guide

18 Preface

dspubb.book Page 18 Monday, May 13, 2002 8:57 AM
Notations and Conventions
• Enter refers to the carriage return or Enter key. Where commands to

be typed are shown, the Enter key is not explicitly shown; it is
treated as implicit that Enter must be pressed at the end of the line.

• Hexadecimal numbers are enclosed in quotation marks and
preceded by a lower-case "x" or "h"; for example, x"9D", h"03FF".
The "x" is used when the hexadecimal number represents a
character string; the "h" when it represents a numerical value.

• PIC X is used rather than PIC 99 with the COMP-X and COMP-5 data
types. Unlike PIC 99, PIC X shows the length of the data item and so
demonstrates more clearly the use of COMP-X, which is to define a
binary item of the specified number of bytes.

• Keytops and menu choices are emboldened within the text.

• Side headings are used to indicate environment specific
information. For example:

Windows: Windows specific information.

• In some environments, you might notice that what appears on your
screen differs in minor ways (for example, version numbers) from
that illustrated in this book. This will not affect the operation of
your software.

• The keys described in this book are not available in all
environments. When there is a reference to use of a key such as a
status or function key, this refers to the logical press and release of
this key, rather than physical keystroke. If your environment does
not support the key given, please refer to your accompanying
Release Notes for the equivalent key.

• The term "window" refers to a delineated area on the screen,
normally smaller than the full screen. The term "Windows" refers to
Microsoft Windows 95 or later.

• On-line help is not described in the documentation. Select Help
from the menu or press the Help button on a dialog box to see
context sensitive help information.
Dialog System User’s Guide

Notations and Conventions 19

dspubb.book Page 19 Monday, May 13, 2002 8:57 AM
The notation used to describe the format of command lines is as
follows:

• Words printed in italics are generic terms representing names to be
devised by you.

• Material enclosed in square brackets [] is optional.

• When material is enclosed in braces { }, you must choose from the
options within them. If there is only one option in the braces, the
braces indicate repetition.

• The ellipsis (. . .) follows { } or [] and means you can repeat the
material in the { } or []. The number of repetitions allowed is
unlimited unless otherwise stated. If the ellipsis is used with [] the
material can be omitted altogether.

• If a command line does not fit across the page, it is continued on
the next line; the continuation line is indented.

• Command line options can be specified as /option or -option.
Dialog System User’s Guide

20 Preface

dspubb.book Page 20 Monday, May 13, 2002 8:57 AM
Dialog System User’s Guide

21

dspubb.book Page 21 Monday, May 13, 2002 8:57 AM
Part 1: Introduction
This part contains the following chapters:

• Chapter 1, “The Graphical User Interface”

• Chapter 2, “Introduction to Dialog System”

• Chapter 3, “Creating a Data Definition and Screenset”

• Chapter 4, “Window Objects”

• Chapter 5, “Control Objects”

• Chapter 6, “Using Dialog”

• Chapter 7, “Using the Screenset”

• Chapter 8, “Windows GUI Application Wizard”
Dialog System User’s Guide

22 Part 1: Introduction

dspubb.book Page 22 Monday, May 13, 2002 8:57 AM
Dialog System User’s Guide

23

dspubb.book Page 23 Monday, May 13, 2002 8:57 AM
1 The Graphical User Interface

This chapter introduces the graphical user interface (GUI) and explains
how to use it.

Dialog System provides software that enables you to build a usable GUI
quickly and easily. It has an integral testing facility, which enables you
to test and prototype the interface before you start to write the
program that will use the interface. Some important features of Dialog
System are:

• You can create a user interface that is independent of your
application program and main program logic.

• You can define and change the user interface without affecting the
application program.

• You can create several different user interfaces for the same
program.

• You can prototype and test the interface without a supporting
COBOL program.

This means that you can enter data, receive output, and navigate
between windows solely within Dialog System, without involving
the program.

• All interaction with the user at run time is handled by calls to
Dialog System from your application program.

This means that your application program is smaller and easier to
maintain.

• Dialog System helps to create the program by providing a ready-
coded data structure for communication between the program and
the user interface.

• Dialog System is portable among different environments.
Dialog System User’s Guide

24 Chapter 1 The Graphical User Interface

dspubb.book Page 24 Monday, May 13, 2002 8:57 AM
Terminology
The Glossary in the Help fully explains the terms used in the Dialog
System documents. Where two terms exist for the same item, the
glossary explains both and notes the term preferred in Dialog System.

1.1 Why Use a GUI for Your Application?
The aim of a GUI is to provide an interface that is:

• Easy to learn.

• Consistent across applications (needs learning only once).

• Easy to use.

The GUI encourages users to concentrate on their tasks, rather than on
the functions provided by the application. A GUI is intuitive, and
encourages users to experiment and explore. It also forgives mistakes.
This means that users can learn in their own way and at their own pace.

When they revisit the GUI, they are more likely to remember how to use
it. If they don’t remember, it doesn’t matter because they can
experiment all over again.

Character-based application interfaces use a hierarchy of menus. These
require users to navigate through the different levels to the required
function. Alternatively, users can memorize obscure shortcut keys.

A GUI application approaches the task to be done more directly. Users
select an object and then an action. This reduces the number of menu
levels. By using the point and click actions of the mouse, users can move
easily through the interface until they can do the required task.

A GUI provides contextual help, with links to related areas. This makes it
easier for users to acquire the background knowledge they need to do a
task, without using more complicated help facilities that are supplied
with character based systems, such as navigating through a hierarchical
help tree.
Dialog System User’s Guide

1.2 How Dialog System Helps 25

dspubb.book Page 25 Monday, May 13, 2002 8:57 AM
1.2 How Dialog System Helps
Dialog System helps you with five phases in the life cycle of the user
interface:

• Defining the user interface.

Use Dialog System to define the data you want your application to
use and its presentation on screen. This includes how the user will
input data and navigate around the interface. This information is
called the screenset and is saved as a file with a .gs extension.

• Prototyping and testing.

Use Dialog System’s testing facility to enter data and navigate
around the interface as if the program were running. Simulate
outputs and monitor what is returned to users.

• Integrating with the calling program.

When the interface has been thoroughly tested, use Dialog System
to generate a copyfile containing details of the data structure and
the run-time interface.

• Running the application.

Use Dialog System in run-time mode to handle dialog with the user
and use the screenset until control returns to the calling program.

• Maintaining the application.

Use Dialog System to change and customize the user interface
without affecting the calling program. Conversely, you can change
the calling program, without needing to change the user interface.
Change both only if you need to change the data items passed
between the user interface and the program.

1.3 Using a GUI System
Dialog System is designed for use with a mouse. You use the mouse to
select, move and size the objects on the screen. You can also use the
Dialog System User’s Guide

26 Chapter 1 The Graphical User Interface

dspubb.book Page 26 Monday, May 13, 2002 8:57 AM
keyboard to do this, but you are likely to find the mouse more
convenient. The keyboard is used to enter text and numeric data.

The following sections explain how to use the mouse, windows and
control objects for those who are unfamiliar with a GUI environment.

1.3.1 Mouse Actions
The mouse operates a pointer that shows your position on screen. Also
on the screen there is a selection cursor, which shows your position
within a window.

The mouse pointer can move across window borders, and will change
shape. For example, in a text field, it appears as an I-beam pointer,
showing you the exact place where any text will be added. At the
corner of a sizable window, it appears as a double headed arrow, and
while you wait for an action to complete, it appears as a clock or an
hourglass (depending on your current environment). The shape of the
mouse pointer should give you some clues as to what you can do at a
particular place on the desktop.

Before you perform any of the mouse actions, move the mouse pointer
to the appropriate position on the screen. For example, if you want to
select a menu option, move the pointer until it is over that option.

You can use the mouse to operate the various buttons on the screen, as
well as to select objects or items and scroll through information on the
screen.

In the following list of mouse actions, the mouse button to use for each
action is not specified because some behavior is specific to an
underlying operating system:

• Click - Press and release the mouse button.

Selects an item or object, presses a push button or radio button,
toggles a check box or a checkmarked choice.

• Click and drag (also called rubber band) - Press and hold down the
mouse button, move the mouse pointer in the desired direction or
over the desired selection, then release the mouse button.
Dialog System User’s Guide

1.3 Using a GUI System 27

dspubb.book Page 27 Monday, May 13, 2002 8:57 AM
Draws a box around an area to select a number of items, moves a
selected object, or changes an object boundary in a sizing
operation.

• Double-click - Press and release the mouse button twice.

On a Dialog System object, displays that object’s Properties dialog
box.

• Release - Let go of the mouse button which has been held down.

Stops scrolling, stops dragging the object in a move operation,
stops moving the window or object boundaries in a sizing
operation.

Other mouse button behavior relating to Dialog System, for example
Move or Select, is configurable. You can attach specific behavior for use
in Dialog System which provides various standard patterns for these.
What you choose to use depends on your operating environment, the
software you are familiar with, and the type of mouse you have (two
button or three button).

1.3.2 Windows and Menus

The desktop is the working area on your screen. A window is an object
that represents all or part of the screen. You can create windows on the
desktop that extend beyond the edges of the screen. You can also
move windows around on the desktop.

The first window you create is called the primary window. It is a child of
the desktop, because there are no other windows above it. This means
that the desktop is its parent. You may create more than one primary
window.

Any primary window can have child windows, called secondary
windows. These in turn can have other secondary windows.

Primary and secondary windows are fully explained in the chapter
Window Objects

The main menu bar appears on your desktop when you start up Dialog
System.
Dialog System User’s Guide

28 Chapter 1 The Graphical User Interface

dspubb.book Page 28 Monday, May 13, 2002 8:57 AM
You can pull down submenus from the menu bar by clicking on the
choice required. Clicking on another choice while a submenu is pulled
down simply closes the current menu and pulls down another.

Sometimes, choices are not available until you have performed a
particular action (for example, you cannot create a control object such
as a push button, until you have created a window or dialog box to put
it into). If a choice is not available, it is displayed in a pale color instead
of the deeper color of the available choices. The choice is said to be
disabled. If you click on a disabled choice, you may hear a beep, but
nothing else happens.

Menu choices can:

• Pull down additional menus. These are identified by arrows
following the choice.

• Cause a secondary window or a dialog box to be displayed. These
are identified by an ellipsis (...) following the choice.

• Be checkmarked choices. These have two states, on or off. When
you click on the choice, you reverse its state. If it is on, a checkmark
appears in front of it. These choices are sometimes called toggles.

• Cause an action to be performed directly. These have no special
identification.

Any one menu choice can only have one of the actions described in the
preceding list, and is decorated (for example with an ellipsis or a
checkmark) appropriately.

1.3.2.1 Manipulating Windows

This section describes various ways of manipulating windows using the
mouse and the icons that form part of most windows.
Dialog System User’s Guide

1.3 Using a GUI System 29

dspubb.book Page 29 Monday, May 13, 2002 8:57 AM
Figure 1-1 shows a window with labels to identify its components.

Figure 1-1. Window Components

When you are not using a primary window, you can reduce it to a small
symbol, called an icon, on your taskbar.

If the window has a minimize icon, you can minimize the window using
the mouse. Click on the minimize icon, which is the leftmost icon in the
top right corner of the window. Double-click on the window icon to
restore the window (see the section Mouse Actions earlier in this
chapter).

You can also move a window and change the size of the window. These
operations are best done with the mouse. To move a window, put the
mouse pointer in the window title bar, click and drag the window to a
new location, then release. The button you click to do this depends on
how you have your mouse set up.

Similarly, to size a window, put the mouse pointer in the border at the
side or corner of the window and click and drag it. The mouse pointer
changes shape when it is in the right place to size the window. As you
drag the window side or corner, the window changes shape. When the
window reaches the required size and shape, release the mouse
button.
Dialog System User’s Guide

30 Chapter 1 The Graphical User Interface

dspubb.book Page 30 Monday, May 13, 2002 8:57 AM
To close a window, double-click on the system menu icon at the top left
corner of the window.

To move between windows on the desktop, click on part of the window
you want to move to. (If you click on any of the icons in the title bar, you
activate the icon.)

If the window is not visible, select the required window from the
taskbar and switch to it.

The current window (that is, the one that is active) has a colored title
bar.

For more information on manipulating windows, refer to your
operating system’s documentation.

1.3.3 Dialog Boxes
A dialog box is a type of window that enables users to enter data of
some kind. It cannot be resized and cannot have a menu bar. You can
add any of the Dialog System control objects (such as a push button or a
list box) to it. A dialog box can be created by another window, or by the
desktop. (It is called a child of the window that creates it, and that
window is called the parent of the dialog box.)

Dialog boxes stay in place until they are closed by user actions. Typically,
a user clicks a push button to cause Dialog System to accept user actions
(for example, the OK button to accept a selection from a list).
Alternatively, a user may click a push button to cause Dialog System to
ignore user actions (for example, the Cancel button to close a dialog
box, ignoring any input).

Dialog boxes are often used to create File Selection boxes. These enable
users to choose from a selection of files or other items and to enter their
selections in another field.
Dialog System User’s Guide

1.3 Using a GUI System 31

dspubb.book Page 31 Monday, May 13, 2002 8:57 AM
1.3.4 Message Boxes
A message box is another type of window that appears on the screen
to give users a message. It can contain only text and graphics to give a
message, and push buttons to respond to the message. It must be
explicitly cleared by the user clicking one of the push buttons.

You can use message boxes to give warnings when incorrect data has
been entered, or to ask users to confirm that they want to continue
with a potentially destructive action (such as deleting an object).

1.3.5 Controls

Controls are Dialog System objects that you can add to windows or
dialog boxes to enable users to interact with the application. Control
objects can only be placed inside a window or dialog box. Dialog
System provides a wide range of control objects such as entry fields,
push buttons, list boxes, selection boxes and bitmaps. See the chapter
Control Objects and the Help for full information on the control
objects available.

1.3.6 Selecting Objects
In a GUI system, the application is driven by users selecting objects and
then selecting actions to be applied to the objects.

Dialog System provides the following selection methods that are
applicable to most objects:

• To select a single object, move the mouse pointer to the object and
click.

• To select several objects with the mouse, one of the mouse buttons
must be set to Select (see the section Mouse Actions).

If you hold down the shift key, you can select multiple individual
objects by clicking on them, rather than by clicking and dragging.

• To select objects using the menu or keyboard, use Select area or
Select all on the Edit menu. Select area selects one or more objects.
Select all selects all objects in the current window or dialog box.
Dialog System User’s Guide

32 Chapter 1 The Graphical User Interface

dspubb.book Page 32 Monday, May 13, 2002 8:57 AM
Dialog System provides the following selection methods applicable to
specific objects:

• To select a menu choice, either move the mouse pointer to the
choice and click, or select the choice using the cursor arrows and
press Enter.

• To select an entry in a selection box, scroll through the list in the box
until the desired entry appears, move the mouse pointer to it and
click. If you double-click on a list item, the default action is
performed. Clicking on another item cancels the first selection and
selects the new one.

• To select an entry in a list box, scroll through the list in the box until
the desired entry appears, move the mouse pointer to it and click. If
you double-click on a list item, the default action is performed. A list
box can be set up to enable you to perform a single selection only,
to select multiple items, or to select multiple adjacent items.

• To select a radio button choice, click on the button. It is filled in to
show it has been selected. If another radio button in the same
control group was selected, it will be deselected. (Only one radio
button can be selected in a control group.)

• To select a check box choice, click on the check box. The state of the
check box is reversed - if it was selected, it is now deselected, and if
it was not selected, it is now selected. You can click on any number
of check box choices.

• To select a push button action, click on the button. The button
changes appearance to look as if it is pushed in. Clicking the button
starts the action.

1.3.7 Scrolling

Some windows contain scrollable areas. These are indicated by scroll
bars at the right hand edge (for vertical scrolling) and the bottom edge
(for horizontal scrolling). Each scroll bar contains a slider which moves
along the bar, and arrows indicating the direction of scrolling.

• To scroll line-by-line, click on the scroll arrow that points in the
direction you want to scroll.

• To scroll a screen at a time, click on the scroll bar itself, next to the
slider. Scrolling is towards the point where you clicked.
Dialog System User’s Guide

1.4 Further Information 33

dspubb.book Page 33 Monday, May 13, 2002 8:57 AM
• To scroll more than a screen at a time, click and drag the slider in
the appropriate scroll bar in the desired direction. Release the
mouse button when you reach the desired part of the window.

1.4 Further Information
The next chapter Introduction to Dialog System explains the basic
concepts that you need in order to start using Dialog System.
Dialog System User’s Guide

34 Chapter 1 The Graphical User Interface

dspubb.book Page 34 Monday, May 13, 2002 8:57 AM
Dialog System User’s Guide

35

dspubb.book Page 35 Monday, May 13, 2002 8:57 AM
2 Introduction to Dialog System

The previous chapter described the advantages of using a graphical
user interface (GUI). This chapter introduces you to the basic concepts
which you need in order to use Dialog System when creating GUIs for
your COBOL applications. These include:

• The benefits of using Dialog System.

• An overview of the constituent parts of Dialog System.

• The steps that you need to follow to create an application with
Dialog System.

2.1 Benefits of Using Dialog System
Dialog System offers you the following benefits:

• Independence of the user interface from the main program logic.

When the program requires interaction with the user at run time, it
calls Dialog System to handle this. This independence encourages
well-structured programming.

• Independence of the user interface from the program.

You can create several different user interfaces for the same
program.

• Ease of defining graphical objects.

Dialog System provides a library of graphical objects that you can
tailor for your application and manages these objects’ behavior,
including stacking and unstacking windows. Dialog System also
deals with screen handling, both during definition and at run time.
Dialog System User’s Guide

36 Chapter 2 Introduction to Dialog System

dspubb.book Page 36 Monday, May 13, 2002 8:57 AM
• Complete handling of input, output and navigation between
windows.

You can instruct Dialog System to handle user input and output and
decide what to display to the user, using a simple set of instructions
called dialog.

• Automatic Data Block generation.

Dialog System can supply your calling program with the definitions
for the Data Block that are needed to interface with Dialog System
at run time.

• Validation capability.

Dialog System handles most validation of input and can deliver
error messages to users. The calling program can also use these
error messages if required.

• Prototyping and testing.

Dialog System can run the interface in a similar way to the calling
program, which gives a high degree of confidence in the validity of
the results. You do not need to wait until you have a complete
interface as Dialog System enables you to test small parts of the
interface as you develop them.

2.2 Overview of Dialog System’s Capabilities
Dialog System enables you to design and edit windows and dialog
boxes for display on a Windows system and to pass data between this
interface and your application program. The two aspects of Dialog
System which enable these functions are:

• The definition software, which enables the creation and tailoring of
the items to appear on your user interface.

• The program Dsgrun, which communicates with both your interface
and your application program and controls the run-time behavior of
your interface components.
Dialog System User’s Guide

2.2 Overview of Dialog System’s Capabilities 37

dspubb.book Page 37 Monday, May 13, 2002 8:57 AM
This section describes in outline what the definition software is and
how it enables you to create a user interface, covering:

• The design of your interface and its elements.

• How to activate these elements using dialog.

• How you link the above parts to your calling program using the
Data Block.

2.2.1 Designing Your Interface

The first step when you develop a Dialog System application with a GUI
is to design a data model. The model defines the data which is to be
both captured by the user interface and provided by the application to
be presented to the user.

This data model provides the basic data items that must be passed to
the calling program. You must also decide on any validation criteria for
these items.

Some of the desirable features you should consider for your user
interface are:

User controlled Users are in control of the interface. They determine
the course of action of the application.

Easy to use The user can move easily and naturally around a
window and between windows. The information
displayed is well organized, easy to read, and appears
uncluttered.

Consistent The user interface is consistent internally as well as
across applications. For example, the Exit choice on a
window is always the last option in the File menu.
Another example is that any delete action
requiresadditional confirmation.

Helpful Users are given clear, informative feedback on where
they are in the system, what actions they have taken,
and what action they should take next. It is better for
the user to select an item from a list rather than enter
the item in a data entry field.
Dialog System User’s Guide

38 Chapter 2 Introduction to Dialog System

dspubb.book Page 38 Monday, May 13, 2002 8:57 AM
You also need to consider how the user interacts with the data - the
user interface.

The user interface you build can take many forms, ranging from simple
menu selection and data entry fields to fully developed windows
complete with menu bars, radio buttons and other controls.

The level of sophistication of the interface you choose depends on many
factors including:

• Who the users are and their level of training.

• The hardware and software resources available.

• The complexity of the task to be performed.

In all cases:

• The user determines the normal course of action.

• The user, rather than your program, is in control of the interface.

• The user interaction with the computer should be as simple and
natural as possible.

The basic visual elements which you define for your user interface are
called objects. These objects, such as windows, dialog boxes and push
buttons, appear on an area bounded by the screen, in which everything
else appears.

In Dialog System, there are two main categories of objects:

• Window Objects

• Control Objects

Forgiving User actions are easily reversed. Error messages
explain what the error was, why the error occurred,
and possible corrections to the error.

Efficient System response times are kept as short as possible.

Complete If a user has a list of choices, all choices are valid and
available to the user.

Logical Choices on a menu are logically organized, with the
most frequently chosen item listed first or with the
items listed alphabetically.
Dialog System User’s Guide

2.2 Overview of Dialog System’s Capabilities 39

dspubb.book Page 39 Monday, May 13, 2002 8:57 AM
2.2.1.1 Window Objects

These are the most basic (and often the most important) objects. They
can be primary or secondary and are very similar to dialog boxes and
message boxes. The appearance of windows and dialog boxes is the
same at both definition and run time.

You can define window objects at any time and place them anywhere
on the desktop. You can move these objects by dragging the title bar
and you can size windows using their sizable borders. When selected,
you see them surrounded by a colored, shaded border.

For further information, see the chapter Window Objects.

2.2.1.2 Control Objects

All other objects are control objects. These are the objects that appear
in the windows and include entry fields, push buttons, radio buttons,
check boxes and list boxes.

You can define other control objects which extend Dialog System’s
default range of objects. When you define such a control object, Dialog
System can generate a tailored controlling program for the control.

The two types of additional controls that you can define are:

• User controls.

These enable the definition of a container or outline for objects
not paintable by Dialog System.

At definition time, the generated controlling program name
appears inside the control’s outline. Specifying a meaningful name
helps you to identify the control and its purpose in the GUI.

• ActiveX controls.

These are third-party supplied controls. You need to create the
program code to create and manipulate them at run time. When
selected, you see them as they appear at run time.

Both of these types of controls are described in the chapters Control
Objects and Programming Your Own Controls.
Dialog System User’s Guide

40 Chapter 2 Introduction to Dialog System

dspubb.book Page 40 Monday, May 13, 2002 8:57 AM
2.2.1.3 Object Properties

Every window object and control object has properties, for example,
background color. You can change these properties to specify the
object’s appearance and behavior.

You can use the default properties of an object by selecting Include on
the Options menu and selecting Auto properties. In this case Dialog
System uses the default property values for that object and does not
display the Properties dialog box. You can change the properties of the
object using the Properties dialog box by selecting Properties on the
Edit menu or double-clicking on the object.

If Auto properties is not selected, Dialog System immediately displays
the Properties dialog box for an object, so you can set the properties. If
you click Cancel in this dialog box at this stage, the object is removed. If
you click OK, the object is defined using the properties displayed in the
dialog box.

If you define a message box, bitmap, ActiveX or User control, the
Properties dialog box is always displayed, regardless of the setting of
Auto properties.

2.2.1.4 Working with Objects

To work with an object, you must make it the current object. When you
define an object initially, Dialog System automatically makes it the
current object.

2.2.1.5 Naming Objects

A common property of all objects is a name. For some objects, it is
required, and for some it is optional. If you give an object a name, that
name must be unique.

A good programming practice is to set up a naming convention for the
variables in your COBOL program. A consistent naming convention
enables you or another developer to understand your application more
easily.

We also recommend that you establish a similar naming convention for
the objects in your user interface.
Dialog System User’s Guide

2.2 Overview of Dialog System’s Capabilities 41

dspubb.book Page 41 Monday, May 13, 2002 8:57 AM
One fairly simple naming convention consists of the concatenation of:

windowname-objectinfo-objecttype

where the concatenated parts are:

Using this convention, a window used to gather information about a
new employee could be named NEW-EMPLOYEE-WIN. A push button
on the same window could be named NEW-EMPLOYEE-OK-PB. An
entry field on the window that is used to input salary information
could be named NEW-EMPLOYEE-SALARY-EF.

2.2.2 Using Dialog
A user interface is more than just a graphical display. A complete
specification also describes how the user and computer interact and
how the user interface software interacts with the application
software.

Once you have defined the appearance of the display, you must define
this run-time interaction between the user and the machine. This
interaction is called dialog. Dialog consists of events and functions.
When an event occurs, the functions associated with the event are
executed. Events can be caused by a key on the keyboard being
pressed, or a menu choice or an object being selected.

For example, a Dialog System event such as BUTTON-SELECTED occurs
when a user selects a push button (with the mouse or keyboard). If the
button selected is Enter, the function associated with it might be
CREATE-WINDOW, to create a new window for the user to enter more
information.

windowname The name of the window the object is located on, or
if the object is itself a window, just the window name.

objectinfo Some identifying information about the object. The
information should uniquely identify the object on
this window, for example, the text that appears on a
push button.

objecttype An abbreviated name that identifies the type of
object. For example, you could use win for window,
pb for push button, db for dialog box and so on.
Dialog System User’s Guide

42 Chapter 2 Introduction to Dialog System

dspubb.book Page 42 Monday, May 13, 2002 8:57 AM
Dialog System lets you create or customize the dialog between the user
and the display objects.

For more information on dialog statements, see the chapter Using
Dialog and the topic Dialog System Overview in the Help.

2.2.2.1 Events

An event signifies some change in the user interface: events happen to
objects such as windows, bitmaps, list boxes and buttons. There are
many different operations which can trigger an event, such as:

• The user pressing a key.

• A click on a mouse button when the mouse pointer is located over a
push button.

• A window or control receiving focus.

• A validation error occurring.

• The user moving the slider on a scroll bar.

Intrinsically, all events are the same. However, for convenience, they can
be divided into three types:

• Menu Events - An option is selected from a menu, for example,
when you choose Exit on the File menu.

• Object Events - Objects are activated, such as windows, push
buttons, radio buttons, list boxes and dialog boxes.

• Keyboard Events - Events occur when a key is pressed on the
keyboard.

When an event occurs, Dialog System searches first in the relevant
control dialog, then the relevant window dialog, then the global
dialog. Defining an event is part of the process of creating a Dialog
Definition. Events are defined by associating Functions with them.
Dialog System User’s Guide

2.2 Overview of Dialog System’s Capabilities 43

dspubb.book Page 43 Monday, May 13, 2002 8:57 AM
2.2.2.2 Functions

Functions are instructions to Dialog System to do something. They are
associated with events and operate when:

• An event they are listed under occurs.

• A procedure they are listed under is executed.

Dialog System has a comprehensive set of functions. Some are specific
to moving around screensets, for example SET-FOCUS or INVOKE-
MESSAGE-BOX. Some are similar to other programming language
instructions, for example MOVE data from one data item to another.

You can find a complete description of the functions in the topic Dialog
Statements: Functions in the Help.

2.2.2.3 Procedures

A procedure is an arbitrary name with a set of functions listed under it;
in other words, a subroutine. You can think of a procedure as being
like an event.

2.2.3 Using the Data Block and
Screenset
Dialog System creates a file, called a screenset, which holds the
definitions of all the windows and dialog boxes as you create them for
your interface. It is called filename.gs. This includes any on-screen
objects which you may need in your interface, for example, entry fields.

When you run your interface, objects such as entry fields contain data
which you need to pass between the interface and your application
program. You do this by associating your on-screen objects with data
items defined in your application program. These data items are called
master fields in Dialog System. You make the association by selecting
the appropriate master field when editing the control’s properties.

These data definitions are held in the screenset file and form the Data
Block. When the generated program calls Dialog System’s run-time
support module, dsgrun, it passes the Data Block as a parameter.
Dialog System User’s Guide

44 Chapter 2 Introduction to Dialog System

dspubb.book Page 44 Monday, May 13, 2002 8:57 AM
The screenset file holds:

• The data block.

The data definitions for all of the input and output.

• Objects for windows and dialog boxes (including validation rules).

• The actions associated with those objects.

These are called dialog events and functions, and you define them.

2.3 Steps for Creating an Application Using
Dialog System

To start Dialog System:

• Select Dialog System on the IDE Tools menu.
- or -
Select Net Express Command Prompt and enter dswin.

The steps that you need to follow to create an application with Dialog
System are:

1 Define data and validations.

See the section Steps for Creating a Data Definition in the chapter
Creating a Data Definition and Screenset and the topic Data
Definition and Validation in the Help.

2 Define windows, dialog boxes and message boxes.

See the chapters Window Objects and Control Objects.

3 Define control objects (such as entry fields, text fields and radio
buttons) and place them on the windows and dialog boxes.

See the chapters Window Objects, Control Objects and Using
Dialog.

4 Save your screenset.

It is a good idea to save a screenset whenever you have finished a
stage in the definition process. The first time you save a screenset,
Dialog System User’s Guide

2.3 Steps for Creating an Application Using Dialog System 45

dspubb.book Page 45 Monday, May 13, 2002 8:57 AM
use Save As. Dialog System displays a dialog box for you to enter
the filename and directory you want to save under.

After saving the sample screenset once, you can use Save whenever
you want to save the screenset. If you want to try out different
versions of the screenset, use Save As with a new name to create
another version.

5 Test your screenset.

Examine the behavior of the screenset using the Screenset
Animator. See the section Screenset Animator in the Help.

6 Define dialog.

Define object dialog that controls the behavior of objects.

7 Test the screenset again.

See the section Screenset Animator in the Help.

8 Change the screenset as required.

Go back to earlier stages of this process.

9 Generate the COBOL copyfile from the screenset.

See the section Steps for Creating a Data Definition in the chapter
Creating a Data Definition and Screenset.

10 Write the COBOL application program with the necessary calls to
the Dialog System run-time system.

See the chapter Using the Screenset.

11 Animate and test the COBOL program.

See the topic Debugging in the Help.

12 Package your application.

See the topic Compiling and Linking in the Help.

You do not need to follow this order strictly. You can define objects
before you define data if you wish, but you cannot define object dialog
until you have defined an object to which you can attach the dialog.
Dialog System User’s Guide

46 Chapter 2 Introduction to Dialog System

dspubb.book Page 46 Monday, May 13, 2002 8:57 AM
Dialog System User’s Guide

47

dspubb.book Page 47 Monday, May 13, 2002 8:57 AM
3 Creating a Data Definition and
Screenset

The following sections describe the steps needed to create an
application with Dialog System.

3.1 Designing a Data Model
As you have seen in the chapter Introduction to Dialog System, the first
step in developing a Dialog System application is to design a data
model which you can use to create the data definition. This data model
defines the basic data items your screenset must pass to the calling
program when you run your interface.

You should base the data definition on the data model of your calling
program. Before you start to create the data definition, identify the
data to be captured by the user interface. This data becomes the basic
data items your screenset must pass to the calling program. Also,
decide on any validation criteria for these items.

3.1.1 Defining Data and Validations
In this step of the development cycle, you first create the data model
for both input and output data. This should include data characteristics
such as:

• Data type, for example integer, string, or computational.

• Data size.

• Validation requirements .

• Relationships among the data items.
Dialog System User’s Guide

48 Chapter 3 Creating a Data Definition and Screenset

dspubb.book Page 48 Monday, May 13, 2002 8:57 AM
When you have created the model, you can begin to define the data
that passes between Dialog System and your program.

There are also some design considerations concerning the whole of your
screenset. See the section Controlling the Use of Screensets in the
chapter Using the Screenset for further details.

3.2 The Data Definition
To pass data between the interface and your application program, you
associate some objects, such as entry fields, with data items (master
fields) defined in your application program. These are the data
definitions.

A master field holds the data that users enter in an entry field. You
make the association by selecting the appropriate master field when
editing the control’s properties.

3.2.1 Prompted and Unprompted Mode
Dialog System allows for inexperienced users by providing a prompted
mode of data entry. The differences are:

• Prompted mode prompts you for the type of line to enter, either a
comment, field, group start or end.

• If you make entries using unprompted mode, they are formatted
when you finish entering the line. You must separate the items with
spaces.

3.2.2 Comments
It is good practice to place comments in your data definition. Any line
starting with an asterisk character is treated as a comment, with no
validation or reformatting performed. For example:

* This is a comment line
Dialog System User’s Guide

3.2 The Data Definition 49

dspubb.book Page 49 Monday, May 13, 2002 8:57 AM
3.2.3 Steps for Creating a Data
Definition
Follow the steps below to create a data definition:

• Identify the data items to include in your data definition.

• Assign a data type code.

• Use data groups.

• Look at data dependencies.

• Specify validation criteria and associating error messages.

3.2.4 The Data Block
The Data Block contains the data items that you define in the Data
Definition window of Dialog System. Each screenset has a unique Data
Block that is incorporated into the calling program as a copyfile.

At run time, the calling program moves user data to this record before
it calls Dialog System. User input placed in the Data Block by Dialog
System can be used by the program when control is returned.

Related data items can also be placed in groups, and mapped onto
objects such as list boxes.

You can view, define, and edit the Data Block in the Data Definition
window. To invoke the Data Definition window:

• Select Data block on the Screenset menu in the main window.

A simple example of a Data Block is shown below:

Fieldname Format Length Validations

GROUP-ITEMS Group 10

FIELD-1 9 4.00 R

FIELD-2 X 10.00 R

FIELD-3 9 6.00 R

GROUP-POSITION 9 2.00
Dialog System User’s Guide

50 Chapter 3 Creating a Data Definition and Screenset

dspubb.book Page 50 Monday, May 13, 2002 8:57 AM
The format of the Data Block is controlled by Dialog System.

• Entries made using prompted mode are formatted automatically.

• Entries made using unprompted mode are formatted when you
finish entering the line.

• Each item in a line must be separated by a space.

If an error occurs, you will be prompted to re-key the line. All entries in
the data definition are converted to upper case.

Note: OBJ-REF does not require an entry under length, as it is fixed
length.

The data definition is copied when you generate the COBOL copyfile for
your screenset. This copy file, named screenset-name.cpb forms the
Data Block which is passed between the calling program and Dialog
System. When you run your screenset, the calling program moves data
to the Data Block before it calls Dialog System. Dialog System can move
data to the Data Block before it returns control to the calling program.

3.2.4.1 Data Block Copyfile

The Data Block copyfile contains a description of the screenset data
items and associated field numbers.

The copyfile is a COBOL record definition that is incorporated into the
calling program when it is compiled and is entirely dependent on the
data items you defined as part of the screenset. If these change, your
program will need to change to match.

S-FIELD-1 9 4.00

S-FIELD-2 X 10.00

S-FIELD-3 9 6.00

COMMENT X 40.00

COMMENTS-TITLE X 25.00

ARRAY-SIZE 9 2.00

OBJECT OBJ-REF

Fieldname Format Length Validations
Dialog System User’s Guide

3.2 The Data Definition 51

dspubb.book Page 51 Monday, May 13, 2002 8:57 AM
A checking mechanism is used to ensure this. The format of the Data
Block copyfile is as follows:

• The Data Block corresponds to a level-01 record in a COBOL
program Working-Storage Section.

• Single data items correspond to level-03 data items in the record.

• Data groups correspond to level-03 group data items.

• Data group items correspond to level-05 data items.

3.2.4.2 Data Items

All data items defined in the data definition are global in the screenset
and can be freely referenced in the screenset dialog.

Typical data items might map onto an entry field or a list item. Data
items are categorized according to type, and can be placed in groups
and mapped onto an object such as a list box. Data items can also be
set up as flags, which can be referenced by dialog or can carry values to
your calling program.

Each data item in the Data Block must have the following:

• A name of up to 30 bytes in length.

• A data type code to enable the calling program to determine the
data type. The data type code can be any of the following:

X Alphanumeric.

9 Numeric (up to a maximum length of 18 characters),
including integer and decimal places. The number of
decimal places after the point must not exceed 9.

A Alphabetic.

S Signed numeric.

C Computational (number of bytes must be 1.0, 2.0, 4.0
or 8.0). Computational data items cannot be
displayed or tied to any entry fields.

C5 COMP-5 (number of bytes must be 1.0, 2.0, 4.0 or 8.0).
COMP-5 data items cannot be displayed or tied to any
entry fields.

N DBCS (N). Double-byte Character Set.
Dialog System User’s Guide

52 Chapter 3 Creating a Data Definition and Screenset

dspubb.book Page 52 Monday, May 13, 2002 8:57 AM
• The size of the data item. The meaning of this item depends on the
data type selected, as follows:

The following examples show the maximum and minimum ranges you
can enter for numeric and signed numeric data items:

 LARGEST-VALUE 9 18.0
 SMALLEST VALUE S 0.9

The following example shows a Data Block entry for a numeric data
item with three places before the decimal point and two after:

 ARBITRARY-DATA-NAME 9 3.2

The appearance of a data item is controlled by the picture string of the
presenting entry field.

The following example shows how to define an object reference:

 MAIN-WINDOW-SBAR-OBJREF OBJ-REF

G DBCS (G). Double-byte Character Set.

OBJ-REF An object reference, used to store a reference to a
class or instance object.

Data type
code Meaning of size field

X or A Number of characters.

9 or S Number of digits before and after the decimal point.

C or C5 Number of bytes stored. The size determines the
range of numbers that can be stored:

1.00 to 255

2.00 to 65, 535

4.00 to 4,294,967,295

8.00 to 18,446,744,073,709,551,615

Note that in some circumstances, Dialog System
handles only the last 18 digits of a value.

N or G Number of characters. Each character occupies two
bytes.

OBJ-REF The size of object references is fixed. You cannot
specify a size for an object reference.
Dialog System User’s Guide

3.2 The Data Definition 53

dspubb.book Page 53 Monday, May 13, 2002 8:57 AM
3.2.5 Using Data Groups
Data groups are used for multiple occurrences or repetitions of a set of
homogenous data items. The data items in a data group are referenced
by a subscript in the Data Block and the calling program. Data groups
are seen by the calling program as contiguous data items, each item
being accessed relative to its position in the group using the subscript
as an index. If a data group is defined as having only one repetition,
the data items will not have subscripts in the calling program (but you
must still use subscripts in Dialog System).

A group entry consists of a group name and a number of repeats, for
example:

 GROUP-1 150

Data items belonging to a group are listed under the group name and
indented, for example:

 GROUP-1 150
 DATA-ITEM-1 X 10.0
 DATA-ITEM-2 X 10.0
 DATA-ITEM-3 X 10.0

It is not possible to change the order of data items in the Data Block
other than by deleting and redefining them or using the Copy, Paste
and Delete functions from the Edit menu in the Data Definition
window.

3.2.6 Dependencies
A dependency is the term used to describe the relationship between
data items, objects and dialog. Dependencies fall into two categories:

• Where the data item is dependent on an object because it is the
Master Field of the object.

• Where the data item is dependent because it is referenced by
dialog.

You can query the dependencies of any named object by selecting
Dependencies from the View menu in the main window or by selecting
View Dependencies from the Options menu in the Data Definition
window.
Dialog System User’s Guide

54 Chapter 3 Creating a Data Definition and Screenset

dspubb.book Page 54 Monday, May 13, 2002 8:57 AM
The Dependency Query dialog box showing the dependencies for the
Customer sample screenset is shown in Figure 3-1.

Figure 3-1. Dependency Queries Dialog Box

If you query dependencies from the Data Definition window, the dialog
box describes dependencies for the data item on the line currently
highlighted in the Data Definition window. If you query dependencies
from the main window, the dialog box describes the dependencies for
the object highlighted in the main window.

When you are in the Dependency Query dialog box, you can list the
dependencies of a data item or object displayed in the dialog box.
Highlight the relevant line, then click List. This feature enables you to
follow a chain of dependencies if you need to.

3.2.7 Validating User Data
Dialog System enables you to validate user data input via entry fields
against specified criteria.

Validation only occurs when you use the VALIDATE function in your
dialog. For example, to validate all entry fields in the main window, you
can use:

 VALIDATE MAIN-WINDOW
Dialog System User’s Guide

3.2 The Data Definition 55

dspubb.book Page 55 Monday, May 13, 2002 8:57 AM
If you added any selection boxes to the main window, this function
would also validate these. You can also validate a single entry field or
selection box.

If a validation fails, a VAL-ERROR event is generated. You can use the
VAL-ERROR event in a number of ways. For example, you can set the
input focus back onto the field that failed validation. In this case, the
$EVENT-DATA register will contain the identity of the entry field that
failed validation:

 VAL-ERROR
 SET-FOCUS $EVENT-DATA

To display an error message, you can use a message box. You can either
define a message box that displays just that one message, or define it
so that it can display different messages by moving the appropriate
error message text to the message box.

To display an error message using the second method, you need to
define an error message and an error message field in your data
definition. The Customer sample screenset uses ERR-MSG as the error
message field. When a VAL-ERROR event occurs, the following dialog is
processed:

 VAL-ERROR
 SET-FOCUS $EVENT-DATA
 INVOKE-MESSAGE-BOX FIELD-ERROR ERR-MSG $EVENT-DATA

The message box FIELD-ERROR is used to display the contents of ERR-
MSG. The $EVENT-DATA register in the third line of dialog is used to
contain a code indicating which button the user clicked to
acknowledge the message box (for example OK or CANCEL).

3.2.7.1 Validation Criteria

You can use any combination of the following validation criteria:

Range/Table Where data falls inside or outside a range of specified
values including zero. You can specify several ranges
as required. The value specified can be numeric or
alphanumeric. You cannot use double-byte ranges.

Date Where data is a valid date in a specified format. You
cannot perform date validations on DBCS data items.
Dialog System User’s Guide

56 Chapter 3 Creating a Data Definition and Screenset

dspubb.book Page 56 Monday, May 13, 2002 8:57 AM
Three data items are validated in the Customer sample screenset:

• C-LIMIT - Range/Table validation with a value of 1000 to 5000.

• C-AREA - Range/Table validation with the values N, S, E, W.

• C-ORD-DT - Date validation with the format DDMMYY.

For more information on the VALIDATE function and the VAL-ERROR
event, see the topics Dialog Statements: Functions and Dialog
Statements: Events in the Help.

3.2.8 Error Message Definition
When you specify a data validation, you have the option of associating
an error message to be placed in an error message field defined in the
Data Block if a validation fails. The way you use error messages will
depend on your requirements.

The following rules apply to error message definition:

• All error messages are applied globally to a screenset.

• Only one error message string can be held in the error message field
at a time. The next error message overwrites the existing contents
of the error message field.

• There can be only one error message file associated with a screenset
at one time.

To associate an error message with a validation, highlight the item to be
validated in the Data Definition window. Use the Validation menu to
display the relevant validation dialog box and click Errors. The Error
Message Definition dialog box is displayed.

Null Where data may or may not be null (zero or spaces).
Nulls are spaces in DBCS, alphabetic or alphanumeric
fields, and zeros in numeric fields. You can choose to
cause a validation failure if a data item contains all
nulls.

User Defined Where you specify a program name which is called as
part of the processing of the VALIDATE function. The
program name has a maximum length of 256
characters including its path.
Dialog System User’s Guide

3.2 The Data Definition 57

dspubb.book Page 57 Monday, May 13, 2002 8:57 AM
The default error message file is dserror.err. You can create a new error
file, or load an existing error file by selecting File.

For the Customer sample screenset, there is an error file customer.err
already defined. Select this file and click OK to return to the Error
Message Definition dialog box.

The Customer sample program error file has three error messages:

• 001 The area code must be one of N, S, E or W.

Use for a validation error on the data item C-AREA.

• 002 The credit limit must lie in the range 1000 - 5000.

Use for a validation error on the data item C-LIMIT.

• 003 The date must be in valid DD/MM/YY format.

Use for a validation error on the data item C-ORD-DT.

To specify a new error message, specify a number in Error number and
the error text in Error text, then press Insert.

To select an error message to associate with the validation, highlight
the message and click OK. You return to the validation dialog box. The
number of the error message you selected is displayed in Error message
no.

If validation fails on any of the data input to the data items in the list
of error messages just described, a VAL-ERROR event is generated and
the appropriate error message is placed in the error message field ERR-
MSG.

You can also use the Error Messages dialog box by selecting Error
Messages on the Screenset menu in the main window. This enables
you to edit error messages and error message files, but not to associate
a message with a validation.

For more information about creating an error message file and
defining error messages, see the topic Data Definition and Validation
in the Help.
Dialog System User’s Guide

58 Chapter 3 Creating a Data Definition and Screenset

dspubb.book Page 58 Monday, May 13, 2002 8:57 AM
3.2.9 Selecting Objects
The next step in the application development process is to select the
objects that are appropriate for your application. Objects are the
building blocks of Dialog System and you can find them described in the
two chapters Window Objects and Control Objects.

3.2.10 Further Information
Further information on data definitions can be found in the topic Data
Definition and Validation in the Help, specifically on using data groups,
the internal size of data groups, and detailed information on the
contents of the generated Data Block.
Dialog System User’s Guide

59

dspubb.book Page 59 Monday, May 13, 2002 8:57 AM
4 Window Objects

The previous chapters described the basic concepts used in Dialog
System and the first step that you need to take to design a graphical
user interface. This chapter describes the window objects that are
appropriate for your application.

Objects are the building blocks of Dialog System. There are two types
of objects, control objects, described in the chapter Control Objects and
window objects, described in this chapter which covers:

• The components of a window, including its properties and why you
would choose particular properties for a window.

• The relationships between primary and secondary windows and
some of the effects of the relationship, such as clipping.

• Alternative ways of defining a window.

• How you can handle menu bar options.

A window is an object which is a basic visual element of your user
interface. Windows are extremely flexible. They can be sized by the
user and have menus in the form of menu bars with pull-down menus.
You can put any objects in a window, including other windows.

4.1 Defining Objects for Your Screen Layout
The user interface you build can take many forms, ranging from simple
menu selection and data entry fields to fully developed windows
complete with menu bars, radio buttons and other controls.

The level of sophistication of the interface you choose depends on
many factors including:

• Who the users are and their level of training.

• The hardware and software resources available.
Dialog System User’s Guide

60 Chapter 4 Window Objects

dspubb.book Page 60 Monday, May 13, 2002 8:57 AM
• The complexity of the task to be performed.

In all cases:

• The user determines the normal course of action.

• The user, rather than your program, is in control of the interface.

• The user interaction with the computer is as simple and natural as
possible.

4.2 Components of a Window
Figure 4-1 shows the visual components of a typical window.

Figure 4-1. Typical GUI Window
Dialog System User’s Guide

4.2 Components of a Window 61

dspubb.book Page 61 Monday, May 13, 2002 8:57 AM
The properties you choose for your window depend on what you want
to display and how you want the user to react to your application.
Available properties include:

Title Bar Area at the top of the window that contains the
title of your window. The title of the window in
Figure 4-1 is Primary Window.

Minimize/Maximize
Icons

Located next to the title bar at the far right of
the window, these icons let you quickly minimize
or maximize the window or restore the window
to its original size.

Border Defines the extent of the window. The border
can be sizable where the user can adjust the size
of the window, or non-sizable where the window
is fixed in size. The window can also be displayed
without a border.

Menu Bar Located just below the title bar, the menu bar
contains the options your application offers to
the user. In Figure 4-1, the choice is Functions.

GUIs usually have a pulldown menu, sometimes
called an action menu, for each menu bar choice.

Scroll Bars Provide a visual cue about the position and
quantity of information that is visible in the
window. Using the scroll bar, the user can adjust
the view of the information visible.

The horizontal scroll bar is just above the bottom
border of the window and adjusts the horizontal
view of the information.

The vertical scroll bar is just to the left of the
right border of the window and adjusts the
vertical view of the information.

System Menu Located at the left side of the title bar, the
system menu provides menu or keyboard access
to the standard window manipulation functions
available in your environment.

Client Area The remainder of the area in the window. This
area can contain controls and is where the user
performs most of the applications tasks.
Dialog System User’s Guide

62 Chapter 4 Window Objects

dspubb.book Page 62 Monday, May 13, 2002 8:57 AM
4.3 The Desktop
The desktop is the working area on your screen. You can create
windows on the desktop. You can have a very large number of windows
in your interface (see the topic Dialog System Limits in the Help), but
only one is displayed when the interface initially runs. This window is
called the First Window.

The desktop can contain the following kinds of windows:

• Primary windows.

• Secondary windows.

4.3.1 Primary Windows
The first window you create is called the primary window. It is a child of
the desktop (or you could say that the desktop is its parent), because
there are no other windows above it. It exists independently of any
other window, so any action taken on any other window has no effect
on the primary window. You may create more than one primary
window.

4.3.2 Secondary Windows
Any primary window can have child windows, called secondary
windows. These in turn can have other secondary windows. A secondary
(or child) window is used to support the parent window. Many of the
actions of a secondary window are determined by the boundaries of the
primary window. If you display a secondary window, its associated
primary window is also displayed. This relationship between windows
has a significant effect on how the user interacts with your application.

For example, a personnel application could have a primary new
employee window and multiple secondary windows to enter
information such as address, next of kin and other personal details.

If you choose to have a secondary window as the First Window, then
both the secondary window and its parent are displayed when the
screenset initially runs.
Dialog System User’s Guide

4.4 Clipping 63

dspubb.book Page 63 Monday, May 13, 2002 8:57 AM
4.3.3 Relationship Between Primary
and Secondary Windows
Some of the characteristics of the relationship between primary and
secondary windows are:

• If you delete a primary window, all the secondary windows
associated with the primary window are also deleted.

• If you move a primary window, all clipped secondary windows
move with it and maintain the same relative position on the
primary window.

• If you minimize a primary window, all its secondary windows are
cleared from the display. When you restore a primary window, all
secondary windows are restored to their original position.

Note: The parent of a primary window is the desktop. You can change
a primary window to be the child of another window at run time using
the function SET-DESKTOP-WINDOW. Refer to the section Changing
the Default Parent Window in the chapter Using Dialog, and the topic
Dialog Statements: Functions in the Help for a description of this
function.

Secondary windows and dialog boxes have similar functions, that is,
the display and collection of information. The section Dialog Boxes
Versus Windows provides some tips on when to use a dialog box and
when to use a secondary window.

4.4 Clipping
In Dialog System, you can choose whether or not the secondary
window is clipped within the primary window. A window is clipped if
the window information is truncated at the border of the parent
window.

Figure 4-2 shows an example of a clipped and a non-clipped secondary
window.
Dialog System User’s Guide

64 Chapter 4 Window Objects

dspubb.book Page 64 Monday, May 13, 2002 8:57 AM
Figure 4-2. Clipped and Non-clipped Windows

You might wish to have a secondary window that is clipped if you need
to maintain a particular visual layout of your screen. For example, the
window displayed might be similar to a paper form the user is already
familiar with, so you can use clipped secondary windows to maintain
that visual similarity.

However, a non-clipped window gives users more flexibility. Users can
move the secondary windows anywhere on the desktop, and arrange
the screen layout however they wish.

The sample application Objects shows the effect of both clipping and
not clipping a secondary window.

4.5 Defining Windows
You must define a primary window before you can define any other
window object. Then you can define either a clipped or a non-clipped
secondary window.

Whichever type of window you define, a box appears in the top left-
hand corner of the main window. To position and size the window,
move the mouse pointer to the position you want the top left-hand
Dialog System User’s Guide

4.5 Defining Windows 65

dspubb.book Page 65 Monday, May 13, 2002 8:57 AM
corner of the window to be and click to fix this. Move the mouse to the
position you want the bottom right-hand corner of the window to be
and click once more to fix it. You can then see the new window.

If you specify a dialog box as the child of a clipped child window, its
parent will not actually be that clipped child window but the parent of
the clipped child window. On creation, the new dialog box is
positioned relative to the clipped child window, but thereafter it is
positioned relative to the clipped child window’s parent. As a result,
there is a restriction when painting a screenset in which a clipped
window has an unclipped child window. The child window cannot be
moved correctly to a new position in the usual way: first you need to
change its properties to a clipped window. After the move, the clipped
property can be removed.

There are no constraints on the size of a window and it can be larger
than the Dialog System main window or positioned outside the main
window (if you have Desktop mode set on). When you run the
screenset, Dialog System positions and sizes all windows exactly as you
created them.

4.5.1 Window Properties Dialog Box
The visual components of a window are described in the section
Components of a Window earlier in this chapter. The Window
Properties dialog box, shown in Figure 4-3, enables you to select the
properties for your window.
Dialog System User’s Guide

66 Chapter 4 Window Objects

dspubb.book Page 66 Monday, May 13, 2002 8:57 AM
Figure 4-3. Window Properties Dialog Box

See the Help for information on each of these properties

4.5.2 Manipulating a Window
Once you have defined the visual characteristics of a window, you can
use dialog to manipulate the window. See the section Windows Dialog
in the chapter Using Dialog for further information.

4.6 Dialog Boxes
Most often, dialog boxes are used to display or obtain information. This
information is displayed or obtained through a collection of controls,
such as text fields, data entry fields and buttons, that are displayed on
Dialog System User’s Guide

4.6 Dialog Boxes 67

dspubb.book Page 67 Monday, May 13, 2002 8:57 AM
the dialog box. (A maximum of 255 objects can be put on a dialog box.)
They have the following properties:

• They cannot be resized or have a menu bar.

• You can add any of the Dialog System control objects to them.

• A dialog box can be created by another window, or by the desktop
and is called a child of the window that creates it. The creating
window is called the parent of the dialog box.

• Dialog boxes stay in place until they are closed by users’ actions.

Typically, a user clicks a button to cause Dialog System to accept
user actions (for example, clicking OK to accept a selection from a
list). Alternatively, a user may click a button to cause Dialog System
to ignore user actions (for example, clicking Cancel to close a dialog
box, ignoring any input).

• You can manipulate dialog boxes with the same dialog as a
window.

Figure 4-4 shows some typical dialog boxes.

Figure 4-4. Typical Dialog Boxes
Dialog System User’s Guide

68 Chapter 4 Window Objects

dspubb.book Page 68 Monday, May 13, 2002 8:57 AM
4.6.1 Modal Versus Modeless
A dialog box can be application modal, parent modal, or modeless. The
one you choose depends on how you want the user to react to the
dialog box.

A parent modal dialog box means that the window in which the dialog
box was created is frozen until the user exits from the dialog box. That
is, you cannot access the window until the modal dialog box is exited.
However, you can access other primary windows and objects outside the
application.

An application modal dialog box means that all other parts of the
window hierarchy, and all objects within the application are frozen until
the user exits from the dialog box.

You might use an application modal dialog box to ask the user to enter
a filename. The application cannot proceed until the user enters a
filename (or cancels the action).

Dialog System itself makes use of modal dialog boxes. For example, the
About dialog box is modal. (Select About on the Help menu to see this
dialog box.)

A modeless dialog box means that other parts of the application are still
active when the dialog box appears. The information that is displayed
or requested is not immediately necessary for the continuation of the
application.

A modeless dialog box is preferred because it gives the user the
maximum flexibility in interacting with the application. However, cases
exist, such as the one described above, when an application modal
dialog box is necessary.

The sample application Objects illustrates application modal versus
modeless dialog boxes. Run the screenset to see the effects of each
option.
Dialog System User’s Guide

4.7 Message Boxes 69

dspubb.book Page 69 Monday, May 13, 2002 8:57 AM
4.6.2 Dialog Boxes Versus Windows
As you can see, windows and dialog boxes are very similar. In fact a
dialog box is a special type of window. See the section Dialog Boxes in
the chapter The Graphical User Interface.

Often, you have a choice between using a dialog box or a window in
your application. To help you decide when to use a dialog box and
when to use a window, we offer the following guidelines:

Use a dialog box instead of a window when:

• The application needs modal entry. For example, if the application
requires input from the user and cannot continue until the user
responds, use a modal dialog box.

• The amount of information to present or collect is small, does not
need a menu bar, and will fit in a dialog box.

Use a window instead of a dialog box when:

• The application requires the user to choose from a list of possible
selections from a menu bar.

• The information to present or collect does not fit in the window
and the user must resize or scroll the window to view the entire set
of data or controls.

• The object needs to have child windows. Using a window gives
your application a more logical design.

4.7 Message Boxes
A message box is used to give the user a message. It contains only text
and/or graphics to present the information, and buttons to let the user
choose an action and remove the message box. Usually, these messages
are displayed by the application as a result of some event, for example,
a "file not found" event.

You cannot define the size or position of a message box.

Figure 4-5 shows a typical message box.
Dialog System User’s Guide

70 Chapter 4 Window Objects

dspubb.book Page 70 Monday, May 13, 2002 8:57 AM
Figure 4-5. Typical Message Box

Dialog System provides the following general types of message boxes
depending on the nature of the message. You can identify each type by
a different icon.

You must have at least one push button in the message box, so the user
can respond to the message. Dialog System provides six pre-defined
combinations of push buttons that you can use:

• OK

• OK/Cancel

Notification Notifies the user of a condition to which the user may
or may not want to respond. For example, telling the
user the printer is out of paper may not affect what
the user is currently doing.

Information Passes information to the user. It requires no response
from the user other than confirmation that the
message was read. For example, a product
information message is an informative message.

Warning Indicates that a condition exists that may cause
undesirable effects. For example, you can issue a
warning message when the user is approaching a
limit on the number of files opened.

Question Indicates that a condition exists that requires a user
response. For example, the user has selected a Delete
file option and the message asks the user to confirm
the deletion.

Critical Indicates that a condition exists that will cause
undesirable effects if the user continues. For example,
the user has opened the maximum number of files
and to continue will cause the system to halt.
Dialog System User’s Guide

4.8 Menus 71

dspubb.book Page 71 Monday, May 13, 2002 8:57 AM
• Retry/Cancel

• Abort/Retry/Ignore

• Yes/No

• Yes/No/Cancel

For example you could use:

• The OK button for all informative messages just to ensure the user
received the message.

• The Yes/No combination in a message box that requested
confirmation that a file be deleted.

You can determine which button the user selected using dialog. The
codes that identify the button that was clicked are listed in the
description of the INVOKE-MESSAGE-BOX function. See the topic
Dialog Statements: Functions in the Help.

As an example, suppose the user selects Delete file on a menu. The
message box (Figure 4-5 above) is invoked so the user can confirm that
the file is to be deleted.

4.8 Menus
There are three types of menu:

• Menu bar.

• Pulldown menu.

• Context menu.

4.8.1 The Menu Bar
The menu bar is a list of commands at the top of the window - or more
accurately, it is a list of groups of commands, because selecting one
command usually presents the user with further choices.
Dialog System User’s Guide

72 Chapter 4 Window Objects

dspubb.book Page 72 Monday, May 13, 2002 8:57 AM
See the topic Objects and Properties in the Help for information on
defining a menu bar.

Menu choices can:

• Pull down additional menus. These are identified by arrows
following the choice.

See the section Pulldown Menus below.

• Cause a secondary window or a dialog box to be displayed. These
are identified by an ellipsis (...) following the choice.

• Be check-marked. These have two states, on or off. When you click
on the choice, you reverse its state. If it is on, a checkmark appears
in front of it. These choices are sometimes called toggles.

• Cause an action to be performed directly. These have no special
identification.

Any one menu choice can only have one of the actions described in the
preceding list, and is decorated (for example with an ellipsis or a
checkmark) appropriately.

4.8.2 Pulldown Menus
When you select a choice on the menu bar, a pulldown menu drops
down from the choice. These are the actions you can perform on the
object. Figure 4-6 illustrates a typical pulldown menu.

Figure 4-6. Typical Pulldown Menu
Dialog System User’s Guide

4.8 Menus 73

dspubb.book Page 73 Monday, May 13, 2002 8:57 AM
There are several possible actions that can happen after you select a
choice. Usually, the menu choice includes a visual cue to indicate the
type of action. The following list describes visual cues and their
associated actions.

Examples of menu bar dialog are discussed in the sections Menu Bar
Dialog and Enabling and Disabling Choices in the chapter Using Dialog.

The topic Objects and Properties in the Help tells you how to define
menu bars.

4.8.3 Context Menus
Context menus provide a quick and easy method for performing
operations relevant to your work area in Dialog System. If you right-
click on the screen, Dialog System displays a menu of choices
appropriate for the item you have clicked on. For example, the context
menu is different for a push button object in the main definition
window from a dialog line in the dialog definition window.

An example of a context menu is given below:

Select Global dialog on the Screenset menu.

Right-click on any of the lines of dialog.

Arrow Invokes another pulldown menu at the side of the
current one to give you further menu alternatives
from which you can choose.

Checkmark Shows whether or not a choice is in effect. When the
checkmark is toggled on, the choice is operational.
When it is off, the choice is not operational. When a
checkmark choice is off, you cannot distinguish it
from an ordinary menu choice that performs
immediately.

Dimmed Shows that the choice is not available.

Ellipsis (...) Invokes a dialog box or secondary window presenting
a more complex choice, for example choosing from a
list of files or selecting a radio button.

No
distinguishing
marks

Performs the action immediately.
Dialog System User’s Guide

74 Chapter 4 Window Objects

dspubb.book Page 74 Monday, May 13, 2002 8:57 AM
Dialog System displays a context-sensitive menu, as shown in Figure 4-7.

Figure 4-7. Global Dialog Context Menu

4.9 Attaching an Icon
An icon is a small graphic that represents a window when it is
minimized. When you create a window or dialog box, you can attach an
appropriate icon to use when it is minimized.

To attach an icon to a window:

1 Select the window.

2 Select Properties on the Edit menu.

The Window Properties dialog box is displayed.

3 Click Icon.

This displays the Icon Selection dialog box, shown in Figure 4-8,
which contains the list of icon names available in the bitmap file.
The file ds.icn is always the default.
Dialog System User’s Guide

4.9 Attaching an Icon 75

dspubb.book Page 75 Monday, May 13, 2002 8:57 AM
Figure 4-8. Icon Selection Dialog Box

4 Select an icon name from the list (its image will be shown).

5 Click OK to return to the Window Properties dialog box.

Ensure that Minimize Icon is selected or the icon will not be used.

6 Click OK to return to the Object Definition Window.
Dialog System User’s Guide

76 Chapter 4 Window Objects

dspubb.book Page 76 Monday, May 13, 2002 8:57 AM
Dialog System User’s Guide

77

dspubb.book Page 77 Monday, May 13, 2002 8:57 AM
5 Control Objects

The previous chapter looked at window objects. This chapter describes:

• Control objects and their use.

• Grouping controls.

• Aligning controls.

5.1 Control Objects
Control objects are also known as widgets or gadgets and they can be
used in windows and dialog boxes. They cannot exist outside a window
or dialog box, so you have to define a window or dialog box and select
it before you can define controls. See the chapter Window Objects for
further details.

Depending upon the control, you can use it to:

• Input data (for example, by presenting alternative values for the
user to select).

• Navigate among different displays.

• Display data.

The controls covered in this chapter are:

Control Use to

Text and Entry
fields

Read and enter data items, and supply text for
labeling.

Push buttons Enable the user to select an immediate action.

Radio buttons Give the user a fixed set of mutually exclusive
choices, when grouped.
Dialog System User’s Guide

78 Chapter 5 Control Objects

dspubb.book Page 78 Monday, May 13, 2002 8:57 AM
5.1.1 Text and Entry Fields
The most basic controls are entry fields. This section describes:

• Some of the characteristics of text, single line and multiple line
entry fields.

• Using entry fields with other controls.

Check boxes Give the user a set of choices that are not
mutually exclusive, that is, the user can select
none, any, or all of the choices.

List boxes Display a list of choices from which the user can
select one or more.

Selection boxes Present a scrollable list of choices and place a
selection in an entry field.

Scroll bars Enable the user to scroll to a particular value,
when used with another control like an entry
field.

Group boxes Outline a control or group of controls for the
visual convenience of the user.

Tab control and
Tab control pages

Organize information like a spiral bound
notebook containing pages and tabbed divider
pages.

OLE2 controls Display a window from which the user can call
any external object, for example, a spreadsheet.

User controls Contain objects not paintable by the Dialog
System definition software. How you use a user
control depends on its implementation.

ActiveX controls Display objects with predefined functions, usually
supplied by third parties.

Control Use to
Dialog System User’s Guide

5.1 Control Objects 79

dspubb.book Page 79 Monday, May 13, 2002 8:57 AM
5.1.1.1 Displaying Text (Text Objects)

A text object is a control that you can use to help your user understand
what information is displayed or asked for. You can think of a text field
as a label. Figure 5-1 shows an example of the use of text fields.

Figure 5-1. Examples of Text Fields

You can use text fields as:

• Field or column headings.

• Field prompts.

• Descriptive text.

A text field is static. That is, no events or functions are associated with a
text control. If you need a text field that you can change at run time,
such as a status line or a dynamic prompt, use a display-only entry field.
See the section Display-only Entry Fields for more information.

The topic Objects and Properties in the Help provides detailed
information on defining text fields.
Dialog System User’s Guide

80 Chapter 5 Control Objects

dspubb.book Page 80 Monday, May 13, 2002 8:57 AM
5.1.1.2 Getting Input Using Entry Fields

Entry fields are control objects that display the contents of a data item
at run time and enable the user to edit the contents. You use an entry
field when you do not know the possible values for a data item. In this
situation, the user must supply the needed information.

An entry field is associated with a data item. Changes to the entry field
made by the user are immediately put into its data item with no further
action on your part. If the contents of the data item change, the entry
field must be refreshed before it reflects the change. An entry field is
refreshed when:

• Its parent window is created at run time.

• It, or its parent window, is refreshed explicitly by the dialog function
REFRESH-OBJECT.

• It receives the input focus.

An entry field is not refreshed when its parent window is shown using
the SHOW-WINDOW function.

If you set focus on a numeric entry field and the associated master field
does not contain valid numeric data, the value will be set to zero.

Dialog System provides two types of entry fields - single line entry and
multiple line entry (MLE).

5.1.1.2.1 Single Line Entry Field

The simplest entry field is a single line entry field, which can display or
collect only one line of text.

As an example, in the Customer sample, users must supply information
such as customer code, name, address and credit limit. They enter this
information using entry fields.

Figure 5-2 shows several examples of single line entry fields.
Dialog System User’s Guide

5.1 Control Objects 81

dspubb.book Page 81 Monday, May 13, 2002 8:57 AM
Figure 5-2. Examples of Entry Fields

5.1.1.2.2 Using Entry Fields with Other Controls

You can also use entry fields with other controls to help the user select
appropriate values.

For example, if you know the data item is in a particular range of
values, you could use the entry field with a scroll bar to let the user
"scroll" to the correct value.

Figure 5-3 shows an example of using an entry field with a scroll bar.
Dialog System User’s Guide

82 Chapter 5 Control Objects

dspubb.book Page 82 Monday, May 13, 2002 8:57 AM
Figure 5-3. Using an Entry Field with Scroll Bar

You can find an example of the dialog needed to implement this
feature in the chapter Sample Programs.

The topic Data Definition and Validation in the Help describes how to
set up validation checks using Data Definition.

5.1.1.2.3 Display-only Entry Fields

Some entry fields need to be display-only. For example, you might have
a dialog box that lets the user update address information for
employees. You might want the user to see, but not update, some
fields, for example the employee name.

Another use of display-only entry fields is to build dynamic prompts or
status lines. For example, you might not know the exact wording of a
prompt at definition time. You can make the prompt a display-only
entry field, then supply the correct text at run time.

To illustrate how to make a dynamic prompt, you might have a display-
only entry field that is associated with an item in the Data Block named
generic-prompt. In your program, fill the item using a statement like:

 move "Dynamic Prompt" to generic-prompt

The new prompt is then displayed when the entry field associated with
generic-prompt is refreshed.
Dialog System User’s Guide

5.1 Control Objects 83

dspubb.book Page 83 Monday, May 13, 2002 8:57 AM
Display-only is a property of single line entry fields. The topic Objects
and Properties in the Help describes how you set an entry field to
display-only.

5.1.1.2.4 Autoswipe

Autoswipe is a property of an entry field: when the user tabs to the
field, all the data associated with that field is selected. If the user
inputs any data in the field, the field is cleared before the new data is
entered.

You can use Autoswipe to clear a default value when you know the
user would not use the default. For example, if you use an entry field
to enter a filename, you may want the default to be a descriptive string
like filename.ext. This gives the user an indication of the format you
expect for the filename, but it is unlikely that a file would have that
default name.

As soon as the user enters any data in the field, the existing text is
cleared and the data entry begins in the first position of the field.

The SET-AUTOSWIPE-STATE function lets you change the Autoswipe
state of an entry field. In the example above, once the user has entered
a valid filename, you may want to set SET-AUTOSWIPE-STATE off. Then
when the user tabs to this field, the field is not cleared before data is
entered. See the topic Dialog Statements: Function in the Help.

5.1.1.3 Multiple Line Entry Fields

Like a single line entry field, a multiple line entry field (MLE) enables
you to display and edit the contents of a data item. However, this
control is most useful when you have a lot of information to collect, for
example a lengthy text description of a product.

The MLE appears on the screen as a box with horizontal and vertical
scroll bars. The scroll bars allow you to adjust the view of the data in
the MLE. The scroll bars do not have any dialog associated with them;
that is, Dialog System controls all the scroll bar actions for the MLE.

Figure 5-4 shows two MLEs. The one on the left has the word-wrap
option set and the one on the right does not.
Dialog System User’s Guide

84 Chapter 5 Control Objects

dspubb.book Page 84 Monday, May 13, 2002 8:57 AM
Figure 5-4. Multiple Line Entry Field

The data item associated with the MLE can contain alphanumeric and
DBCS characters, and line feeds (ANSI decimal 10, x"0A"), which place
successive characters on the next line in the display area of the MLE as
you would expect. The user can view characters that extend beyond the
right-hand or lower boundary by using the scroll bars.

You can set the MLE to word-wrap the displayed text so it never extends
beyond the right-hand boundary. Single words that cannot fit are
simply split.

The Objects sample program shows the differences between an MLE
that has the word-wrap option set and an MLE that does not.

5.1.1.4 Editing an MLE

You can put or edit text in the MLE by:

• Moving the text to the associated data item in your application
program.

• Moving the text to the data item using dialog. In this case, line
feeds cannot be inserted.
Dialog System User’s Guide

5.1 Control Objects 85

dspubb.book Page 85 Monday, May 13, 2002 8:57 AM
• Loading text directly to the MLE from the Clipboard .

• Allowing the user to edit the information directly in the MLE.

5.1.1.5 Refreshing an MLE

When an MLE’s data item is changed at run time, the MLE needs to be
refreshed before the change is visible. An MLE is refreshed when:

• Its parent window is created at run time.

• It or its parent window is refreshed explicitly by the dialog function
REFRESH-OBJECT.

Changes made by the user to the MLE are immediately put into its data
item with no further action on your part.

5.1.2 Push Buttons

A push button lets a user select an action. The action indicated by the
text in the push button occurs immediately. Figure 5-5 shows an
example of a window with a push button.

Figure 5-5. Typical Push Button
Dialog System User’s Guide

86 Chapter 5 Control Objects

dspubb.book Page 86 Monday, May 13, 2002 8:57 AM
5.1.2.1 Assigning Bitmaps to Push Buttons

When you define a push button, you can use the Push Button Properties
window to attach a set of bitmaps, instead of text, to a push button.
You define a bitmap for each of the three possible states a push button
can be in; normal, disabled, and depressed.

You must define a bitmap for the normal state. If you do not define a
bitmap for the depressed or disabled states, the bitmap defined for the
normal state is used.

However, you might want to set or change bitmaps at run time. See the
chapter Using Bitmaps to Change the Mouse Pointer for further
information.

5.1.3 Radio Buttons
Unlike push buttons, you can group radio buttons together to show the
user a fixed set of mutually exclusive choices. For example, Figure 5-6
shows this use of radio buttons, in which the user must select only one
method of billing.

Figure 5-6. Typical Radio Buttons

Grouping radio buttons gives them the characteristic behavior, which is
that only one button in the group can be selected at a time. When the
user selects a new button, the previously selected button is deselected.
Dialog System User’s Guide

5.1 Control Objects 87

dspubb.book Page 87 Monday, May 13, 2002 8:57 AM
See the section Grouping Controls in this chapter for a description of
how to define a control group.

The dialog associated with a radio button is the same as the dialog for
a push button. For example, the radio button VISA can have dialog
such as:

BUTTON-SELECTED
 BRANCH-TO-PROCEDURE BILL-TO-VISA

where the procedure BILL-TO-VISA contains the necessary billing
functions.

Note: You can deselect a radio button only by selecting another radio
button within the control group.

For information on defining a radio button, see the topic Objects and
Properties in the Help.

5.1.4 Check Boxes
Check boxes are much like radio buttons except the user can select
choices that are not mutually exclusive. For example, as shown in
Figure 5-7 you can use check boxes when you have a "check all that
apply" situation.

Figure 5-7. Group of Check Boxes
Dialog System User’s Guide

88 Chapter 5 Control Objects

dspubb.book Page 88 Monday, May 13, 2002 8:57 AM
You can attach a numeric data item to a check box. If the check box is
set, the data item associated with the check box is set to one. If the
check box is not set, the data item is set to zero.

See the chapter Sample Programs for further information.

5.1.5 List Boxes
You use list boxes to display a list of choices from which the user can
select one or more. A list box consists of:

• A window containing the list of items.

• At least one scroll bar to allow you to move unseen information into
view.

Dialog System provides three types of list boxes:

• Single selection - Select only one entry from the list.

• Multiple selection - Select any number of entries (up to the limit of
the list box).

• Extended selection - Select any number of adjacent entries (up to
the limits of the list box).

The Objects sample application shows the differences between a single
selection list box and a multiple selection list box.

Figure 5-8 shows an example of a list box.
Dialog System User’s Guide

5.1 Control Objects 89

dspubb.book Page 89 Monday, May 13, 2002 8:57 AM
Figure 5-8. Example of a List Box

For information on defining a list box, see the topic Objects and
Properties in the Help.

5.1.5.1 Adding Items to a List Box

You can insert items into the list box in the following ways:

• Using a group item passed from your program.

You can associate the list box with a group item, such that each line
in the list box displays an occurrence of the group. Selected items in
the group then occupy fields in each line.

This is probably the most common way of using a list box. For an
example program, see the chapter Sample Programs.

• Using the definition facility when you define the list box
properties.

You can type in items at definition time as part of the list box
properties . These items are inserted in the list when the box is
created at run time. Subsequently, they are just like any other
inserted list items. For example they can be changed, deleted or
have other items inserted between them.
Dialog System User’s Guide

90 Chapter 5 Control Objects

dspubb.book Page 90 Monday, May 13, 2002 8:57 AM
This is an effective way of adding items to the list if you have a small
number of entries that you always want to have in the list. See the
topic Objects and Properties in the Help for further information on
how to add choices to a list box in this way.

• Using dialog at run time using the INSERT-LIST-ITEM function.

This is an effective way of populating a list box if you have a few
choices in your list and you want to keep the Data Block as small as
possible. Although it does not require much time to fill a small list
box, it does take a little time and adds to the number of dialog
statements that have to be executed.

• Passing a delimited string from your program.

This method offers two advantages:

• It reduces the number of dialog statements in your screenset.

• It enables you to maintain the list outside Dialog System. For
example, you could have the data stored in an ASCII file that
you can maintain with an editor and read in with your program
at run time. Thus, you can make minor changes to the data
without affecting either your program or the screenset.

It does, however, add to the size of the Data Block passed between
your program and Dialog System, but it is faster than adding the
data items to the list one at a time.

For an example, see the chapter Sample Programs.

5.1.6 Selection Boxes
A selection box is a control object that is used to present a scrollable list
of choices and place a selection in an entry field. It is sometimes known
as a combination box or combo box.

Figure 5-9 shows the three types of selection boxes that are available.
Dialog System User’s Guide

5.1 Control Objects 91

dspubb.book Page 91 Monday, May 13, 2002 8:57 AM
Figure 5-9. Typical Selection Boxes

The following describes the types of selection boxes:

You define the three types of selection box in exactly the same way,
then choose the specific type you want as a property in the Selection
Box Properties dialog box.

Simple (or fixed) Consists of an entry field and a list box. You can
either type in the entry field, or select an item from
the list, which is then placed in the entry field.

Drop-down Consists of an entry field with an arrow button at
the right-hand end and a hidden list box. When
you press the arrow button, the list box drops
down. The user can type in the entry field, or select
an item from the drop-down list to be placed in the
entry field. The list box disappears again when the
user makes a selection or clicks elsewhere.

Drop-down list Consists of a display-only entry field with an arrow
button at the right-hand end and a hidden list box.
You cannot type into the display-only field; you
must select a choice from the list. You can think of
it as a list box that shrinks to show only the current
selection.
Dialog System User’s Guide

92 Chapter 5 Control Objects

dspubb.book Page 92 Monday, May 13, 2002 8:57 AM
To add selection boxes individually to windows or dialog boxes:

1 Select the window or dialog box.

2 Click Selection box on the Objects toolbar
- or -
Click Selection box on the Object menu.

If you define a selection box where the drop-down list will obscure
other controls in the window or dialog box, ensure that the selection
box receives focus before the controls that might be obscured. Either
define the selection box first, or use Controls on the Edit menu to
change the control order. This ensures that all the controls are properly
displayed at run time.

5.1.6.1 Entry Field

The entry field part of the selection box is linked to a data item called its
master field. You normally place text in the entry field just to supply a
default choice.

5.1.6.1.1 Refreshing the Entry Field

To display the contents of the master field in the entry field at run time,
the selection box must be refreshed. A selection box is refreshed when:

• Its parent window is created at run time.

• It or its parent window is refreshed explicitly by the dialog function
REFRESH-OBJECT.

If you show a selection box using the SHOW-WINDOW function, it is not
refreshed.
Dialog System User’s Guide

5.1 Control Objects 93

dspubb.book Page 93 Monday, May 13, 2002 8:57 AM
5.1.6.1.2 Changing the Entry Field

If the user makes changes to the entry field by typing or selecting a
choice in the list box, these changes are immediately put into the
master field with no further action on your part.

Selecting an item in a selection box causes an ITEM-SELECTED event to
be generated.

You can place text items in the list box in the following ways:

• Type in items at definition time as part of the selection box
properties.

These items are inserted in the list when the selection box is
created. After that, they are just like any other list item. For
example, they can be deleted or have other items inserted between
them.

• Insert and delete items at run time using dialog functions INSERT-
LIST-ITEM or INSERT-MANY-LIST-ITEMS and DELETE-LIST-ITEM.

For a description of this (and other) methods of adding items to the
list box see the section Adding Items Using Dialog in the chapter
Sample Programs.

5.1.7 Scroll Bars
In a list box and an MLE, a scroll bar indicates the position and quantity
of information visible in the list box. Using the scroll bar, the user can
adjust the view of the information visible. However, in Dialog System
you can also create a scroll bar as an independent control.

As an example, you can use the scroll bar with an entry field to let the
user "scroll" to the correct value. The scroll bar example in the sample
application Objects shows this usage.

Figure 5-10 shows a horizontal scroll bar.
Dialog System User’s Guide

94 Chapter 5 Control Objects

dspubb.book Page 94 Monday, May 13, 2002 8:57 AM
Figure 5-10. Horizontal Scroll Bar

The Scroll Bar Properties dialog box lets you assign defaults to scroll bar
properties such as slider range, slider position and slider size. Using
dialog, you can change these properties.

You can see a coded example in the chapters Tutorial - Creating a
Sample Screenset and Tutorial - Using the Sample Screenset. For
information on defining a scroll bar, see the topic Objects and
Properties in the Help.

5.1.8 Group Boxes
A group box is a graphic frame used to outline a control or group of
controls purely for the visual convenience of the user. This encourages
the use of several controls to be understood as a group. Figure 5-11
shows an example of a group box.
Dialog System User’s Guide

5.1 Control Objects 95

dspubb.book Page 95 Monday, May 13, 2002 8:57 AM
Figure 5-11. Typical Group Box

Like a text control, no events or functions are associated with a group
box.

For information on defining a group box, see the topic Objects and
Properties in the Help.

5.1.9 Tab Controls

A tab control enables related information to be organized in a way
that is intuitive and easy to use. Figure 5-12 shows an example of a tab
control.

Figure 5-12. Typical Tab Control

A tab control is made up of individual pages. These are combined into
a single control with each page represented as a tab along one edge
Dialog System User’s Guide

96 Chapter 5 Control Objects

dspubb.book Page 96 Monday, May 13, 2002 8:57 AM
(usually the top) of the control. Selecting a tab displays the associated
page.

Tabs can contain text or bitmaps. If all the tabs do not fit on a single
line, they can be displayed either with scroll arrows to move through
the tabs, or the tabs can be wrapped over several lines so that they are
all visible.

The visible area of the tab control is always the top page. Pages can
contain any Dialog System control objects, apart from another tab
control or window.

You can see a coded example in the chapter Sample Programs.

5.1.10 OLE2 Controls
An OLE2 control is a window, inside which you can display external data
or objects, such as spreadsheets and bitmaps.

As an example, you can use the Paintbrush application to design and
edit a picture, and then load that picture into your OLE2 window.

5.1.11 User Controls
You use a user control as a container for an object that is not paintable
by the Dialog System definition software.

Events and functions on a User Control are implemented in a controlling
program associated with the object. Typically the controlling program
uses the class library to create and maintain the object.

You create and manipulate User Controls by generating the controlling
program at definition time. The advantage of using a controlling
program is that the object is completely user-definable while still having
the benefits of being integrated with the Dialog System and run-time
software.

Integrating user control objects with the definition software provides
the following benefits:

• Automatic object creation and display at run time.
Dialog System User’s Guide

5.1 Control Objects 97

dspubb.book Page 97 Monday, May 13, 2002 8:57 AM
• Depending on the type of object, support for screens of differing
resolutions, as well as the ability to resize and move child windows
and gadgets. For more information see the chapter Advanced
Topics and the topic Dynamic Window Sizing in the Help.

• Position and size of objects can be easily defined and modified in
the same way as other Dialog System objects.

• Objects can be reordered in the same way as other Dialog System
objects. This allows the tabbing order at run time to be defined.
The user can define the sequence in which they tab between
existing Dialog System objects and user control objects.

• All standard alignment functions are available on user controls,
enabling alignment with other Dialog System objects. For
information on aligning objects see the section Aligning Controls in
this chapter.

For information on creating and manipulating user control objects, see
the chapter Programming Your Own Controls.

5.1.12 ActiveX Controls
ActiveX controls are supplied by third-party vendors and can be
integrated into Dialog System applications. The benefits listed above
for user controls also apply to the use of ActiveX control with your
screenset. Additional benefits of using ActiveX controls are that you
can:

• Paint them visually at definition time.

• Display the control’s property pages dialog for storing initial
properties in the screenset.

• Get help on writing code to manipulate the run-time appearance
and behavior of the control via properties, methods and events,
using the Dialog System Programming Assistant. See the chapter
Programming Your Own Controls for further details.

You need to purchase a development licence for any controls you may
wish to use in your application. You are also bound by the vendor’s
licence agreement for the production and distribution of that control.
Dialog System User’s Guide

98 Chapter 5 Control Objects

dspubb.book Page 98 Monday, May 13, 2002 8:57 AM
5.2 Grouping Controls
When controls, such as entry fields, radio buttons, and push buttons
appear in a window or dialog box at run time, the user can move the
keyboard input focus around them by pressing Tab.

Sometimes, several controls form a logical group (for example, a set of
radio buttons) and either the user is interested in all the controls in the
group or none of them. Therefore, it is convenient for successive presses
of Tab to move the focus onto the group and then away to the next
control or group. You can use the cursor keys to move around controls
in a group. (Again, this is the default action, which you can change if
you choose.)

You can achieve this behavior by putting the controls into a control
group.

You must put a group of radio buttons into a control group so that they
have the characteristic behavior that only one radio button in the group
can be selected at a time. When one is selected, all the others in the
same group are unselected.

Usually, you want the focus to start on the control or control group that
the user is most likely to operate, and move around them in a
convenient order with successive presses of Tab. The order of controls
within each group also needs to be specified so the focus lands on the
first control when Tab is used, and the cursor keys move the focus
around the group’s controls in a convenient order.

Note: You cannot Tab into a control group when the first item of the
group is disabled.

You can specify the order of controls and groups in each window or
dialog box. The procedure for doing this is explained in the topic Dialog
System Overview in the Help.
Dialog System User’s Guide

5.3 Aligning Controls 99

dspubb.book Page 99 Monday, May 13, 2002 8:57 AM
5.3 Aligning Controls
Dialog System provides an alignment mechanism that makes it easy to
align graphical objects when moving or sizing in a graphical
environment.

Most of the alignment functions are available on the Alignment
toolbar, which is available on the Alignment tab page. See the topic
Dialog System Overview in the Help for a description of the Alignment
toolbar.

The alignment options mean that you don’t have to position controls
exactly when you define them. You can quickly add the controls you
need in rough form and then use the Alignment toolbar buttons to set
the spacing and sizing.

Most alignment operations will require a combination of the
alignment functions. For example, you might want to place a set of
four push buttons near the bottom of the window. The steps you might
follow are:

1 Position the push buttons roughly in the area you want them to
appear.

2 Choose Select area on the Edit menu or use the select area toolbar
option to enclose the objects. This enables the objects to be treated
as a group.

3 Select the Align to bottom button.

4 Select the Equalize objects’ width button.

5 Select the Equalize objects’ height button.

If the spacing is not ideal, there is an alternative way to align the
buttons:

1 Select Tile horizontally.

This effectively gives no spacing.

2 Size the group by:

• Selecting Size on the Edit menu.

-or-
Dialog System User’s Guide

100 Chapter 5 Control Objects

dspubb.book Page 100 Monday, May 13, 2002 8:57 AM
• Using the sizing handles on the selected controls.

This increases the spacing between the controls.

Suppose now that the four push buttons are not in the correct order.
You can rearrange them by using the Shuffle button. For example, the
four push buttons might be labelled OK, Insert, Cancel and Help
respectively and you want to change the order to Help, Cancel, Insert,
and OK.

To rearrange the buttons, first select them in the order you want them.
To do this:

1 Click on the Help push button.

2 Hold down the Ctrl key and click on the Cancel push button.

Repeat this step for the Insert and OK push buttons.

3 Click Reorder objects on the Alignment toolbar.

The order becomes Help, Cancel, Insert and OK.

Each button has been swapped with another in the group into the
order in which you selected them. The default order of swapping is left
to right. That is, in this example, the OK button is the first to swap,
Insert the second, Cancel the third and Help the fourth.

With all the alignment functions, you can undo the last operation by
selecting Undo on the Edit menu.

The following steps describe how to space the four push buttons
vertically down the right-hand side of the window:

1 Select the controls as a group in the same way as described
previously.

2 Move the group towards the top of the window.

3 Click Tile vertically.

4 Click Align to right.

5 Select Size on the Edit menu to stretch the spacing between the
controls.

You can now move the controls to their ideal position on the
window and use Reorder objects to rearrange the order if necessary.
Dialog System User’s Guide

5.4 Sample Program 101

dspubb.book Page 101 Monday, May 13, 2002 8:57 AM
5.4 Sample Program
You can see examples of the Dialog System Control objects by running
the Objects sample program supplied in your installation
DialogSystem\demo\objects directory.

5.5 Using Bitmaps
This section explains how to use bitmap graphics with your Dialog
System interface. Dialog System enables you to choose the bitmaps you
want to use in your user interface for the following objects:

Dialog System includes bitmaps for the objects it uses and some
standard bitmaps for the environment you are working under. You can
also add your own bitmaps, icons and mouse pointers to use in a
screenset. For more information, see the topic Bitmaps, Icons and
Mouse Pointers in the Help.

5.5.1 Defining Bitmaps
Bitmaps can be placed anywhere within a window or dialog box. Their
purpose is mainly for decoration, to draw attention to buttons or to
place items such as logos in a window or dialog box. A mouse click over
a bitmap causes a BITMAP-EVENT to occur, which places the bitmap’s

Bitmap object A decorated object the user can select.

Icon A small bitmap that represents the window or dialog
box when it is minimized. See the section Attaching
an Icon in the chapter Window Objects.

Mouse pointer A bitmap is used to indicate the mouse pointer, and
indicate the different states of the mouse or the
system. See the chapter Tutorial - Using Bitmaps to
Change the Mouse Pointer.

Push buttons A bitmap is used to decorate the button or show the
button in different states.
Dialog System User’s Guide

102 Chapter 5 Control Objects

dspubb.book Page 102 Monday, May 13, 2002 8:57 AM
object handle in the $EVENT-DATA register. You can also define dialog
to react to the MOUSE-OVER event for a bitmap.

You can assign a Master field to a bitmap from its Properties dialog box.
This enables the displayed bitmap image to be changed dynamically at
run time. For more information on this, see the topics Using Controls
and Bitmaps, Icons and Mouse Pointers in the Help.

To place a bitmap in a window or dialog box:

1 Select Bitmap on the Object menu in the main window.
-or-
Click the bitmap icon in the Objects toolbar.

The Select Bitmap dialog box shown in Figure 5-13 is displayed.

Figure 5-13. Select Bitmap Dialog Box

2 Specify the bitmap name in Name
-or-
Select it from Available images.

3 Click OK when you have made a choice.

The Select Bitmap dialog box disappears and the outline shape of
the bitmap appears in the window or dialog box.

4 Use the mouse to position the bitmap and click.

The bitmap now appears.
Dialog System User’s Guide

5.6 Bitmapped Push Buttons 103

dspubb.book Page 103 Monday, May 13, 2002 8:57 AM
You can use Controls on the Edit menu to put other controls after the
bitmap in the list. Controls has no effect on the display until the
window is hidden and reshown.

5.6 Bitmapped Push Buttons
Dialog System provides default appearances for push buttons. You can
use bitmapped push buttons to change the appearance of a push
button.

For example, when you want a button to convey a graphic symbol, or
you want to make the push button appearance vary depending on its
state.

To associate bitmaps with a button:

1 Double-click on the button.
-or-
Select the button then choose Properties on the Edit menu in the
main window.

The Push Button Properties dialog box, shown in Figure 5-14 is
displayed.

Figure 5-14. Push Button Properties Dialog Box
Dialog System User’s Guide

104 Chapter 5 Control Objects

dspubb.book Page 104 Monday, May 13, 2002 8:57 AM
2 Click the Options tab.

You see the options available, as in Figure 5-15.

Figure 5-15. Push Button Properties Dialog Box - Options

3 Select Bitmapped.

This option becomes marked and the Button State Bitmaps options
become available. There are three choices:

• Normal

• Depressed

• Disabled

4 Select the bitmap file you require from the Button state bitmap
dropdown lists.

This bitmap file name is displayed as the selected bitmap file.

5 Click OK to return to the main window.

When creating a window toolbar, you may want to tailor your own
version of the toolbar control program to implement a native Win32
toolbar.
Dialog System User’s Guide

105

dspubb.book Page 105 Monday, May 13, 2002 8:57 AM
6 Using Dialog

The preceding chapters have described the visual aspects of the
screenset. Now we are going to look at how to activate the interface
using dialog. In this chapter you will see how powerful dialog is, by
looking at:

• Dialog and its levels.

• Events, functions and procedures.

• Special registers.

• Important examples of dialog events and functions.

6.1 What is Dialog?
Dialog is a language which works behind the scenes to trap events and
perform the actions you want to happen when the event occurs. A
simple event and response could be, for example, "if the user presses a
button labelled Next window, set the focus on a new window". You
specify the code to perform this using dialog which is accessed by your
application program.

A piece of dialog consists of:

• The names of events that can occur and to which you want to
respond.

• For each event, instructions (called functions) to perform when the
event occurs.

• Optionally, procedures (named subroutines) that contain a list of
functions that can be called.

• Optionally, comments to make the dialog more readable.
Dialog System User’s Guide

106 Chapter 6 Using Dialog

dspubb.book Page 106 Monday, May 13, 2002 8:57 AM
An event or a procedure name ends the dialog for the preceding event.
For example, consider the following dialog fragment attached to a
window.

CLOSED-WINDOW
 SET-EXIT-FLAG
 RETC
F1
 MOVE 1 ACTION
 RETC
 SET-FOCUS EMPLOYEE-WIN
 DELETE-EMPLOYEE-PROC
 MOVE 2 ACTION
 RETC
 SET-FOCUS EMPLOYEE-WIN

The functions SET-EXIT-FLAG and RETC are attached to the CLOSED-
WINDOW event. That is, RETC is the last function associated with the
CLOSED-WINDOW event. The functions MOVE 1 ACTION, RETC and SET-
FOCUS EMPLOYEE-WIN are attached to the F1 event and so on.

6.1.1 Comments
You should use comments in your dialog statements, as you do in your
COBOL program, to make the code more readable. Comments allow
you to:

• Clarify statements where a possibility of confusion exists with the
dialog you have written.

• Disable line(s) of otherwise meaningful dialog statements.

• Separate events and procedures for readability.

Commented lines begin with an asterisk in the first column.

This sample dialog shows examples of using comments in dialog:

 SCREENSET-INITIALIZED
*
* Save the handles of each of the bitmaps
*
 MOVE-OBJECT-HANDLE DENMARK DENMARK-HANDLE
 MOVE-OBJECT-HANDLE FRANCE FRANCE-HANDLE
* MOVE-OBJECT-HANDLE US US-HANDLE
Dialog System User’s Guide

6.1 What is Dialog? 107

dspubb.book Page 107 Monday, May 13, 2002 8:57 AM
* MOVE-OBJECT-HANDLE UK UK-HANDLE
 SET-FOCUS GERMAN-DLG

6.1.2 Levels of Dialog
You attach dialog to a window or control where an event can occur, or
to the interface in general. These represent three classes of objects, but
there is no essential difference between dialog applied to any of them.
The dialog for each object is stored in a dialog table. The different
classes of object dialog are:

• Control dialog

• Window dialog

• Global dialog

6.1.2.1 Control Dialog

This is where you attach dialog to any control except text, User
Controls, ActiveX Controls and group boxes.

For example the following dialog is attached to a push button and
changes the title of a window:

 BUTTON-SELECTED
 MOVE "Customer Address Details" NEW-TITLE
 SET-OBJECT-LABEL CUSTOMER-ADDRESS-WIN NEW-TITLE
 SET-FOCUS CUSTOMER-ADDRESS-WIN

6.1.2.2 Window Dialog

This is where you attach dialog to any window, dialog box or tab
control page.

For example the following dialog is attached to a window and handles
the user selecting the Close option:

 CLOSED-WINDOW
 SET-EXIT-FLAG
 RETC
Dialog System User’s Guide

108 Chapter 6 Using Dialog

dspubb.book Page 108 Monday, May 13, 2002 8:57 AM
6.1.2.3 Global Dialog

This is where you attach dialog to the entire screenset.

For example the following dialog initializes the first few entries of a list
box:

 SCREENSET-INITIALIZED
 INSERT-LIST-ITEM MONTH-LB "Jan" 1
 INSERT-LIST-ITEM MONTH-LB "Feb" 2
 INSERT-LIST-ITEM MONTH-LB "Mar" 3

6.1.2.4 Where to Locate Your Dialog Statements

The location used to define the dialog associated with a particular
object or window depends on your requirements. If a procedure is:

• Called by multiple control or window objects, place it in the global
dialog.

• Specific to one object, you can attach it directly to the object or to
the window in which the object resides.

Well structured dialog will execute more efficiently, and is easier to
maintain and debug. When you write your dialog, apply the same
coding principles that apply to any programming language.

6.1.3 Types of Dialog
There are three types of dialog:

• Events

• Procedures names

• Functions

6.1.3.1 Events

For an event to be passed to a screenset, it must be defined explicitly. If
an event is not defined, it will be ignored. You can define dialog events
in the global dialog, in window dialog, and in individual control dialog.
Dialog System User’s Guide

6.1 What is Dialog? 109

dspubb.book Page 109 Monday, May 13, 2002 8:57 AM
Dialog System imposes a limit of 255 events for each dialog table.

An event signifies some change in the user interface. For example, it
can be:

• The user pressing a key.

• A window or control receiving focus.

• A validation error occurring.

• The user moving the slider on a scroll bar.

6.1.3.1.1 How Dialog System Searches for Event Dia-
log

When an event occurs, Dialog System searches for the event, looking
first in the control dialog, then in the dialog for the window which
contains the control, and finally in the global (screenset) dialog.

Note: The same rules apply to procedures. If you call a procedure name
in a control’s dialog and it is not found there, the window dialog is
searched for the procedure and then the global dialog.

If Dialog System does not find the event listed in any of these three
places, it then looks for the event ANY-OTHER-EVENT at the control
level, the window level, and then the global level.

If ANY-OTHER-EVENT is not found, no action is taken.

When Dialog System finds an event, the functions attached to it are
processed step by step. Processing continues until the end of the
functions listed under the event is reached, unless control branches to
another procedure. Processing is delimited by another event. Dialog
System processes events one at a time, queuing events and processing
them as required. Dialog System imposes a limit of 255 events for each
dialog table.

Dialog System events are controlled by the Panels V2 module. This
module recognizes when an event occurs and processes it accordingly.
Normally, the calling program does not receive information about
these events from Panels V2. However, you can have these events
returned to the calling program via the ds-event-block, found in the
copyfile dssysinf.cpy. This file should be copied into the Working-
Dialog System User’s Guide

110 Chapter 6 Using Dialog

dspubb.book Page 110 Monday, May 13, 2002 8:57 AM
Storage Section of the calling program and specified in the call to
Dialog System. You might want to do this where a screen event is not
explicitly defined in Dialog System.

You can find a complete description of events in the topic Dialog
Statements: Events in the Help.

Note: If a window is a secondary window, the primary window dialog is
not searched.

6.1.3.2 Functions

Functions are instructions to Dialog System to do something. They
operate when:

• An event they are listed under occurs.

• A procedure they are listed under is executed.

The number of functions you can enter under each event or procedure
is limited by the size of the buffer for functions and events (2K), and the
maximum size of the dialog table (64K).

You could enter up to 2048 functions, depending on the function, but
for average length functions, a more practical limit is 341. If you need
more than this, you can call a procedure containing the extra functions.
For example:

...
 function-340
 function-341
 EXECUTE-PROCEDURE FUNCTIONS-342-TO-350
 ...
 FUNCTIONS-342-TO-350
 function-342
 function-343
 function-344
 ...

where function-340 through function-344 are some of the Dialog
System functions listed in the Help.

Dialog System has a comprehensive set of functions. Some are specific
to moving around screensets, for example SET-FOCUS or INVOKE-
Dialog System User’s Guide

6.2 Special Registers 111

dspubb.book Page 111 Monday, May 13, 2002 8:57 AM
MESSAGE-BOX. Some are similar to other programming language
instructions, for example MOVE data from one data item to another.

You can find a complete description of the functions in the topic Dialog
Statements: Functions in the Help.

6.1.3.3 Procedures

A procedure is an arbitrary name with a set of functions listed under it;
in other words, a subroutine. You can think of a procedure as an event;
in this case, the event "happens" when an EXECUTE-PROCEDURE or
BRANCH-TO-PROCEDURE function is activated.

As an example, the following fragment of dialog shows how to code a
"loop" using procedures. This loop can be used in processing lists.

...
BUTTON-SELECTED
 MOVE 1 INDX
 BRANCH-TO-PROCEDURE CLEAR-LOOP
 CLEAR-LOOP
 MOVE " " SELECTED-ITEM(INDX)
 INCREMENT INDX
 IF= INDX MAX-LOOP-SIZE EXIT-CLEAR-LOOP
 BRANCH-TO-PROCEDURE CLEAR-LOOP
 EXIT-CLEAR-LOOP
 ...

6.2 Special Registers
Dialog System provides several registers and variables that you can use
as parameters:

$REGISTER An internal register for general use. For example, you
can use $REGISTER as an index into an array or to
store temporary numeric values.

$NULL A parameter used to provide a default value or to
space other parameters when no real parameter is
needed.
Dialog System User’s Guide

112 Chapter 6 Using Dialog

dspubb.book Page 112 Monday, May 13, 2002 8:57 AM
6.3 Important Dialog Events and Functions
Dialog System provides a rich set of events and functions that lets you
control the behavior of your screenset. But how do you get started?
How do you select menu choices? How do you return to your program
and then what happens when you return to the screenset?

The following sections describe some basic functions with examples of
dialog that may be appropriate to that function.

$CONTROL The currently selected Control. It can be used in a
general procedure where you do not know the name
of the control. For example, you can use $CONTROL
with the CLEAR-OBJECT function:

F3
 CLEAR-OBJECT $CONTROL

When the user presses F3, the current object is
cleared.

$WINDOW The currently selected Window. For example,
$WINDOW also can be used with the CLEAR-OBJECT
function to clear the current window:

F2
 CLEAR-OBJECT $WINDOW

$EVENT-DATA A register that is written to by some events. For
example, you can use $EVENT-DATA with the VAL-
ERROR event. When Dialog System detects a
validation error, the VAL-ERROR event is triggered
and the identifier of the field in error is placed in
$EVENT-DATA. This enables you then to set the focus
on the field in error so the user can make corrections.
The appendix Fonts and Color has a detailed example
of using $EVENT-DATA this way.

See the topic Dialog Statements: Events in the Help
for those events that write to $EVENT-DATA.

$INSTANCE An instance number that you can use to refer to a
particular tab control page.
Dialog System User’s Guide

6.3 Important Dialog Events and Functions 113

dspubb.book Page 113 Monday, May 13, 2002 8:57 AM
6.3.1 Initializing the Screenset
When you enter a screenset for the first time, you might want to set
the default state of your screenset, setting such features as the state of
radio buttons, the size of a data group, default values, or which menu
options are enabled. The SCREENSET-INITIALIZED event lets you do this.
As an example:

1 SCREENSET-INITIALIZED
2 SET-BUTTON-STATE OK-BUTTON 1
3 SET-BUTTON-STATE CANCEL-BUTTON 0
4 ENABLE-OBJECT SAVE-AS-PB
5 DISABLE-OBJECT SAVE-PB
6 SET-DATA-GROUP-SIZE SALES-GROUP 100
7 MOVE "*.*" SELECTION-CRITERIA

Line 1: SCREENSET-INITIALIZED

This event is triggered when a screenset is entered for the first time (or
when the calling program asks Dialog System for a new screenset).

Lines 2-3: SET-BUTTON-STATE OK-BUTTON 1
 SET-BUTTON-STATE CANCEL-BUTTON 0

SET-BUTTON-STATE sets the state of a check box, a push button or a
radio button. These two statements set the OK-BUTTON on and the
CANCEL-BUTTON off.

Lines 4-5: ENABLE-OBJECT SAVE-AS-PB
 DISABLE-OBJECT SAVE-PB

The ENABLE-OBJECT function enables the SAVE-AS push button, the
DISABLE-OBJECT disables the SAVE push button. You could use these,
for example, when you have a new file and you want to force the user
to enter a filename using the Save-as option.

Line 6: SET-DATA-GROUP-SIZE SALES-GROUP 100

The SET-DATA-GROUP-SIZE function defines the internal size of a data
group. Any occurrence greater than this size is retained but is not
accessible to list boxes.

Line 7: MOVE "*.*" SELECTION-CRITERIA

This statement sets the default value for an entry field.
Dialog System User’s Guide

114 Chapter 6 Using Dialog

dspubb.book Page 114 Monday, May 13, 2002 8:57 AM
6.3.2 Window Dialog
Once you have defined the visual characteristics of a window, you can
use dialog to create and initialize the window.

6.3.2.1 Creating a Window

An example of dialog for creating a window is:

 F2
 CREATE-WINDOW WINDOW1

where F2 is the event triggered when the user presses F2 and WINDOW1
is the name of the window you want to create. This is the name you
entered when you defined the window.

This dialog statement initializes the window, making it ready to show.
Although nothing visible happens, the window is created in the
background. You can then make the window visible by using the SHOW-
WINDOW dialog statement.

Although window initialization is not very time-consuming, it does take
a little time. To avoid the effect of this, you can create your windows
before you need them, then when you are ready to make them visible,
use SHOW-WINDOW to display the window.

6.3.2.2 Showing the First Window

One of the first functions you want to do when you start a screenset is
to show the main window or dialog box for your application. By
default, the first window or dialog box you define when you define the
screenset is the first window object displayed at run time. There are two
ways to specify a different window or dialog box as the first window.

You can use the definition software to define your application’s main
window or dialog box as the first window using First window on the
Screenset menu. First window is a property of the screenset that defines
the window object that is displayed at run time. If you use this method
to specify the first window, you do not need to add any dialog to do
this.
Dialog System User’s Guide

6.3 Important Dialog Events and Functions 115

dspubb.book Page 115 Monday, May 13, 2002 8:57 AM
However, there may be cases where you explicitly want to set the focus
on or show your application’s main window. For example, you may not
know which window is the main window at definition time and you
want to select it at run time. Use the SET-FOCUS, SHOW-WINDOW or
SET-FIRST-WINDOW function to do this. You need to be aware that if
you use SHOW-WINDOW, you need to explicitly close the first window
by entering:

SET-FIRST-WINDOW $NULL

before entering the SHOW-WINDOW function. If you use SET-FIRST-
WINDOW, you do not need to do this.

6.3.2.3 Showing a Window

SHOW-WINDOW makes the window visible, but does not set the focus
on the window. (An object is said to have the input focus (or focus) if
any interaction with the keyboard or mouse is directed to that object.)

If the window has not already been created, SHOW-WINDOW creates
the window automatically.

An example of the dialog for showing a window is:

 F3
 SHOW-WINDOW WINDOW2

where F3 is the event triggered when the user presses the F3 key and
WINDOW2 is the name of the window to be shown.

If the window has a parent window, it is also shown.

6.3.2.4 Unshowing a Window

UNSHOW-WINDOW makes the window, all child windows, and any
controls invisible. The window still exists and does not need to be re-
created.

You can use UNSHOW-WINDOW to clear a cluttered client area.

If you need to see the window again, SHOW-WINDOW brings the
window, its child windows and all its controls back into view in exactly
the same state as before it was unshown.
Dialog System User’s Guide

116 Chapter 6 Using Dialog

dspubb.book Page 116 Monday, May 13, 2002 8:57 AM
UNSHOW-WINDOW has two parameters. The first identifies the window
to be unshown ($WINDOW means the currently selected window) and
the second identifies the window that you want to receive the focus.

For example:

 F4
 UNSHOW-WINDOW $WINDOW WINDOW2

unshows the window that currently has the focus ($WINDOW) and sets
the focus on WINDOW2.

The chapter Using the Screenset discusses the advantages and
disadvantages of using UNSHOW-WINDOW rather than using DELETE-
WINDOW.

6.3.2.5 Changing the Default Parent Window

SET-DESKTOP-WINDOW sets the window specified by the parameter to
be the parent of all objects that are normally children of the desktop.

As an example, you might have three primary windows that are all
children of the desktop; WIN1 (with handle WIN1-HAND), WIN2, and
WIN3. The function:

 SET-DESKTOP-WINDOW WIN1-HAND

results in:

• WIN1 is still a child of the desktop.

• WIN2 and WIN3 are children of WIN1.

One use for this is the situation where selecting a function from the
current screenset causes that screenset to be pushed onto the stack and
a new screenset started. However, you want the first window of the
new screenset to be a child of the current window in the first screenset.

You can do this by using the following functions:

 ...
 MOVE-OBJECT-HANDLE WIN1 $REGISTER
 SET-DESKTOP-WINDOW $REGISTER
 RETC
Dialog System User’s Guide

6.3 Important Dialog Events and Functions 117

dspubb.book Page 117 Monday, May 13, 2002 8:57 AM
in the first screenset. Then in your program, load the second screenset.
WIN1 is now the parent window of all the windows in the second
screenset.

See the chapter Multiple Screensets for a discussion of using multiple
screensets.

The default parent window can be reset to the desktop by:

 SET-DESKTOP-WINDOW $NULL

Note: Windows that are already created are not changed. This function
works only for new windows that are normally created as children of
the desktop.

6.3.2.6 Deleting a Window

Visually, deleting a window is the same as unshowing a window.
However, deletion removes the instance of the window, all child
windows, and all controls that are attached to the window. Before
another instance of this window can be referenced, it must be created.

An example of the dialog for deleting a window is:

 F6
 DELETE-WINDOW WINDOW2 WINDOW1

where WINDOW2 is the window to delete and WINDOW1 is the window to
receive the focus.

Unless the user no longer needs that window for the session, for
example a session log-on window, use UNSHOW-WINDOW rather than
DELETE-WINDOW.

The chapter Using the Screenset discusses the advantages and
disadvantages of using DELETE-WINDOW rather than UNSHOW-
WINDOW.
Dialog System User’s Guide

118 Chapter 6 Using Dialog

dspubb.book Page 118 Monday, May 13, 2002 8:57 AM
6.3.2.7 Setting the Focus on a Window

The SET-FOCUS dialog sets the keyboard and mouse focus on the
window. This means that any interaction with the keyboard or mouse is
directed to this window.

If necessary, the function creates and shows the window before it sets
the focus on it. An example of a dialog statement for setting focus on a
window is:

 F7
 SET-FOCUS WINDOW2

where WINDOW2 is the window to receive the focus.

6.3.2.8 Moving a Window

MOVE-WINDOW lets you reorganize the windows on the screen by
moving a window from its current position to a new position. For
example, if you create a window to use as a monitor and display a set of
values, you can use MOVE-WINDOW to move the window, rather than a
function that hides it, when another window is displayed.

As an example of the syntax:

 F8
 MOVE-WINDOW $WINDOW 2 5

where $WINDOW indicates the current window, 2 indicates the "right"
direction and 5 indicates the number of system units by which to move
the window. Refer to the description of MOVE-WINDOW in the Help for
a definition of these parameters.

6.3.2.9 Changing the Title of a Window

If you have multiple windows that perform similar functions, you can
use a single window and change the window title using SET-OBJECT-
LABEL. An example of the syntax is:

 F9
 SET-OBJECT-LABEL WINDOW1 NEW-TITLE
Dialog System User’s Guide

6.3 Important Dialog Events and Functions 119

dspubb.book Page 119 Monday, May 13, 2002 8:57 AM
where WINDOW1 identifies the window and NEW-TITLE is a data item
that contains the new name.

Note: SET-OBJECT-LABEL does not automatically show the window if
the window is in an unshow state. However, if the window is displayed,
the change in title is immediately apparent.

6.3.2.10 Closing the Window

One of the options in the window system menu is Close. If the Close
option is selected, Dialog System automatically closes the window.
However, you can also perform additional actions if this option is
selected - for example, terminate the application. The CLOSED-
WINDOW event enables you to do this. As an example, the dialog:

 CLOSED-WINDOW
 SET-FLAG EXIT-FLAG
 RETC

detects the "Close" event, sets a flag indicating the user wants to
terminate the user interface, and returns to the calling program. Your
program could then close files and do any other necessary processes to
terminate the application.

6.3.3 Pressing Buttons
BUTTON-SELECTED is the primary event associated with a push button,
check box or radio button. It is triggered when you click on a button, or
a check box has been selected.

For example:

BUTTON-SELECTED
 MOVE 0 ORD-NO($REGISTER)
 MOVE 0 ORD-DATE($REGISTER)
 MOVE 0 ORD-VAL($REGISTER)
 MOVE 0 ORD-BAL($REGISTER)
 UPDATE-LIST-ITEM ORDER-BOX $NULL $EVENT-DATA
 RETC
 REFRESH-OBJECT-TOTAL
Dialog System User’s Guide

120 Chapter 6 Using Dialog

dspubb.book Page 120 Monday, May 13, 2002 8:57 AM
When the BUTTON-SELECTED event is triggered, all the functions
associated with that event are performed.

6.3.3.1 Setting and Getting Button States

The SET-BUTTON-STATE and GET-BUTTON-STATE functions enable you
to control the state of buttons and check boxes. To set the state of the
buttons the first time you enter the screenset, see the section Initializing
the Screenset.

You can also set and retrieve the states of buttons any time while the
screenset is running. For example, the following dialog fragment sets
the state of a radio button based on some action performed in the
calling program:

BUTTON-SELECTED
 MOVE 2 ACTION-CODE
 RETC
 SET-BUTTON-STATE FILE-ACCESSED-RB 1
 ...

You can also control the state of a check box by moving values of 1 or 0
to its Master Field. For example, if you have a data item named check-
credit that is the master field tied to a check box, you can change the
state of the check box by moving a 1 or a 0 to check-credit. Assuming
the check box object is already created, you must refresh it to display its
change of state.

6.3.4 Menu Bar Dialog
You can also define dialog to respond to the user selecting one of the
actions of a pulldown menu. However, before you can add dialog to an
action item, the action must have a name. See the topic Objects and
Properties in the Help for details on naming actions.

As an example, the following dialog is taken from the Saledata sample
application, where INSERT-CHOICE, CHANGE-CHOICE and DELETE-
CHOICE are the names assigned to the menu bar actions. In the dialog,
the "@" in front of the choice indicates that this is a menu choice.
Dialog System User’s Guide

6.3 Important Dialog Events and Functions 121

dspubb.book Page 121 Monday, May 13, 2002 8:57 AM
 @INSERT-CHOICE
 IF= $REGISTER 0 NO-SELECTION-PROC
 CLEAR-OBJECT INSERT-DB
 SET-FOCUS INSERT-DB
 @CHANGE-CHOICE
 IF= $REGISTER 0 NO-SELECTION-PROC
 MOVE SALES-NAME($REGISTER) TMP-NAME
 MOVE SALES-REGION($REGISTER) TMP-REGION
 MOVE SALES-STATE($REGISTER) TMP-STATE
 REFRESH-OBJECT CHANGE-DB
 SET-FOCUS CHANGE-DB
 @DELETE-CHOICE
 IF= $REGISTER 0 NO-SELECTION-PROC
 MOVE SALES-NAME($REGISTER) TMP-NAME
 MOVE SALES-REGION($REGISTER) TMP-REGION
 MOVE SALES-STATE($REGISTER) TMP-STATE
 REFRESH-OBJECT DELETE-DB
 SET-FOCUS DELETE-DB

When the user selects Change on the menu bar the event @CHANGE-
CHOICE is triggered and all the functions under the event are
performed.

6.3.4.1 Enabling and Disabling Choices

Sometimes a menu choice does not apply. For example, you might have
a new data file that has been updated, but not saved. Because it is a
new file, it is not yet assigned a name, and you want to force the user
to select a Save as choice (that requests a filename) rather than a Save
choice. One way of coding the dialog for this situation is:

 1 ...
 2 XIF= FILE-SAVED-FLAG 0 DISABLE-SAVE
 3 ...
 4 DISABLE-SAVE
 5 DISABLE-MENU-CHOICE $WINDOW SAVE-CHOICE
 6 ENABLE-MENU-CHOICE $WINDOW SAVE-AS-CHOICE
 7 ...

Line 2: XIF= FILE-SAVED-FLAG 0 DISABLE-SAVE

XIF is a conditional function. FILE-SAVE-FLAG is a data item in the
Data Block. A value of 0 indicates a file that has not been saved.
DISABLE-SAVE is the procedure to perform. Thus this statement says:
If the file has not been saved, perform the DISABLE-SAVE procedure.
Dialog System User’s Guide

122 Chapter 6 Using Dialog

dspubb.book Page 122 Monday, May 13, 2002 8:57 AM
Line 4: DISABLE-SAVE

The start of the procedure to perform.

Line 5: DISABLE-MENU-CHOICE $WINDOW SAVE-CHOICE

This statement makes the Save choice unavailable.

Line 6: ENABLE-MENU-CHOICE $WINDOW SAVE-AS-CHOICE

This statement ensures the Save as choice is available.

6.3.4.2 Selecting Menu Choices

Menu bar choices are used to define what will happen when you select
one of the choices. For example, the following code fragment shows
one way of coding the Cut, Copy and Paste options of an Edit menu
choice:

...
@CUT-CHOICE
 MOVE 5 ACTION-CODE
 RETC
@COPY-CHOICE
 MOVE 6 ACTION-CODE
 RETC
@PASTE-CHOICE
 MOVE 7 ACTION-CODE
 RETC
...

Note: The @ in column one indicates that this is a menu choice.

The section The Menu Bar in the chapter Window Objects describes the
dialog for handling menu bar choices, including how to enable and
disable choices.
Dialog System User’s Guide

6.3 Important Dialog Events and Functions 123

dspubb.book Page 123 Monday, May 13, 2002 8:57 AM
6.3.5 Validating Input
You can validate a specific field or all fields attached to a window using
the VALIDATE function. For example:

VALIDATE SALARY-RANGE-EF

validates only the SALARY-RANGE-EF entry field.

The statement:

VALIDATE SALARY-DETAILS-WIN

would validate all fields on the SALARY-DETAILS-WIN window.

If an error is detected, the VAL-ERROR event is triggered. For example,
the following dialog fragment illustrates one way of coding the
validation of all the fields on the current window.

BUTTON-SELECTED
 VALIDATE $WINDOW
 INVOKE-MESSAGE-BOX ERROR-MB "All fields OK" $REGISTER
 RETC
VAL-ERROR
 INVOKE-MESSAGE-BOX ERROR-MB ERROR-MSG-FIELD $REGISTER
 SET-FOCUS $EVENT-DATA

See the section Validating Entry Fields in the chapter Sample Programs
for a detailed explanation of the syntax.

6.3.6 Using Procedures
Typically, you use a procedure as a common routine. For example, you
usually have at least two ways to initiate a Cancel function; you can use
a Cancel button or you can use the Esc key. The best way to code this is
by calling a common procedure if either Cancel is selected or Esc is
pressed. The following dialog fragment illustrates this method:

BUTTON-SELECTED
 BRANCH-TO-PROCEDURE CANCEL-PROC
ESC
 BRANCH-TO-PROCEDURE CANCEL-PROC
 CANCEL-PROC
 cancel-functions
 ...
Dialog System User’s Guide

124 Chapter 6 Using Dialog

dspubb.book Page 124 Monday, May 13, 2002 8:57 AM
Dialog System provides two methods of invoking procedures; branching
to the procedure (similar to a COBOL GOTO statement), and executing
the procedure (similar to a COBOL PERFORM statement). To illustrate
the difference, consider the following dialog fragments.

F1
 BRANCH-TO-PROCEDURE CLEAR-OK
 RETC

F2
 EXECUTE-PROCEDURE CLEAR-OK
 RETC

In the first case (when the F1 key is selected), control is passed to the
CLEAR-OK procedure. What happens next depends on the functions
contained in CLEAR-OK. The RETC function will never be executed.

When the F2 key is selected, the functions in CLEAR-OK are executed
and then control is returned to the statement following the EXECUTE-
PROCEDURE statement, that is, the RETC function.

Dialog System also provides a set of branching functions. The ones you
use depend on whether you want to branch to a procedure or execute
the procedure.

For example, the IF= function compares two values and if they are
equal, the procedure is "branched to". The XIF= function also compares
two values and if they are equal, the procedure is "executed".

In both cases, if the values are not equal, the statement following the
IF= or XIF= statement is executed.

6.3.7 Returning Control to the Calling
Program
While your screenset is running, you may need to return to your
program. For example, you may need to retrieve more data from a
database, update a file, or do a complex validation. The RETC function
returns control to the calling program.
Dialog System User’s Guide

6.3 Important Dialog Events and Functions 125

dspubb.book Page 125 Monday, May 13, 2002 8:57 AM
For example, the following dialog fragment returns to the calling
program so that the program can carry out the file deletion function.

BUTTON-SELECTED
 SET-FLAG DELETE-FILE-FLAG
 RETC

6.3.8 Regaining Control from the
Calling Program
Normally, on return from your program, the statement following the
RETC is executed. However, you can change this behavior if you want.

Some of the actions you may want to do when you return from the
program are:

• Refresh a window. For example, your program has changed some
associated data items and you want to make the changes visible to
the user.

• Reset the state of your screenset. For example, your program has
saved a file and now you want to reset the state of the Save and
Save As buttons.

• Refresh an object. For example, you may have accessed additional
data from a database that you want to display in a database.

• Check on the state of the data based on what actions your program
performed. For example, you may have had to do a complex
validation in your program and you want to check to see the results
of the validation.

As an example of the syntax, the following dialog fragment refreshes
the SALES-LIST list box and displays the window after returning from
the calling program.

 @SORT-NAME-CHOICE
 MOVE 2 ACTION-CODE
 RETC
 REFRESH-OBJECT SALES-LIST
 SHOW-WINDOW SALES-WIN
Dialog System User’s Guide

126 Chapter 6 Using Dialog

dspubb.book Page 126 Monday, May 13, 2002 8:57 AM
6.4 Events Trapped by the Windows Operating
System

Some events are trapped by the Windows Operating System before they
get to Dialog System.

For example, the standard Windows system menu has a set of
accelerator keys that allow you to access the functions on that menu
quickly. One accelerator key is Alt+F4, which removes the active window
and all associated windows from the screen. If you define dialog for the
event caused by the Alt+F4 key press, AF4, that event is trapped by
Windows, and never reaches Dialog System.

Therefore, the following dialog defined for the key press will never be
executed because Dialog System does not detect the event:

AF4
 SET-FOCUS NEW-EMPLOYEE-WIN

6.5 Sample Programs
To see some of the attributes and behavior of the window object, the
sample application Objects is included in your demonstration directory.
This application consists of a COBOL program, a screenset, and an error
file. When you run the application, select the object you wish to see
demonstrated on the Object menu.

To compile, animate and run the program, see the Help for your COBOL
system.

For an example of manipulating menu bar choices dynamically at run
time, refer to the Dynmenu demonstration in your Dialog System
demonstration directory.
Dialog System User’s Guide

6.6 Sample Dialog 127

dspubb.book Page 127 Monday, May 13, 2002 8:57 AM
6.6 Sample Dialog
Of course the dialog can be more complex than that shown in this
chapter. As an example, the following fragment is taken from the
Dialog System definition facility. (Dialog System itself is a Dialog System
application.) The following piece of dialog is attached to the mouse
configuration option and lets you redefine how you want the mouse
configured.

...
 @MOUSE-CONFIG-PD
 MOVE LEFT-BUTTON TMP-LEFT-BUTTON
 MOVE MIDDLE-BUTTON TMP-MIDDLE-BUTTON
 MOVE RIGHT-BUTTON TMP-RIGHT-BUTTON
 MOVE MOUSE-DEFAULT $REGISTER
 REFRESH-OBJECT LEFT-BTN-SB
 REFRESH-OBJECT MIDDLE-BTN-SB
 REFRESH-OBJECT RIGHT-BTN-SB
 IF= 1 MOUSE-DEFAULT DS21
 IF= 2 MOUSE-DEFAULT CUA
 IF= 3 MOUSE-DEFAULT BTN3
* Must be user defined action,
 EXECUTE-PROCEDURE ENABLE-CHOICES
 SET-BUTTON-STATE USER-DEFINED-RB 1
 SET-FOCUS USER-DEFINED-RB
* DS2.1 mouse behavior,
 DS21
 EXECUTE-PROCEDURE DISABLE-CHOICES
 SET-BUTTON-STATE DS21-RB 1
 SET-FOCUS DS21-RB
* CUA behavior,
 CUA
 SET-BUTTON-STATE CUA89-RB 1
 EXECUTE-PROCEDURE DISABLE-CHOICES
 SET-FOCUS CUA89-RB
*
 DISABLE-CHOICES
 DISABLE-OBJECT LEFT-BTN-SB
 DISABLE-OBJECT MIDDLE-BTN-SB
 DISABLE-OBJECT RIGHT-BTN-SB
 ENABLE-CHOICES
 ENABLE-OBJECT LEFT-BTN-SB
 ENABLE-OBJECT MIDDLE-BTN-SB
 ENABLE-OBJECT RIGHT-BTN-SB
 ...
Dialog System User’s Guide

128 Chapter 6 Using Dialog

dspubb.book Page 128 Monday, May 13, 2002 8:57 AM
Notice that all this functionality is within Dialog System. Control is not
returned to the COBOL program.
Dialog System User’s Guide

129

dspubb.book Page 129 Monday, May 13, 2002 8:57 AM
7 Using the Screenset

The previous chapters explained how to create a data definition and
the user interface of an application. This chapter describes:

• The call interface and how it enables your screenset to
communicate with your COBOL program.

• Adding help to your interface.

• Some considerations for optimizing your applications.

7.1 The Call Interface
This section describes:

1 Generating the COBOL copyfile from a screenset.

2 The call interface - its structure and how to use it.

3 Writing the COBOL application program.

4 Debugging and animating the screenset and your COBOL program.

5 Packaging your application.

7.1.1 Generating the Data Block
Copyfile
The Data Block copyfile contains the definition of the Data Block
passed from the calling program to Dialog System at run time. You
must include the copyfile in your calling program. The copyfile also
contains version checking information.
Dialog System User’s Guide

130 Chapter 7 Using the Screenset

dspubb.book Page 130 Monday, May 13, 2002 8:57 AM
To generate a copyfile from your screenset:

• Select the screenset configuration options determining how that
copyfile is generated.

You can configure the definition software to write the copyfile in
various ways. The sort of copyfile you want depends on whether
you are writing the calling program using Micro Focus COBOL or
ANSI COBOL standards. See the topic Dialog System Configuration
in the Help for information on how to configure copyfile options.

• Select Generate/Data block copy file on the File menu in the main
window of the definition software.

A dialog box appears, enabling you to select a name and path for
the copyfile. By default, Dialog System uses screenset-name.cpb.

• Select a name and click OK.

A message box is displayed, which shows the percentage of the
copyfile that has been generated and saved. The message box
disappears when the save is complete.

7.1.1.1 Generating Copyfile Options

There are some options that you should consider when generating a
copyfile:

• If a data item name is greater than the 30 characters allowed, the
name is truncated to 30 characters.

Dialog System inserts a comment to this effect adjacent to the item
in the copyfile, quoting the full name.

• If the Fields prefixed by screenset Id configuration option is set on,
this causes all datanames from the Data Block to be prefixed by the
screenset identifier. The data item name including this prefix must
be fewer than 30 characters.

You can change this option:

• For a specific screenset by using Configuration, Screenset on the
Options menu and setting the appropriate checkbox.

• For all screensets by either editing the configuration file ds.cfg,
or using Configuration, Defaults on the Options menu.
Dialog System User’s Guide

7.1 The Call Interface 131

dspubb.book Page 131 Monday, May 13, 2002 8:57 AM
• Two data item names may be identical, as a result of being
truncated. This causes a failure at compilation time.

To correct this, change one of the data item’s name in the Data
Definition window and re-generate the copyfile.

Note: You can also generate the Data Block copyfile by specifying a
command line similar to the following:

dswin/g screenset-name

This will generate the copyfile and exit.

For more information on generating copyfiles, see the topics Dialog
System Overview, The Call Interface and Data Definition and Validation
in the Help.

7.1.2 The Structure of the Call Interface
This section describes the most straightforward way to call Dialog
System. If you are new to Dialog System, this is all you need to know to
develop simple applications.

The structure of the Dialog System call interface is very simple and
consists of two blocks of information that are passed between the
calling program and Dialog System:

• The Control Block - corresponding to DS-CONTROL-BLOCK in the
control block copyfile - used to carry control data between the
calling program and Dialog System.

• The Data Block - corresponding to DATA-BLOCK in the Data Block
copyfile - used to carry user data between the calling program and
Dialog System.

To use your screenset, your COBOL program must make a call to the
Dialog System run-time module Dsgrun using the Dialog System Control
Block and the Data Block for your screenset. The basic call to Dialog
System has the following format:

 CALL "DSGRUN" USING DS-CONTROL-BLOCK,
 DATA-BLOCK
Dialog System User’s Guide

132 Chapter 7 Using the Screenset

dspubb.book Page 132 Monday, May 13, 2002 8:57 AM
The run-time system searches for the screenset first in the current
directory and then in the directories specified by the COBDIR
environment variable.

If you generate the copyfile with Fields prefixed by screenset ID on in
the Screenset configuration dialog box, the Data Block will be prefixed
by your screenset name. Therefore you must include this prefix in the
call to Dialog System. For example, the sample program entries.cbl in
your installation DialogSystem\demo directory uses a screenset with the
screenset identifier of "entry", and makes the call as follows:

 CALL "DSGRUN" USING DS-CONTROL-BLOCK,
 ENTRY-DATA-BLOCK

After making the initial call to Dialog System you might like to specify a
routine to use if the call fails:

 IF NOT DS-NO-ERROR
 MOVE DS-ERROR-CODE TO DISPLAY-ERROR-NO
 DISPLAY "DS ERROR NO: " DISPLAY-ERROR-NO
 PERFORM PROGRAM-TERMINATE
 END-IF

The actual position of the call to Dialog System in your COBOL program
is not critical. It is good practice to place it in a separate routine that can
be called whenever your program needs to call Dialog System.

The topic The Call Interface in the Help describes the options you can
specify in the Control Block to control how your screenset executes.

For more advanced ways to use the call interface, see the chapters
Advanced Topics and Multiple Screensets.

7.1.2.1 Controlling the Use of Screensets

The way in which your calling program controls screenset handling
should be considered in detail when you design your screenset and
calling program. You should consider issues such as:

• How to divide functions and whether they should be grouped into
separate screensets.

• Whether to provide different screensets to groups of users with
different access to data, as a security consideration.
Dialog System User’s Guide

7.1 The Call Interface 133

dspubb.book Page 133 Monday, May 13, 2002 8:57 AM
• Whether to use multiple instances of a screenset so that a user could
display, compare or edit data at the same time.

For more information on the basics of screen control using the Dialog
System call interface, see the topic The Call Interface in the Help.

7.1.2.2 Using Multiple Screensets

You can use multiple screensets by pushing and popping them from the
screenset stack. By definition, this is a first in, last out operation.
Pushing and popping screensets is useful to:

• Remove a screenset used for a particular function from the display
when it is no longer required.

• Load multiple screensets during program initialization, and push
and pop (or use) them when you need them.

• Keep the display uncluttered by windows that are not being used or
do not have input focus.

There are no pre-conditions for pushing a screenset onto the screenset
stack, and any screenset, or occurrence of a screenset, can be pushed or
popped. Pushed screensets are normally stacked in memory, but if
memory is short they will be paged to disk.

To push a screenset onto the screenset stack and start a new screenset,
call Dsgrun using the following:

 move ds-push-set to ds-control
 call "dsgrun" using ds-control-block,
 data-block

ds-push-set places the value "S" in ds-control. The existing
screenset will be pushed onto the screenset stack. When you pop a
screenset off the screenset stack you can use either of the following:

• ds-quit-set, which closes the existing screenset and pops the first
screenset off the top of the screenset stack.

• ds-use-set, which pops the specified screenset off the screenset
stack without closing the existing screenset.

See the chapter Multiple Screensets for further information.
Dialog System User’s Guide

134 Chapter 7 Using the Screenset

dspubb.book Page 134 Monday, May 13, 2002 8:57 AM
7.1.2.3 Using Multiple Instances of the Same
Screenset

Dialog System enables your calling program to use multiple instances of
the same screenset. This function is useful when working with data
groups where each group item has the same format. Using multiple
instances of the same screenset, you can have one screenset to display,
compare or update the group items as required.

Using multiple instances of the same screenset requires your program
to:

• Track the number of instances of a screenset.

• Ensure that the Data Block being passed to Dsgrun is the correct one
for that screenset instance.

When multiple instances are used and a screenset is first started by an
"N" or "S" call, an instance value is allocated and placed in the ds-
screenset-instance Control Block field.

The instance value is unique to that particular screenset instance. Your
application must keep track of instance values because they are not
assigned in any particular order.

You can track the active instance by examining ds-event-screenset-
id and ds-event-screenset-instance-no within dssysinf.cpy,
which must be copied into your program Working-Storage Section.

For more information on dssysinf.cpy, see the chapter Using Panels V2.

To specify that you want a new instance of a screenset to be loaded, set
ds-control to ds-use-instance-set when you call Dsgrun.

There is no support for using multiple instances of a screenset when
running through the Screenset Animator, using the definition software.
If, however, Dsgrun is called from the application then multiple
instances are supported.

See the chapter Multiple Screensets for further information.
Dialog System User’s Guide

7.1 The Call Interface 135

dspubb.book Page 135 Monday, May 13, 2002 8:57 AM
7.1.3 Writing the COBOL Application
Program
The Data Block copyfile contains not only the user data but also some
version numbers that Dialog System checks against the screenset when
it is called. To do this, the calling program must copy them into data
items in the Control Block before it calls the Dialog System run-time.

7.1.3.1 The Control Block

The Control Block is used to carry control information and data
between the calling program and Dialog System.

The Control Block consists of:

• Version checking items that check the version of the Data Block,
Control Block and screenset.

• Input fields used to instruct Dialog System to perform functions.

For example, the names and values of the constants that you use to
control the screenset.

• Output fields that return values.

For example, error codes and validation fields.

Dialog System is supplied with three versions of the Control Block
copyfile:

• ds-cntrl.ans

Use with ANSI-85 conformant COBOL.

• ds-cntrl.mf

Use with Micro Focus conformant COBOL (COMP-5).

• dscntrlx.mf

Use with Micro Focus conformant COBOL (COMP-X). Use by moving
3 to DS-VERSION-NO instead of VERSION-NO.
Dialog System User’s Guide

136 Chapter 7 Using the Screenset

dspubb.book Page 136 Monday, May 13, 2002 8:57 AM
When you write your calling program, you must copy the copyfile into
the program Working-Storage Section using the statement:

COPY "DS-CNTRL.MF".

If you are using ANSI-85 conformant COBOL, you should use the copyfile
ds-cntrl.ans.

The information in the data-block field, together with the Control
Block, is passed backward and forward between Dialog System and the
calling program whenever control is passed from one to the other.

You also need to make sure that the Control Block contains the name of
the screenset and other information that controls Dialog System
behavior.

Dialog System enables the user to decide the functions the program
performs next, rather than the program dictating user actions. The flags
set in the Data Block returned from Dialog System contain values caused
by the user’s action and tell the program what to do next.

The program can respond in a variety of ways including:

• Modifying stored information.

• Retrieving additional information from a database.

• Displaying results or error messages.

• Providing assistance in the use of the application.

In a simple application, help might be handled entirely by a
message box in Dialog System. An alternative way of handling help
would be to write a section of code in the program to provide help
whenever a Help flag was set.

• Validating the information entered by the user.

• Requesting additional input from the user.

By returning to Dialog System after saving or clearing the record.

You can see a COBOL program entries.cbl that uses the sample screenset
(created in the chapter Tutorial - Creating a Sample Screenset) in the
chapter Tutorial - Using the Sample Screenset. This program is provided
with your Dialog System software as a demonstration program.
Dialog System User’s Guide

7.1 The Call Interface 137

dspubb.book Page 137 Monday, May 13, 2002 8:57 AM
7.1.4 Debugging and Animating the
Screenset and Your COBOL Program
Net Express provides an integrated editing, debugging and animating
environment.

When you are debugging an application, the source code of each
program is displayed in a separate window. When you animate the
code, each line of the source is highlighted in turn as each statement is
executed, showing the effect of each statement. You can control the
pace at which the program executes and can interrupt execution to
examine and change data items. See the topic Debugging in the Help
for more information.

After testing your program, you can change the screenset
independently of the program. You can continue doing this until you
have a combination of screenset and program that meets your
requirements.

7.1.4.1 Testing the Screenset

One of the major benefits of Dialog System is that it is very easy to try
out parts of the interface long before the screenset is completed, and
before any COBOL program exists. You can prototype an incomplete
screenset or a small part of a screenset to give an impression of what it
is like, or to try out an idea.

Prototyping is a major aid during interface development and enables
many of its tasks to be conducted rapidly. It allows you to build a
working model of the system quickly so you and your users can see, on a
terminal, what the system looks like when it is operating. You can then
make changes quickly and inexpensively.

You can test your screenset without dialog, to make sure that the
desktop layout looks good and that you have set up the fields correctly.

7.1.4.1.1 Using the Screenset Animator

Dialog System Screenset Animator is a utility provided with Dialog
System to enable you to test and debug the screensets you create. By
using the Screenset Animator, you can test the look, feel and function
Dialog System User’s Guide

138 Chapter 7 Using the Screenset

dspubb.book Page 138 Monday, May 13, 2002 8:57 AM
of a screenset even before you write the program that uses it. You can
use the Screenset Animator to:

• Run your screenset independently, with fully operating objects,
dialog, and a Data Block.

• Set up user data and control values, call the screenset, perform an
operation, and return to inspect the returned values as many times
as you want.

• Trace the execution of dialog events and functions.

• Return to definition mode and make changes to the screenset or
dialog, then try the screenset again.

• Run the calling program using the Screenset Animator to check the
data and control information passed between the screenset and the
calling program.

Select Debug from the File menu in the main window. The Screenset
Animator window is displayed as shown in Figure 7-1.

Figure 7-1. The Screenset Animator Window

This display is explained in detail in the topic Screenset Animator in the
Help.

To run the screenset from the Screenset Animator, select Run from the
Execute menu.
Dialog System User’s Guide

7.1 The Call Interface 139

dspubb.book Page 139 Monday, May 13, 2002 8:57 AM
When you test the screenset, you should check the main functions of
the screenset with altered values, and with the default values.

When the screenset reaches a point where it should return to the calling
program, it returns to the Screenset Animator where you can inspect
the values it has placed in the Control and Data Blocks.

The Data Block shows the current values of the data passed into Dsgrun.
You can alter any of the information visible at this point in the Screenset
Animator to test different processing of the screenset. To alter the Data
Block, you view it by selecting Examine from the Data menu, and then
selecting the Data pushbutton to display your Data Block items, which
can be changed via the Select pushbutton.

Again, you can change values and run the screenset again if you want,
so you can simulate the action of your intended calling program.

You can change the screenset as required and re-test until you are
satisfied with the interface.

See the topic Screenset Animator in the Help for further information.

7.1.4.1.1.1 Debugging LOST-FOCUS and GAINED-FOCUS Events

When using the screenset animator or the Net Express IDE to step
through dialog functions or COBOL code executed as a result of a
GAINED-FOCUS or LOST-FOCUS event, the interaction between the
debugger and your application could cause additional focus changes in
your application. These additional focus changes are caused by focus
being set on the debugger to step through lines of dialog functions or
COBOL code. While this is normal and expected behavior, you should
bear it in mind when you are debugging LOST-FOCUS and GAINED-
FOCUS events.

Consider, for example, an application window containing only two
entry fields. With focus on the first field, the Tab key is pressed to move
to the second field. The first field has dialog defined for the LOST-
FOCUS event which causes a return to the COBOL calling program. If a
COBOL breakpoint has been set on the line after the last call to
DSGRUN, when the breakpoint is encountered, focus will switch from
the application being debugged to the Net Express IDE. This focus
change will cause an additional LOST-FOCUS event for the second entry
field (which previously had focus before the COBOL breakpoint was hit).
If the second field also has dialog defined for the LOST-FOCUS event,
that dialog will be executed as soon as control is returned to DSGRUN. If
Dialog System User’s Guide

140 Chapter 7 Using the Screenset

dspubb.book Page 140 Monday, May 13, 2002 8:57 AM
the COBOL breakpoint had not been encountered, the additional dialog
functions executed for the LOST-FOCUS on the second field would not
have been executed.

7.1.4.2 Defining Dialog

A user interface is more than just a graphical display. A complete
specification also describes how the user and computer interact and
how the user interface software interacts with the application software.

Once you have defined the appearance of the display, you must define
this run-time interaction between the user and the machine. This
interaction is called dialog. Dialog consists of events and functions.
When an event occurs, the functions associated with the event are
executed. Events can be caused by a key on the keyboard being pressed,
or a menu choice or an object being selected.

For example, a Dialog System event such as BUTTON-SELECTED occurs
when a user selects a push button (with the mouse or with the
keyboard). If the button selected is Enter, the function associated with it
might be CREATE-WINDOW, to create a new window for the user to
enter more information.

Dialog System lets you create or customize the dialog between the user
and the display objects. Control dialog affects an individual control,
window dialog affects all the controls in an individual window or dialog
box, and global dialog affects all windows and objects. When an event
occurs, Dialog System searches first in the relevant control dialog, then
the relevant window dialog, then the global dialog.

For more information on dialog statements, see the chapter Using
Dialog and the topic Dialog System Overview in the Help.

7.1.4.3 Testing the Screenset Again

Save the screenset again, and try running the interface again. Enter
data into the fields and choose appropriate radio buttons, list items and
other objects in your interface.
Dialog System User’s Guide

7.1 The Call Interface 141

dspubb.book Page 141 Monday, May 13, 2002 8:57 AM
7.1.4.4 Changing the Screenset

After testing your screenset again, you may want to make changes to it
(for example, to improve the screen layout). You can repeat any of the
steps described in this process until you are satisfied with the screenset.

Now you need to write the COBOL program that will use the user
interface contained in your screenset.

The Windows GUI Application Wizard can do this automatically if
required. See the chapter Windows GUI Application Wizard. The
chapter Sample Programs contains sample code to produce a very
simple program that will read the user inputs and store or clear them as
indicated by the user.

7.1.5 Packaging Your Application
To create the finished application you must complete various subtasks.

You use the Project facility from within Net Express to build your Dialog
System application. See the topic Building Applications in your Help for
further details.

The topic Compiling in the Help explains what you must do next to
prepare your application for production.

When testing is completed, you are ready to assemble the finished
product. A finished product can be copied onto diskettes, sent to a
customer and loaded onto another machine to run as an application.

Depending on the size of the application, the finished product consists
of one or more of the following:

• Executable modules. These are in the industry standard .exe and .dll
file format.

• Run-time support files. These files perform functions such as file I/O
and memory management.
Dialog System User’s Guide

142 Chapter 7 Using the Screenset

dspubb.book Page 142 Monday, May 13, 2002 8:57 AM
7.2 Adding Help
You can display Windows Help directly from your Dialog System
screenset using a Dialog System extension. Dialog System Extensions is
the term given to dialog functions implemented by using the CALLOUT
dialog function. Dialog System extensions are supplied to enable you to
perform many regular programming tasks, such as displaying Windows
Help or providing a file selection facility. For more information about
Dialog System extensions see the topic Dialog System Extensions in the
Help.

The Helpdemo screenset uses the Dsonline Dialog System extension,
which is the Dialog System extension that displays Windows Help. The
section Adding Help in the chapter Tutorial - Creating a Sample
Screenset discusses the Helpdemo screenset in detail.

7.3 Optimizing the Application
You can find some hints and tips on how to optimize your COBOL
program in the topic Performance Programming in the Help.

This section offers some additional hints for optimizing your Dialog
System application. These include:

• Optimizing directory search time using the COBDIR environment
variable.

• Optimizing event dialog and procedure searching.

• Using UNSHOW-WINDOW rather than DELETE-WINDOW.

• Minimizing the naming of objects.

• Using Run-time Save Format.

• Setting the ds-no-name-info flag.
Dialog System User’s Guide

7.3 Optimizing the Application 143

dspubb.book Page 143 Monday, May 13, 2002 8:57 AM
7.3.1 Limiting the Directory Search

The Path statement tells the operating system to search specific
directories on specific drives if a program or file it needs is not in the
current directory. Path defines search paths in the order the alternatives
are defined.

For the development environment, your Windows system registry is
used by the COBOL run-time to identify the location of your Dialog
System installation and your current Net Express project.

When you complete the application and it is ready for production, you
can modify the Path environment variable so the directories needed by
your application are nearer to the beginning of the Path alternatives.

7.3.2 Searching for Event Dialog
The chapter Using Dialog described the three hierarchical levels of
dialog that Dialog System uses when searching for events and
procedures:

• Control level.

• Window level.

• Global level.

That is, when an event occurs on a control, for example a push button,
Dialog System looks to see if the event is listed in any dialog attached to
the control itself. If it finds the event, it carries out the functions listed
underneath.

If not, it looks for the event in the dialog attached to the window
containing the control. If it does not find the event listed there, it
searches in the global dialog.

You should try to:

• Keep the dialog and procedures at as low a level as possible.

• Reserve global dialog for common dialog and procedures.

• Keep the most common events near the top of the event table.
Dialog System User’s Guide

144 Chapter 7 Using the Screenset

dspubb.book Page 144 Monday, May 13, 2002 8:57 AM
Of course, the more dialog you have, the slower the execution speed. It
is also slowed down by having more events or procedures defined at the
global level. Global dialog is useful for collecting common routines, but
it also means that it is searched whenever an event occurs that is not
found at a lower level.

7.3.3 UNSHOW-WINDOW versus
DELETE-WINDOW
The UNSHOW-WINDOW and the DELETE-WINDOW functions are similar.
They both make the specified window or dialog box invisible and set
the input focus elsewhere.

The DELETE-WINDOW function deletes the window and its controls. If
you want to show that window again, it must be created again, either
explicitly or implicitly. (If a window is not created, the SHOW-WINDOW
and SET-FOCUS functions do an implicit create.) Creating dialog boxes
and windows (plus all the objects defined on them) does take a little
time.

However, the UNSHOW-WINDOW function leaves the window created
so it can be shown again quickly.

Therefore, if you have a window or dialog box that you want to make
invisible but show it again later, use the UNSHOW-WINDOW function.
However, if you are finished with the window or dialog box, such as a
system logon window, use the DELETE-WINDOW function, which will
free up some resources.

7.3.4 Minimize Naming of Objects
Some objects, such as pushbuttons or check boxes, do not need to be
named unless they are referenced in dialog. By only naming those
objects that are referenced in dialog, you free a small amount of
storage and reduce the time Dialog System takes in searching for
objects.
Dialog System User’s Guide

7.3 Optimizing the Application 145

dspubb.book Page 145 Monday, May 13, 2002 8:57 AM
7.3.5 Run-time Save Format

If you distribute your Dialog System application, consider using the Run-
time Save Format option. This option enables you to save enough
information to run the screenset, but not enough to retrieve and edit it.

This option addresses some security issues and also reduces the amount
of disk space needed for your application. The size of a reduced
screenset can be as small as one third of the original screenset size.

You also might see a slight performance increase because Dialog System
does not have to load so much information.

Note: Once you save your screenset with this option set, you cannot
make changes to it. Therefore, is is important to keep a copy of your
screenset that you can edit.

7.3.6 Using ds-no-name-info
If the ds-no-name-info flag in the Control Block is set, Dialog System
does not read the screenset heap to get values for ds-object-name
and ds-window-name on returning to your calling program. If you are
not using either of these two fields, set this flag to true at initialization.
For example:

move 1 to ds-no-name-info

This results in slightly faster exits when you return to your application
from Dialog System, for example after the RETC function.

Note that setting this option will prevent you from using Screenset
Animator to debug your screensets, as Screenset Animator needs the
name information stored in the screenset.
Dialog System User’s Guide

146 Chapter 7 Using the Screenset

dspubb.book Page 146 Monday, May 13, 2002 8:57 AM
7.4 Further Information
For information on more sophisticated ways of using the call interface,
such as the use of multiple screensets, and multiple instances of the
same screenset, see the chapter Multiple Screensets.

If you are migrating applications to Net Express from non Win32
environments, see the chapter Migrating to Different Platforms for help
with cross-environment issues.
Dialog System User’s Guide

147

dspubb.book Page 147 Monday, May 13, 2002 8:57 AM
8 Windows GUI Application
Wizard

The previous chapters have given you an introduction to the basic
elements of Dialog System. This chapter describes how the new
Windows GUI Application Wizard provides you with:

• A quick and easy method of creating a screenset with features such
as a toolbar, menu bar and status bar.

• An easy route for accessing and querying any installed database.

This is done by selecting the data access option and defining an
SQL query in the Wizard.

As well as creating a new screenset, the Wizard process automatically
generates associated COBOL programs configured to the functionality
you have requested. Both the screenset and associated COBOL
programs are automatically added to your project if required.

Note: The programs and files that are output as a result of using the
Windows GUI Application Wizard are meant as a starting point for
developing your own applications. They are not intended to be
universally applicable to all situations, but are provided so that you can
learn to use the basics. You can then adapt the code provided to suit
your own needs.

The chapter Creating a Windows GUI Application in the Getting
Started on-line book is a tutorial which includes practical details on
how to use this wizard.
Dialog System User’s Guide

148 Chapter 8 Windows GUI Application Wizard

dspubb.book Page 148 Monday, May 13, 2002 8:57 AM
8.1 Starting the Wizard
There are three ways of starting the Windows GUI Application Wizard:

• Directly from the Net Express IDE by selecting New on the File menu
and then selecting Dialog System Screenset.

• Directly from the IDE by selecting New on the File menu and then
selecting Project. From the choice of project types, select Windows
GUI Project.

• From Dialog System by selecting New on the File menu.

Note: If you open the Wizard from the IDE, and you do not have a
project open, the Wizard creates a new project. You need to supply the
project’s name and location.

8.2 Using the Wizard
This section gives you a brief description of the features in each step of
the Wizard.

8.2.1 Step 1: Screenset Name
The Wizard offers you a name for your new screenset. You can change
this. You do not have to append .gs to the screenset name, as this will
be done automatically.

8.2.2 Step 2: Interface Type
Here you select whether your new screenset is to have a Multiple
Document Interface (MDI) or a Single Document Interface (SDI). If you
require an MDI application, you specify how many MDI children the
Dialog System User’s Guide

8.2 Using the Wizard 149

dspubb.book Page 149 Monday, May 13, 2002 8:57 AM
interface is to have. If it is an SDI, you specify how many primary
windows are required.

8.2.3 Step 3: Class Library Features

You can select features for your new screenset such as a Status Bar and
a Main window toolbar. For all of the features requested, appropriate
Data Block, Dialog and controlling programs can be generated. This
step in the Wizard is shown in Figure 8-1.

Figure 8-1. Class Library Features

Selecting Use OpenESQL Data Access enables you to access any
installed ODBC datasource and to set up queries as described in the
next step. If you leave this option unchecked, you skip the next step
and go directly to Step 5.

When you select Use OpenESQL Data Access, a status bar is
automatically selected for your screenset.
Dialog System User’s Guide

150 Chapter 8 Windows GUI Application Wizard

dspubb.book Page 150 Monday, May 13, 2002 8:57 AM
8.2.4 Step 4: Defining a Query
If you have not selected Use OpenESQL Data Access in Step 3, you skip
this step and go directly to Step 5.

Note: If you did not install the ODBC Drivers at installation time, you
need to do so before you can use this part of the Wizard.

In this step you can:

• View, in the left-hand pane, a list of all the ODBC data sources that
you have registered on your system.

Access to installed data sources uses the OpenESQL Assistant
technology.

If you haven’t set up any data sources yourself, you can use one of
the sample data sources that is set up automatically when you
install Net Express. One of these, NetExpress Sample2 points to a
sample Microsoft Access database, sample.mdb which is supplied
with Net Express and is installed in the base\demo\smpldata\access
directory.

• Select a table.

If you double-click on a database name, you see a list of tables
contained in the database. Select a table from this list by double-
clicking on the table.

• Display columns.

When you select a table, the table expands into columns. Double-
click on a column to select it. When selected, an EXEC SQL statement
is added into the right-hand Query pane.

• Select multiple tables.

If you double-click on a subsequent table, the Table Added To Query
dialog box tells you how the tables will be joined. If you want to use
a different join, click No and use the Search Criteria tab.
Dialog System User’s Guide

8.2 Using the Wizard 151

dspubb.book Page 151 Monday, May 13, 2002 8:57 AM
• Select a query.

Once you have selected the columns, you can run the query by
clicking RunQuery on the toolbar and view the query results to
verify the data that will be accessed by your generated application.

Note: You must select at least one primary key. If you do not select a
primary key, one is automatically selected for you.

The screen for this step in the Wizard is shown in Figure 8-2.

Figure 8-2. Defining a Query

This screen is used to build and test queries for use in your generated
application. You can activate it independently from the Tools,
OpenESQL Assistant menu in the IDE.

For further details about database access and how to use SQL, see the
chapter OpenESQL in the Database Access on-line book.
Dialog System User’s Guide

152 Chapter 8 Windows GUI Application Wizard

dspubb.book Page 152 Monday, May 13, 2002 8:57 AM
8.2.5 Step 5: Extensions
In this step you set up parameter blocks in your Data Block to enable
the use of any of the Dialog System extensions that you may need for
your screenset. Each extension has different requirements.

8.2.6 Step 6: Dialog System Run-time
Configuration Options
Selecting any of these options causes the relevant dialog code to be
inserted into your generated screenset.

Click Help for full details on each option.

8.2.7 Step 7: Generate COBOL Programs
If you select Generate skeleton COBOL program, Dialog System will
generate a skeleton COBOL program, which starts the application with
a call to dsgrun. A default name is provided but you can enter a new
name for this program.

The screen for this step in the Wizard is shown in Figure 8-3.
Dialog System User’s Guide

8.2 Using the Wizard 153

dspubb.book Page 153 Monday, May 13, 2002 8:57 AM
Figure 8-3. Generating Programs

You will see an entry for Name of generated Data Access program only
if you selected Use OpenESQL Data Access in Step 3.

8.2.8 Step 8: Validation of Selected
Options
In this step you validate the options that you have selected in the
previous steps. You can return to earlier steps to amend any selections.
After accepting your selections, the screenset and programs are
created.
Dialog System User’s Guide

154 Chapter 8 Windows GUI Application Wizard

dspubb.book Page 154 Monday, May 13, 2002 8:57 AM
8.3 Output from the Wizard
The files which are output from the Windows GUI Application Wizard
depend on the options you selected, but typically will be one or more of
the following:

• An application COBOL program, with the extension .cbl.

• A screenset with the extension .gs.

• A status bar with the filename sbar.cbl.

• GridESQL.cbl, which creates and manages the grid control at run
time if you selected Grid View in Step 4.

• LBoxESQL.cbl, which creates and manages the listbox control at run
time if you selected Listbox View in Step 4.

• A toolbar control program with the extension .cbl.

8.4 Running the Application
To use the output from the Windows GUI Application Wizard to view,
query or change the database details:

1 Rebuild the project by selecting Rebuild All on the IDE Project menu.

2 Run the application using the IDE by clicking Run on the toolbar or
selecting Run on the Animate menu.

8.5 Further Information
Now that you have generated a data access application, you can
manipulate the data. See the following chapter, Data Access for details.
Dialog System User’s Guide

155

dspubb.book Page 155 Monday, May 13, 2002 8:57 AM
Part 2: Advanced Features
This part contains the following chapters:

• Chapter 9, “Data Access”

• Chapter 10, “Programming Your Own Controls”

• Chapter 11, “Multiple Screensets”

• Chapter 12, “Migrating to Different Platforms”

• Chapter 13, “Using Panels V2”

• Chapter 14, “Using the Client/Server Binding”

• Chapter 15, “Advanced Topics”

• Chapter 16, “Questions and Answers”
Dialog System User’s Guide

156 Part 2: Advanced Features

dspubb.book Page 156 Monday, May 13, 2002 8:57 AM
Dialog System User’s Guide

157

dspubb.book Page 157 Monday, May 13, 2002 8:57 AM
9 Data Access

The previous chapter showed you how the new Windows GUI
Application Wizard can provide you with an easy route for accessing
and querying any installed database. This chapter describes how you
can manipulate this data.

Note: The programs and files that are output as a result of using the
Windows GUI Applications Wizard are meant as a starting point for
developing your own data access applications. They are not intended
to be universally applicable to all situations, but are provided so that
you can learn to use the basics. You can then adapt the code provided
to suit your own, possibly more complex, needs.

The chapter Creating a Windows GUI Application in the Getting
Started on-line book is a tutorial which includes practical details on
how to use the wizard.

9.1 The Windows GUI Application Wizard
The Wizard process created a new screenset and automatically
generated an associated COBOL program configured to the
functionality you requested. Both the screenset and associated COBOL
program were automatically added to your project.

If you want to access an installed database, you must have selected the
OpenESQL Data Access option in Step 3: Class Library Features.
Dialog System User’s Guide

158 Chapter 9 Data Access

dspubb.book Page 158 Monday, May 13, 2002 8:57 AM
9.2 Accessing Installed Databases
There are two possible ways of viewing the results of your query after
building your application, depending on the option you chose in Step 4
of the Windows GUI Application Wizard:

• List box view.

- or -

• Grid view.

These views provide the same functionality but use different interfaces.
The grid view has a more direct feel in use; the list box view is more
familiar to experienced Windows users.

When you run a query, all of the data for that query is read from the
database into memory. Only the page of rows visible on screen is loaded
from memory at any one time: if you scroll, the current page is updated
by retrieving rows from memory.
Dialog System User’s Guide

9.2 Accessing Installed Databases 159

dspubb.book Page 159 Monday, May 13, 2002 8:57 AM
The grid view of your single table database query might look like that
in Figure 9-1.

Figure 9-1. Grid View of Single Table Database Query
Dialog System User’s Guide

160 Chapter 9 Data Access

dspubb.book Page 160 Monday, May 13, 2002 8:57 AM
The grid view of your table join database query might look like that in
Figure 9-2.

Figure 9-2. Grid View of Table Join Database Query
Dialog System User’s Guide

9.2 Accessing Installed Databases 161

dspubb.book Page 161 Monday, May 13, 2002 8:57 AM
The list box view of your single table database query might look like
that in Figure 9-3.

Figure 9-3. List Box View of Single Table Database Query
Dialog System User’s Guide

162 Chapter 9 Data Access

dspubb.book Page 162 Monday, May 13, 2002 8:57 AM
The list box view of your table join database query might look like that
in Figure 9-4.

Figure 9-4. List Box View of Table Join Database Query

The status bar is at the foot of the screen and gives information about
the object that the mouse is over. When the mouse is over the general
part of the screen, the status bar text tells you which type of function
you have selected. Message boxes give you information about errors,
for example, trying to edit a key field.

9.3 Manipulating the Data
You can see that the table join query views have only two buttons - New
Query and Run Query. This is because table join output is read-only, so
the following data manipulation information applies only to single
table database queries.
Dialog System User’s Guide

9.3 Manipulating the Data 163

dspubb.book Page 163 Monday, May 13, 2002 8:57 AM
You can perform the following functions:

• Edit data in the database.

• Insert a new row.

• Delete a row.

9.3.1 Edit Data

Note: Because concurrent versions of the same query can be open, the
application refreshes your query from disk before echoing any edits
that you make to the data. This ensures that you see the most up-to-
date version of the data.

Grid View List View

Change data in a
field

Select the field and specify the
necessary changes, remembering
that you cannot change key
fields. If the edited field is in a
column which has been sorted,
your change may result in the
whole row being moved to
another part of the display.

Select the row to change and
specify the necessary changes in
the dialog box which opens. If
the edited field is in a column
which has been sorted, your
change may result in the whole
row being moved to another part
of the display.

Move to the next
column

Use either the mouse or the left
and right arrow keys.

Delete data in a
field

Select the field and press the
Delete key.

Select the row to change and
specify the necessary changes in
the dialog box which opens. If
the edited field is in a column
which has been sorted, your
change may result in the whole
row being moved to another part
of the display.

Refresh the screen Click Run Query. Click Run Query.
Dialog System User’s Guide

164 Chapter 9 Data Access

dspubb.book Page 164 Monday, May 13, 2002 8:57 AM
9.3.2 Insert a New Row

Note: Your new line may not be immediately visible. This could be a
result of either of the following:

• This data may be excluded by the current query. To see the new line
you need to select a new query.

• The new line is outside of the current view and you need to scroll to
the new row’s position.

9.3.3 Delete a Row
For both grid and list box views, to delete a row of data, select the row
to be deleted and click Delete Row.

9.4 Viewing the Data
You can perform the following functions on all views:

• Search for data by defining a new query.

• Sort the data by column.

Grid View List View

Insert a new row Click New Row. Enter the new
data in the top row of the empty
grid.

When you click New Row, you see
a dialog box with entry fields for
each column except for key fields.
There is no validation for any of
the entry fields.

Perform the insert Press F7. Status Bar reports the
result of your update.

Press F7. The Status Bar reports
the result of your update.

View the new line
in your query

Click Run Query. Press Enter.
Dialog System User’s Guide

9.4 Viewing the Data 165

dspubb.book Page 165 Monday, May 13, 2002 8:57 AM
9.4.1 Search for Data

9.4.2 Sort Data

Grid View List View

Search for data 1 Click New Query.

2 Highlight the field to search
on.

3 Enter your search criteria.

4 Right-click in the field to see
a pop-up menu.

5 Select the logical operator (=,
>, < and !=). The default is ’no
filter’.

6 Click Run Query to see the
results of your search.

1 Click New Query.

A dialog box is shown with
entry fields for each field in
your application.

2 Enter your search criteria.

3 Right-click in the field to see
a pop-up menu.

4 Select the logical operator (=,
>, < and !=). The default is
’no filter’.

5 Press Enter to see the results
of your search.

Grid View List View

Sort data in a
column

Click on the column heading bar.
You see:

• A < symbol on the heading
bar to indicate that the data
is sorted in ascending order.

• A > symbol on the heading
bar to indicate that the data
is sorted in descending order.

Right-click in the list box. You see
a pop-up menu from which you
select the column to sort.
Dialog System User’s Guide

166 Chapter 9 Data Access

dspubb.book Page 166 Monday, May 13, 2002 8:57 AM
Dialog System User’s Guide

167

dspubb.book Page 167 Monday, May 13, 2002 8:57 AM
10 Programming Your Own
Controls

In this chapter you see how to tailor User and ActiveX Controls to use
with your Dialog System application. The topics covered are:

• Control programs.

Throughout this chapter, we use the term control program. This is a
COBOL source program that creates and manipulates the user
interface object or control.

• ActiveX Controls.

• User Controls.

10.1 Control Programs
Using a control program, any object can be manipulated using
programmed functions appropriate to that object. You can perform
actions on that control such as refreshing, deleting or updating data
associated with the control:

• By setting the value of CALL-FUNCTION.

• By setting other parameters in the FUNCTION-DATA Data Block
group.

• Using CALLOUT to your control program.

Dialog System provides programs that enable you to include the
following controls in your application:

• GUI Class Library Win32 Controls.

• ActiveX Controls.
Dialog System User’s Guide

168 Chapter 10 Programming Your Own Controls

dspubb.book Page 168 Monday, May 13, 2002 8:57 AM
The source code for each control is designed to be as generic as possible.
You can tailor and re-use the code with the minimum of changes. The
extent to which this is possible, however, varies according to the control
itself.

• The Status Bar and Spinbutton controls can be fully used without
making any changes.

• The Toolbar and Tree View controls can be used unchanged, but you
need to change the data interface to the program to suit your own
requirements.

• ActiveX Controls are implementation-specific.

You need to tailor these versions to meet your own requirements.
Each of these controls, however, has generic code that does not
need changing and you will find references to modifying the
programs documented in the section User Controls.

The control programs are implemented using calls to the Net Express
class libraries.

10.1.1 Control Implementation
Architecture
The following diagram illustrates the architecture used to implement
controls using Dialog System and the class libraries.
Dialog System User’s Guide

10.1 Control Programs 169

dspubb.book Page 169 Monday, May 13, 2002 8:57 AM
Figure 10-1. Controls Implementation Architecture

When you create an ActiveX or user control:

1 You paint a control on a window in your screenset and associate a
master field and program name with that control.

2 An application program calls dsgrun and supplies a screenset in the
normal manner.

3 When Dialog System creates a window on which an ActiveX or user
control is defined, an entry point in the program associated with
the user control is called.

4 The entry point code performs all the tasks necessary to enable the
class library to create the window object.

As part of the control creation process, code exists in the generated
control programs to enable the registration of callbacks for events
in which the program is interested. This associates program entry
points with the occurrence of defined system events.

5 When the defined system event occurs, it causes the specified entry
point code to be executed.
Dialog System User’s Guide

170 Chapter 10 Programming Your Own Controls

dspubb.book Page 170 Monday, May 13, 2002 8:57 AM
6 The entry point code performs all the required processing, including
updating the Data Block.

7 The entry point code passes a message back to the Panels V2
program. This is received as a USER-EVENT in the Dialog System
screenset, so that any additional dialog processing can be
performed.

8 The control can be manipulated through a CALLOUT to the user
control program or directly by the class library through the Dialog
System INVOKE function.

10.2 ActiveX Controls
As you saw in the chapter Control Objects, ActiveX Controls are supplied
by third-party vendors and can be integrated into Dialog System. When
you use an ActiveX Control in your interface, you need to customize it
to suit your own requirements.

10.2.1 ActiveX Control Properties
There are three types of ActiveX design-time properties:

• Dialog System properties

These are the properties which must be defined when you select an
ActiveX Control.

Select Properties on the Edit menu, or double-click on the control.

• General property list

Select the ActiveX Control in your screenset to display this
automatically.

• ActiveX property pages

Right-click on the ActiveX Control. This includes the general
properties in the general property list above. Not all ActiveX
Controls have property pages implemented.
Dialog System User’s Guide

10.2 ActiveX Controls 171

dspubb.book Page 171 Monday, May 13, 2002 8:57 AM
In many cases, the default properties will not suit your application. For
example, the default properties for a spreadsheet ActiveX Control may
only have two columns and two rows. On the other hand, some
ActiveX Controls, such as the Dialog System clock ActiveX Control, has
mainly acceptable defaults.

You should refer to the documentation for the ActiveX Control to
determine the properties that you need to set. The changed property
data is stored in your screenset.

10.2.2 Tailoring Your ActiveX Control
The steps that you need to take to tailor your ActiveX Control are:

• Select which ActiveX Control you require.

• Define its Dialog System properties.

• Customize the ActiveX Control program using the Programming
Assistant.

10.2.2.1 Selecting an ActiveX Control

To specify the ActiveX Control directly from Dialog System’s menu:

1 Select Import on the File menu.

2 Select ActiveX Control on the sub-pulldown menu.

3 Select your required ActiveX Control from the list box showing the
ActiveX Controls which are registered on your system.

An icon representing this control appears on the ActiveX toolbar.
You can select this ActiveX Control directly from the ActiveX
toolbar whenever you need to re-use it.

4 Ensure that your Data Block has an item defined as OBJ-REF with
which the ActiveX Control is to be associated.

5 Position and size the ActiveX Control.

The ActiveX Control Properties dialog box is automatically shown
as in Figure 10-2.
Dialog System User’s Guide

172 Chapter 10 Programming Your Own Controls

dspubb.book Page 172 Monday, May 13, 2002 8:57 AM
Figure 10-2. ActiveX Control Properties Dialog Box

10.2.2.2 Defining the ActiveX Control
Properties

In the ActiveX Control Properties dialog box:

1 Specify the Data Block Master Field OBJ-REF name for this control.

2 Specify the name for the control program.

3 Ensure your Net Express project is open and available in the Net
Express IDE.

4 Select Add program to current project.

5 Click Generate to generate a COBOL source program which is
automatically tailored to the control you are using and added to the
open project.

This will be the controlling program for the ActiveX control in your
screenset.

6 Click OK.
Dialog System User’s Guide

10.2 ActiveX Controls 173

dspubb.book Page 173 Monday, May 13, 2002 8:57 AM
10.2.2.3 Customizing the ActiveX Control
Program with the Programming Assistant

An example of a customized ActiveX Control program is located in the
folder Net Express\DialogSystem\Demo\Activex\Custgrid. The file
custgrid.txt describes how to run the demonstration.

Customizing a control program to work with your ActiveX Control
involves:

• Registering event handlers for the events that the ActiveX Control
triggers.

• Implementing code to handle the required events.

• Adding code to set run-time properties and invoke methods in the
ActiveX Control.

To tailor your ActiveX Control you need to explore the methods,
properties and events that your ActiveX Control supports. The
Programming Assistant simplifies this task by providing a visual
environment from which you can extract the pre-defined functions
that your program requires. It provides you with code to:

• Get or Set properties.

An ActiveX Control has properties or attributes, for example, the
background color, which you can read or change:

• Use a GET property name statement to find out the current
state of the property.

• Use a SET property name statement to change a property.

• Invoke methods.

Methods are a set of pre-defined functions provided by the ActiveX
control. These pre-defined functions instruct the control to
perform some action, during the course of which they can either
send parameters or return values or do both.

• Respond to events.

Events are provided by the ActiveX control to indicate that an
action has occurred. The event may send parameter information
which describes the details of the event. This information is
Dialog System User’s Guide

174 Chapter 10 Programming Your Own Controls

dspubb.book Page 174 Monday, May 13, 2002 8:57 AM
received and recognized by the application program which is using
the ActiveX control.

Registering a callback causes a block of your COBOL code to be
executed when an event occurs on your control. For example, when
an ActiveX grid row is to be deleted, call the program entry point
detailed in MessageName. The entry point code exists in the
controlling program source file.

For example, the following code registers a callback to be executed
when an ActiveX grid data row is to be deleted by a user’s
interaction.

The name of the event generated by the ActiveX:

MOVE z"RowDeleted " TO MessageName

The entry point name to be executed on occurrence of the event:

MOVE ProgramID & z"DeletedRow" TO CodeName

The Callback registration:

INVOKE anActiveX "SetNamedEventToEntry" USING
MessageName

CodeName

10.2.2.4 Starting the Programming Assistant

To access the Programming Assistant:

1 Right-click in the ActiveX control.

2 Select Programming Assistant... on the context menu.
Dialog System User’s Guide

10.2 ActiveX Controls 175

dspubb.book Page 175 Monday, May 13, 2002 8:57 AM
The ActiveX Programming Assistant dialog box is shown in Figure 10-3.

Figure 10-3. ActiveX Programming Assistant Dialog Box

There are two tab pages available in this dialog box, enabling you to
insert the code relating to methods and properties or events directly
into your open COBOL program.

10.2.2.4.1 Methods and Properties

Selecting the Methods/Properties tab displays the screen shown above
in Figure 10-3.

The left-hand pane displays the ActiveX control and exposes its run-
time object hierarchy. The right-hand pane displays the methods and
properties that this control provides.

When you select a Method or Property in the right-hand pane, the
associated COBOL code appears in the pane in the lower part of the
dialog box.
Dialog System User’s Guide

176 Chapter 10 Programming Your Own Controls

dspubb.book Page 176 Monday, May 13, 2002 8:57 AM
To insert this code into the program which creates the ActiveX at run
time:

1 Open the program in the Net Express IDE.

2 Place the cursor at the required position in this program for the new
code.

There is no clearly commented place to insert this code, as methods
and properties insertions depend entirely on your program logic.
The code can be used in the context of control initialization, event
callback or simple run-time manipulation.

3 Return to the Programming Assistant window.

4 Click on Insert Code.

The created code contains all required parameters and return values
needed for the function you selected.

10.2.2.4.2 Sub-objects

ActiveX Controls can have associated sub-objects, each of which has its
own methods and properties which can be viewed or edited. To see
these, click on the + sign connected with the ActiveX Control in the left-
hand pane.

Sub-objects generally do not have related events. These are globally
handled in the ActiveX Control.
Dialog System User’s Guide

10.2 ActiveX Controls 177

dspubb.book Page 177 Monday, May 13, 2002 8:57 AM
10.2.2.4.3 Events

Selecting the Events tab displays the screen in Figure 10-4.

Figure 10-4. ActiveX Programming Assistant Dialog Box - Events

The upper part of the dialog box shows a list of event names. Next to
each event name there may be parameters which are passed by the
event to the ActiveX controlling program.

As with the methods and properties view, the lower pane displays the
code associated with the event selected in the upper pane. The radio
buttons’ functions are described below.

10.2.2.4.4 Variables

When the Variable Definitions button is selected, you can see the
variables connected with the event selected in the upper pane. These
variables:

• Match the parameter types which are passed by the ActiveX
Control.
Dialog System User’s Guide

178 Chapter 10 Programming Your Own Controls

dspubb.book Page 178 Monday, May 13, 2002 8:57 AM
Parameters must be retrieved into the defined variables in the event
handler code before being accessible to the controlling program.

• Must be inserted in the Local-Storage Section of your application
program.

10.2.2.4.5 Event Registration

Selecting the Register button displays the code which your controlling
program needs in order to register a callback for the selected event.
Registering an event callback performs two tasks:

• Specifying the entry point where the event handler code is located.

• Notifying the OLE class library that it needs to recognize the event.

The generated name of the entry point is Program ID+On+event name.
For example, if the event name is BeforeDeleteRow the generated entry
point name would be Program IDOnBeforeDeleteRow.

Note: The generated entry point name is prefixed by the program ID to
ensure the uniqueness of the entry point across different control
programs. For example, you may have the same event name in different
ActiveX controls. Without the program ID attached to the entry point,
the OLE class library would not know which control program to call.

You need to insert this code in the Register-Callbacks section of your
controlling program which is executed on creation of the control.

10.2.2.4.6 Event Handler

When you select the Handler Code button:

• The event handling code is displayed in the lower pane of the
dialog box.

• The Include Comments checkbox is selected.

When this is selected, the code displayed for the event includes:

• Comments for general program instructions.

• Commented out instructions for each parameter that can be
modified, showing how to modify that parameter.
Dialog System User’s Guide

10.3 User Controls 179

dspubb.book Page 179 Monday, May 13, 2002 8:57 AM
You insert the event handling code at the comment

*Add your event handler code here.

Sample code is available in the generated control program.

To insert this code:

1 Open the program in the Net Express IDE.

2 Click on the insertion position in this program for the new code.

There is a clearly commented place to insert this code. The code can
be used in the context of control initialization, event callback or
simple run-time manipulation.

3 Return to the Programming Assistant window.

4 Click on Insert Code.

The created code contains all required parameters and return
values needed for the function you selected.

10.2.2.5 Summary

The Programming Assistant for ActiveX controls significantly reduces
the ActiveX control familiarisation process, as well as the time taken to
produce the code you need.

10.3 User Controls
When you use a User Control in your interface, you need to customize
it to suit your own requirements. The steps that you need to take to
tailor your User Control are:

• Create the User Control and define its Dialog System properties.

• Generate the controlling program appropriate to the control type
you require.

• Customize the controlling program.
Dialog System User’s Guide

180 Chapter 10 Programming Your Own Controls

dspubb.book Page 180 Monday, May 13, 2002 8:57 AM
10.3.1 Specify the User Control
The User Control object allows you to add a Net Express Class Library
GUI object to your screenset.

To create the User Control:

1 Define a Data Block entry of type OBJ-REF with which the control
will be associated.

2 Select the window where you want to add the User Control.

3 Select User control on the Object menu, or click User Control on the
Objects toolbar.

4 Position and size the user control.

The User Control dialog box is shown as in Figure 10-5.

Figure 10-5. User Control Dialog System Properties Dialog Box

5 Complete the following items on the User Control Properties dialog
box:

a Choose an appropriate name for the user control. Make this as
descriptive as possible, for example MAIN-WINDOW-STATUS-
BAR.

b Specify the relevant OBJ-REF data item as the master field name.

c Specify a name for your user control program.
Dialog System User’s Guide

10.3 User Controls 181

dspubb.book Page 181 Monday, May 13, 2002 8:57 AM
You should choose a name which is different from any of the
Class Programs defined in the Net Express class library. Once
you have chosen a new name for the tailored control program,
you can start to modify it to provide the functionality that you
require.

d Select the type of control you require from those available in
the drop down list.

e Ensure your Net Express project is open and available in the Net
Express IDE.

f Select Add program to current project.

g Click Generate to generate a COBOL source program which is
automatically tailored to the control you are using and added
to the open project.

This will be the controlling program for the user control in your
screenset.

h Click OK.

10.3.2 User Control Types

In all circumstances you will need to import the Data Block definitions
listed in the funcdata.imp file found in your DialogSystem\Source
directory. Select the Dialog System File/Import/Screenset menu choice
and select funcdata.imp for import on the resulting dialog box.

The following sections detail the changes you need to make to
successfully use the generated programs with your screenset.

10.3.2.1 Spin Button

No COBOL code changes are required. Simply implement a USER-EVENT
dialog event on the parent window of your spin button, to respond to
the event posted by the generated program. Your dialog code can then
ensure your Data Block master field is updated to the new value passed
by the control program.
Dialog System User’s Guide

182 Chapter 10 Programming Your Own Controls

dspubb.book Page 182 Monday, May 13, 2002 8:57 AM
Example: USER-EVENT
 XIF=$EVENT-DATA 34580 UPDATE-MASTER
 UPDATE-MASTER
 * The User control program updates the NUMERIC-VALUE
 * field. This code updates the field I want
 MOVE NUMERIC-VALUE(1) MY-NUMERIC-FIELD

10.3.2.2 Status Bar

No COBOL code changes are required. You simply need to implement
the following points, which are covered in more detail in the Tutorial
chapters later in this book.

• Dialog code to set up MOUSE-OVER events for the hint text status
bar section, as detailed in the Help.

• Dialog events to respond to window-moved and -sized events which
CALLOUT to the control program to resize the status bar
accordingly.

• A TIMEOUT procedure to enable a regular CALLOUT to refresh the
toggle key (Insert/Overstrike, CAPS and Num Lock) states, and the
current system time.

This procedure is covered in detail in the chapter Tutorial - Adding and
Customizing a Status Bar.

10.3.2.3 Tree View

When using the generated TreeView control program, first import the
tviewdata.imp file, to populate the required entries in your screenset
Data Block.

To use the TreeView control program, simply populate the ATVIEW-
PARMS Data Block group with the data you want to insert into the
Created Tree control. See your Help for details.

Callback registration and event handler examples are provided in the
generated program. You can adapt them to meet your own needs.
Dialog System User’s Guide

10.3 User Controls 183

dspubb.book Page 183 Monday, May 13, 2002 8:57 AM
10.3.2.4 Toolbar

When using the generated Toolbar control program, first import the
tbardata.imp file, to populate the required entries in your screenset
Data Block.

To use the Toolbar control program, adapt the menu and toolbar
button definition used by the program: do this by editing one
WORKING-STORAGE copyfile that defines the structure to be used.

Next simply write code to respond to menu/ button choice selection by
the user, and take whatever action you require, including execution of
existing menu choice dialog which is already defined in your screensets.

10.3.2.5 User Defined

When creating the User control object, you can generate a generic
skeleton control program, which provides the structure for you to
create any control you choose.

10.3.3 Summary
The generated programs you produce will compile and run successfully
without change. You can now change the code to perform any
additional functions you require in your application, or, as you have
seen, you can use the generated code unchanged.

The intention is to produce a full suite of control programs which
provide access to all class library controls via the same procedural
COBOL interface. This process will be completed in future releases of
Dialog System in Net Express.
Dialog System User’s Guide

184 Chapter 10 Programming Your Own Controls

dspubb.book Page 184 Monday, May 13, 2002 8:57 AM
Dialog System User’s Guide

185

dspubb.book Page 185 Monday, May 13, 2002 8:57 AM
11 Multiple Screensets

This chapter shows you how to use multiple programs and screensets
using Dialog System. It covers both Dsrunner and using the call
interface to maintain multiple screensets in your application.

When using multiple screensets, you can call Dialog System in two
ways:

• By using Dsrunner.

This is the fastest and simplest way to call Dialog System
particularly when you are developing a multi-screenset, multi-
module Dialog System application.

• By using the call interface using a Router program as described
later in this chapter.

11.1 Dsrunner
Most applications should be able to use Dsrunner. This is the simplest
way of calling Dialog System. It enables you to develop a modular
Dialog System application with multiple screensets and multiple sub-
program modules. You can therefore focus on your business logic and
supporting screenset, without needing to worry about the details of
calling Dialog System.

The Dsrunner program loads the Dsrunner screenset which is a
template for a main window that enables you to launch other
screensets. It handles any subprogram and screenset switching as
required. This means that you do not have to supply any code to switch
between multiple screensets or multiple subprograms.
Dialog System User’s Guide

186 Chapter 11 Multiple Screensets

dspubb.book Page 186 Monday, May 13, 2002 8:57 AM
11.1.1 Dsrunner Architecture
Dsrunner is a program which runs your application as a subprogram.
This means you use Dsrunner to launch a screenset which involves
loading the screenset and calling its associated subprogram.You can
launch further screensets from that screenset, providing that you have
set up your Data Block correctly.

If you want to use multiple screensets and multiple programs, you need
to implement a method of program and screenset switching that
ensures that the correct screenset and program are loaded when an
event occurs. A sample program, called Router, is provided with Dialog
System to demonstrate this and is described later in this chapter.

Dsrunner does all the work that Router does and more.

11.1.2 Dsrunner Operation
Dsrunner is the main program in an application. The application
typically also contains other screensets and sub-programs. The main
(Dsrunner) screenset provides the first windows in the application and
the Dsrunner program provides functions that load other screensets and
subprograms.

Each screenset (optionally) has a subprogram associated with it. The
association of a screenset with a subprogram is made by using the same
name (except for the file extension) for them both. For example, if a
screenset is named dsrnr.gs, its associated subprogram should be named
dsrnr.cbl.

When a screenset and its associated subprogram are launched:

1 Dsrunner allocates some memory for the Data Block for the
screenset and initializes it to LOW-VALUES.

2 The subprogram is called before the screenset is loaded into Dialog
System.

This allows any initialization to be performed.

3 The subprogram executes an EXIT PROGRAM when it finishes its
initialization.

4 The EXIT PROGRAM causes Dsrunner to load the screenset.
Dialog System User’s Guide

11.1 Dsrunner 187

dspubb.book Page 187 Monday, May 13, 2002 8:57 AM
5 The screenset executes any SCREENSET-INITIALIZED logic present
then enters the event processing loop.

If a screenset executes a RETC instruction, it returns to Dsrunner.

6 Dsrunner then checks to see whether a Dsrunner function is
requested (by checking if a valid SIGNATURE and function code are
specified).

• If a function is requested, Dsrunner performs that function
then returns to the screenset.

• If no function is requested (as would typically be the case),
Dsrunner CALLs the sub-program.

7 The sub-program:

a Performs any requested function.

b Updates the Data block.

c Executes an EXIT PROGRAM which returns control to Dsrunner.

Dsrunner returns control to the screenset.

11.1.2.1 Parameters

When the sub-program is called, it is passed four parameters which
must appear in the Linkage Section of the program. They must not
appear in the Working-Storage Section of the program because they
are parameters for a subprogram.

The parameters are:

• screenset-data-block - Mandatory.

Provided in screenset.cpb

The screenset-data-block is the Data Block provided for the
screenset. The first time the subprogram is called, this Data Block is
initialized to LOW-VALUES. Dsrunner does not perform any Data
Block version number checking. You must therefore take great care
to ensure that the screenset’s Data Block and the subprogram’s
Data Block are kept synchronized.

• dsrunner-info-block - Optional and can be ignored.

Provided in dsrunner.cpy.
Dialog System User’s Guide

188 Chapter 11 Multiple Screensets

dspubb.book Page 188 Monday, May 13, 2002 8:57 AM
• ds-event-block - Optional and can be ignored.

Provided in dssysinf.cpy. This is exactly as would be returned by
Dsgrun.

• ds-control-block - Optional and can be ignored.

Provided in ds-cntrl.cpy. It is used by Dsrunner to call Dsgrun. It
contains the values that Dsrunner uses to issue the call to Dsgrun,
and also contains values returned by Dsgrun on its return, for
example, the error-codes, window names, and object names. The ds-
control-block is described in detail in the section The Control Block
in the chapter Using the Screenset.

Your sub-program can modify the ds-clear-dialog and the ds-
procedure fields in ds-control-block to change the way the screenset
executes. All other input fields are under the control of Dsrunner
and cannot be modified.

11.1.2.2 Dsrunner Screensets

Dsrunner can run any screenset without any special actions on your
part, providing the screenset-id is defined in the Configuration,
Screenset choice on the Options menu. The screenset-id is required so
that Dsrunner can switch between screensets.

The Dsrunner screenset supplied with Dialog System, dsrunner.gs is in
the DialogSystem\bin subdirectory. This screenset is a template that you
can modify. Alternatively you can write your own screenset, but you
must make sure that you set up the Data Block correctly and have the
required global dialog.

Data Block Header

A Dsrunner screenset must contain the following fields at the start of
the Data Block. These fields hold controlling and dispatching
information and are:

DSRUNNER-DATA-ITEMS 1
 DSRUNNER-SIGNATURE X 8.0
 DSRUNNER-FUNCTION-CODE X 4.0
 DSRUNNER-RETURN-CODE C 2.0
 DSRUNNER-PARAM-NUMERIC C 4.0
 DSRUNNER-PARAM-STRING X 256.0
Dialog System User’s Guide

11.1 Dsrunner 189

dspubb.book Page 189 Monday, May 13, 2002 8:57 AM
• DSRUNNER-SIGNATURE

This is a signature. If you want to launch screensets in turn from a
screenset that has already been launched by Dsrunner, you need to
specify a signature in your Data Block that indicates it is a Dsrunner
screenset.

• DSRUNNER-FUNCTION-CODE

This is a function code.

• DSRUNNER-RETURN-CODE

This is a return code.

• DSRUNNER-PARAM-NUMERIC and DSRUNNER-PARAM-STRING

These are numeric and string parameters.

If the main screenset does not follow these rules it can still be started.
However, no other applications can be launched.

If you want to use a shared memory buffer, the following fields must
be inserted immediately after the DSRUNNER-DATA-ITEMS group:

SHARED-MEMORY-BUFFER
 YOUR-DATA any format or size

You also need to reserve some fields for Dsrunner’s use at the start of
the Data Block. For this you can import the file dsrunner.imp at the
start of the Data Block of the screenset. This import file also contains
the key statements required in your global dialog to:

• Set up the Dsrunner signature.

• Enable screenset switching.

• Exit properly.

Dsrunner Screenset Requirements

You must ensure that each screenset to be used with Dsrunner:

• Contains a screenset-id which must be unique for the screensets
loaded.

• Uses the following dialog to close it and its subprogram:

SET-EXIT-FLAG
 RETC
Dialog System User’s Guide

190 Chapter 11 Multiple Screensets

dspubb.book Page 190 Monday, May 13, 2002 8:57 AM
This dialog can be in global or local dialog and you can attach it to
any suitable event. If you want to tell the subprogram that it is
closing down, set your own termination flag and do a RETC before
you set the exit flag and do the RETC for Dsrunner.

• Contains the following global dialog if you want to handle multiple
screensets:

OTHER-SCREENSET
 REPEAT-EVENT
 RETC

Dsrunner Global Dialog

This dialog describes the key parts of the global dialog in the supplied
Dsrunner screenset:

OTHER-SCREENSET
 REPEAT-EVENT
 RETC

This dialog causes an event that occurs for an inactive screenset to be
repeated (stacked for the inactive screenset). The RETC causes Dsrunner
to switch the active screenset to the correct screenset. This is required if
you want to control more than one screenset.

SCREENSET-INITIALIZED
 MOVE "DSRUNNER" DSRUNNER-SIGNATURE(1)

This dialog sets up the signature indicating that the Data Block of this
screenset is set up for Dsrunner. If you do not set up the Data Block,
Dsrunner ignores any function codes and a RETC invokes only the
subprogram associated with the screenset.

CLOSED-WINDOW
 EXECUTE-PROCEDURE EXIT-PROGRAM
CLOSEDOWN
 EXECUTE-PROCEDURE EXIT-PROGRAM
 EXIT-PROGRAM
 SET-EXIT-FLAG
 RETC

On a request to close the application, the SET-EXIT-FLAG is issued. This
causes Dsrunner to terminate after the RETC. If you want to perform
termination processing in your subprogram, set your own termination
flag and do a RETC before you set the exit flag and do the RETC to
Dsrunner.
Dialog System User’s Guide

11.1 Dsrunner 191

dspubb.book Page 191 Monday, May 13, 2002 8:57 AM
 OPEN-SCREENSET
 MOVE "file" DSRUNNER-FUNCTION-CODE(1)
 MOVE "*.gs" DSRUNNER-PARAM-STRING(1)
 RETC
 IFNOT= DSRUNNER-RETURN-CODE(1) 0 OPEN-SCREENSET-ERROR
* resulting file name is left in param-string
 MOVE "lnch" DSRUNNER-FUNCTION-CODE(1)
 RETC
 OPEN-SCREENSET-ERROR

This dialog shows how to perform a Dsrunner function. In this example,
the file requester is shown and a file name obtained. The function to
launch a screenset is then executed.

11.1.3 Dsrunner Program and Functions
The Dsrunner program provides certain functions through the first few
fields of its Data Block. These include:

• Starting and stopping new applications (screensets) or instances of
applications.

• Switching into Dialog System trace mode for debugging purposes.

• Creating and using shared memory areas.

For a list of all of the available functions, see the topic Dsrunner
Functions in the Help.

11.1.4 Using Dsrunner Functions
Because Dialog System is called by Dsrunner, you set the Dsrunner
function code in the Dsrunner Data Block before executing a RETC
from the Dsrunner screenset. For example:

LAUNCH-SCREENSET
 MOVE "lnch" DSRUNNER-FUNCTION-CODE(1)
 MOVE "screenset-name" DSRUNNER-PARAM-STRING(1)
 RETC
 MOVE DSRUNNER-PARAM-NUMERIC(1) SAVED-SS-INSTANCE
Dialog System User’s Guide

192 Chapter 11 Multiple Screensets

dspubb.book Page 192 Monday, May 13, 2002 8:57 AM
In this example, screenset-name is the name of the screenset to
launch. The function returns the screenset instance, which is saved as
SAVED-SS-INSTANCE.

11.1.5 Starting Screensets Using a
Command Line
Dsrunner is designed to be run from a command line:

runw dsrunner [screenset-name /l /d screenset-name]

Where:

screenset-name is the name of the initial screenset to load. You can
enter it in the first positional parameter, or following the /l "load
screenset" parameter. You can also specify the /d switch.

/d enables the Screenset Animator immediately, so the Screenset
Animator is invoked when the first line of dialog in the first screenset is
executed.

Dsrunner is provided in both .obj and .gnt formats to enable you to
package your application appropriately for the run-time environment
you are using.

11.1.6 Starting Screensets in Net
Express IDE

Screensets can also be started via Dsrunner in the Net Express IDE:

1 Select Settings on the Animate menu.

2 Specify dsrunner in Start animating at.

3 Specify the options listed above (/l, /d) in Command line parameters.

Any program breakpoints you have will stop execution and load the
relevant program into a debug/edit window.
Dialog System User’s Guide

11.1 Dsrunner 193

dspubb.book Page 193 Monday, May 13, 2002 8:57 AM
11.1.7 Starting a Screenset from a
Program
Instead of using a command line, you can call Dsrunner from a
program. This enables you to choose your own name for your
application and to specify the initial screenset name, without
specifying it on the command line. This is useful if your application
takes its own command line arguments. It is also useful to perform any
application-specific initialization, for example opening a library.

11.1.8 Launching a Screenset

To launch a screenset:

1 Select Open on the File menu in the Dsrunner window.

2 Select a screenset and click OK.

The screenset you select is loaded and the associated program run.

You can select another screenset and run that by repeating the above
instructions.

11.1.9 Launching an Application
In this section we look at the Dsrunner architecture and consider what
you need to do to be able to use Dsrunner effectively. You can modify
the Dsrunner screenset to meet your own requirements. The supplied
screenset is only an example. You can change the Data Block, but do
not make changes that affect dsrunner-info-block.

When you launch a screenset, Dsrunner goes through the following
procedure:

1 When you select Open on the File menu in the Dsrunner window,
you are prompted to enter a screenset name.

2 Dsrunner checks that the screenset is correct, that is, that you have
specified a screenset-id. If the screenset is:

• Not correct, a message box is shown with appropriate text.
Dialog System User’s Guide

194 Chapter 11 Multiple Screensets

dspubb.book Page 194 Monday, May 13, 2002 8:57 AM
• Correct, enough memory is obtained for a dynamically allocated
Data Block and is initialized with LOW-VALUES.

3 The program with the same root file name (and path) as the
screenset name is called.

This program can be any valid COBOL executable in the current
directory or $COBDIR (normal COBOL program search rules apply). If
the program is not found, a message box is shown with appropriate
text.

4 A call is made to the subprogram to enable the subprogram to
perform any initialization required, including the initialization of
the Data Block.

The following parameters are passed:

• Data-Block

• Dsrunner-Info-Block

This is provided in dsrunner.cpy and contains:

• screenset-id

• ds-session-id

• screenset-instance-number

• Error codes

• Ds-Event-Block

5 Once the subprogram is initialized, it must return to Dsrunner with
a return code of zero:

• If it returns with a non-zero return code, Dsrunner displays a
message box and signals the error.

• If it returns with a return code of zero, Dsrunner loads the
screenset (screenset initialization occurs).

If an error occurs in the call to Dialog System to load the
screenset, the subprogram is called with error-codes specified in
the Dsrunner information block.

6 Whenever the screenset executes a RETC, the subprogram will be
called.
Dialog System User’s Guide

11.2 Multiple Screensets and the Router Program 195

dspubb.book Page 195 Monday, May 13, 2002 8:57 AM
7 To close down the application, the screenset must SET-EXIT-FLAG in
the dialog.

11.1.9.1 Running the Sample Subprogram

Dsrnr is a sample subprogram supplied with Dialog System. To find out
how to launch it and for details of key sections of the sample code, see
the chapter Sample Programs.

11.2 Multiple Screensets and the Router
Program

The Dialog System run-time system can be programmed to enable the
use of:

• Multiple screensets.

• Multiple instances of the same screenset.

Using these features you can:

• Divide your user interface into logical components.

• Use multiple copies of the same screenset.

• Group all your error messages into a single file.

When you design your screenset and calling program, you should
consider in detail how you control screenset handling, looking at issues
such as:

• How to divide functions and whether they should be grouped into
separate screensets.

• Whether to provide different screensets to groups of users with
different access to data, as a security consideration.

• Whether to use multiple instances of a screenset so that a user
could display, compare or edit data at the same time.
Dialog System User’s Guide

196 Chapter 11 Multiple Screensets

dspubb.book Page 196 Monday, May 13, 2002 8:57 AM
For more information on the basics of screen control using the Dialog
System call interface, see the topic The Call Interface in the Help.

11.2.1 Using Multiple Screensets
You can use multiple screensets by pushing and popping them from the
screenset stack. By definition, this is a first in, last out operation.
Pushing and popping screensets is useful to:

• Remove a screenset used for a particular function from the display
when it is no longer required.

• Load multiple screensets during program initialization, and push
and pop (or use) them when you need them.

• Keep the display uncluttered by windows that are not being used or
do not have input focus.

There are no pre-conditions for pushing a screenset onto the screenset
stack, and any screenset, or occurrence of a screenset, can be pushed or
popped. Pushed screensets are normally stacked in memory, but if
memory is short they will be paged to disk.

11.2.2 Using Multiple Programs and
Screensets
The recommended way of developing a large application is to build a
separate module for each component and associate each module with
its own screenset. Each component is then a separate COBOL program
complete with its own user interface.

For example, if you were building an application that has a main data
entry component and two utility components, one utility would handle
all the printing functions and the other handle the file management
functions.

Several screensets can be used in the same application, each being
placed on the screenset stack. This stack is similar in concept to the call
stack that is used whenever you call a program. Calling screensets in
turn is easy, because you simply make the call to Dialog System with a
value of N in ds-control and with the new screenset name in ds-
Dialog System User’s Guide

11.2 Multiple Screensets and the Router Program 197

dspubb.book Page 197 Monday, May 13, 2002 8:57 AM
set-name. By default, the old set is cleared from the screen before a
new one is started.

Once you have multiple programs, each with an associated screenset,
you need a method to ensure that the correct program and the correct
screenset are made active when an event occurs. The sample program
that follows, Router, shows you how to structure an application to have
multiple programs, each with an associated screenset.

11.2.3 Terms and Concepts
Before you look at the Router program, you need to understand a few
terms and concepts.

11.2.3.1 The Active Screenset

When several screensets are loaded, we need to distinguish between
the active screenset and inactive screensets. Graphical objects displayed
by screensets that are presently inactive do not differ in appearance
from those displayed by the active screenset. The active screenset is the
one that is currently receiving events. Only one screenset can receive
events at a particular instant.

When using multiple screensets, you usually specify the active screenset
by calling Dialog System and specifying ds-use-set in ds-control.
The screenset specified in ds-set-name becomes the active screenset.
This call is very fast and any overhead resulting from this swapping is
minimal.

11.2.3.2 Events for Other Screensets

If an event occurs for a screenset other than the one that is currently
active, a special event, the OTHER-SCREENSET event, occurs in the
current screenset. This event simply tells the current screenset that an
event has occurred that should be posted to another screenset. Any
resulting action depends on the logic in the active screenset.

If the OTHER-SCREENSET event is not found (usually in global dialog),
nothing happens. You must specify the OTHER-SCREENSET event so a
screenset can detect that an event has occurred for another screenset.
Dialog System User’s Guide

198 Chapter 11 Multiple Screensets

dspubb.book Page 198 Monday, May 13, 2002 8:57 AM
Once such an event is detected, you can then make the appropriate
screenset active. The most common way is to set a flag indicating that
the OTHER-SCREENSET event has occurred and return to the calling
program to change screensets.

All events that occur for inactive screensets are returned to the active
screenset as OTHER-SCREENSET events.

You can identify the correct screenset by calling Dialog System and
specifying the ds-event-block. When Dialog System returns to the
calling program, the screenset-id of the screenset that the event was
really for is in ds-event-screenset-id. This screenset-id is specified
in Configuration, Screenset on the Options menu. It is not mandatory to
specify a screenset-id, but if you do not, you cannot use multiple
screensets because you cannot differentiate between the screensets on
the stack.

When the correct screenset is active, the original event is repeated
providing that you have specified the REPEAT-EVENT dialog function
within the OTHER-SCREENSET event.

Note: The repeated event is not OTHER-SCREENSET: it is the event that
would have occurred if the correct screenset had been active.

11.2.4 Multiple Screenset Sample
Application Using Router

A sample application illustrating how to use Router to handle multiple
screensets in Dialog System is included in your sample directory. In this
example, Programa, the main program, calls subprograms Programb
and Programc. Each program has its own screenset.

A fourth program, Router, handles the routing function. Its only
purpose is to determine which program (and screenset) needs to be
executed next and then call that program.

Figure 11-1 shows the application structure.
Dialog System User’s Guide

11.2 Multiple Screensets and the Router Program 199

dspubb.book Page 199 Monday, May 13, 2002 8:57 AM
Figure 11-1. Structure of Router Application

11.2.5 Using Multiple Instances of
Screensets
As well as using multiple screensets, you can use multiple instances of
the same screenset. You use multiple instances in a very similar way to
using multiple screensets. The real difference is in identifying the
screenset. See the section Using Multiple Programs and Screensets
before you read this section.

Possible uses of multiple instances of screensets are:

• A screenset containing one window with its associated controls.

• Working with data groups where each group item has the same
format. Using multiple instances of the same screenset, you can
have one screenset to display, compare or update the group items
as required.

Using multiple instances of the same screenset requires your program
to:

• Track the number of instances of a screenset.

• Ensure that the Data Block being passed to Dsgrun is the correct
one for that screenset instance.
Dialog System User’s Guide

200 Chapter 11 Multiple Screensets

dspubb.book Page 200 Monday, May 13, 2002 8:57 AM
When multiple instances are used, a screenset is first started by an "N"
or "S" call.

To create a new instance:

1 Push a new screenset onto the stack by calling Dialog System.

2 Specify ds-push-set in ds-control.

3 When Dialog System returns, it places an allocated instance value in
the ds-screenset-instance Control Block field.

An instance value is always returned, but you only need to use it
when you use multiple instances of a screenset.

The instance value is unique to that particular screenset instance. Your
application must keep track of instance values because they are not
assigned in any particular order.

11.2.5.1 Tracking the Active Instance Value

You can track the active instance by examining ds-event-screenset-
id and ds-event-screenset-instance-no within dssysinf.cpy,
which must be copied into your program Working-Storage Section. For
more information on dssysinf.cpy, see the chapter Using Panels V2.

To specify that you want a new instance of a screenset to be loaded:

• Set ds-control to ds-use-instance-set when you call Dsgrun.

To identify the appropriate instance for a particular event:

• Examine ds-event-screenset-instance. This contains the
appropriate instance value.

To call Dialog System with a particular instance value:

1 Move ds-event-screenset-instance-no into ds-instance.

2 Specify the required screenset name by moving ds-event-
screenset-id into ds-set-name.

3 Call Dialog System.
Dialog System User’s Guide

11.2 Multiple Screensets and the Router Program 201

dspubb.book Page 201 Monday, May 13, 2002 8:57 AM
Notes:

• To use multiple instances of a screenset, you must set the screenset-
id to be the name of the screenset using Configuration, Screenset
on the Options menu.

• There is no support for using multiple instances of a screenset
when running through the Screenset Animator, using the
definition software. If, however, Dsgrun is called from the
application then multiple instances are supported. For more
information on the Screenset Animator see the section Screenset
Animator in the help.

11.2.5.2 Using the Correct Data Block

If you are using multiple instances of a screenset, you must maintain
multiple copies of the Data Block. You can do this in several ways:

• If you know the number of instances that will be created, the
easiest way is to use code similar to the following:

copy "program.cpb"

replacing data-block-a by data-block-b.

• Implement a Data Block heap or stack.

To push a screenset onto the screenset stack and start a new
screenset, call Dsgrun using the following:

 move ds-push-set to ds-control
 call "dsgrun" using ds-control-block,
 data-block

Where ds-push-set places the value "S" in ds-control. The
existing screenset is pushed onto the screenset stack.

When you pop a screenset off the screenset stack you can use
either of the following:

• ds-quit-set

This closes the existing screenset and pops the first screenset off
the top of the screenset stack.
Dialog System User’s Guide

202 Chapter 11 Multiple Screensets

dspubb.book Page 202 Monday, May 13, 2002 8:57 AM
• ds-use-set

This pops the specified screenset off the screenset stack without
closing the existing screenset.

For more information see the topic Screenset Animator in the Help.

11.2.5.3 Sample Programs for Multiple
Instances

There are two sample programs which demonstrate the use of the call
interface by your program:

• push-pop.cbl demonstrates the use of screenset pushing and
popping.

• custom1.cbl demonstrates the use of multiple instances of the same
screenset.

You can find key sections of code for these programs in the chapter
Sample Programs.

11.2.6 The Router Program
Before we look at the Router program logic, let’s take a look at the
copyfile that represents a data area shared by Router and all the
programs that are called by Router.

The following code shows the copyfile router.cpy, which contains a
program name and two flags.

program-name contains the name of the program to be called next.

cancel-on-return is set to TRUE by a program which is to be
cancelled when it returns to Router. If the main program (Programa)
requests cancel, Router sets exit-on-return, then exits the main
perform loop.

 1 01 program-control.
 2
 3 03 dispatch-flag pic 9(2) comp-5.
 4 88 cancel-on-return value 1 false 0.
 5
Dialog System User’s Guide

11.2 Multiple Screensets and the Router Program 203

dspubb.book Page 203 Monday, May 13, 2002 8:57 AM
 6 03 exit-flag pic 9(2) comp-5.
 7 88 exit-on-return value 1 false 0.
 8
 9 03 program-name pic X(8).

Router starts by calling the main program Programa. When Programa
determines that a sub-program is required to handle a particular
function, it puts the name of the sub-program in program-name and
exits. Router then calls the program in program-name.

 29 main-section.
 30
 31* Make sure we don’t exit straight away
 32 initialize exit-flag
 33
 34* Start by calling the main program
 35 move main-program to program-name
 36
 37* Call program in program-name until exit is requested
 38 perform until exit-on-return
 39
 40* Remember who we’ve called
 41 move program-name to dispatched-program
 42
 43* Dispatch program in Program-Name
 44 call program-name using
 45 if cancel-on-return
 46* If last program requested cancel - do cancel
 47 set cancel-on-return to false
 48 cancel dispatched-program
 49 if dispatched-program not = main-program
 50* Re-load main program if sub-program cancelled
 51 move main-program to program-name
 52 else
 53* If main program requested cancel, request exit
 54 set exit-on-return to true
 55 end-if
 56 end-if
 57 end-perform
 58
 59 stop run.

If you want to cancel a program, the program must set cancel-on-
return before it returns to Router. If the program specified in main-
program requests cancel, Router exits after cancelling the main
program.
Dialog System User’s Guide

204 Chapter 11 Multiple Screensets

dspubb.book Page 204 Monday, May 13, 2002 8:57 AM
11.2.7 The Main Program
This section shows the source for the main program that the Router
calls, Programa. The two subprograms Programb and Programc are very
similar.

Lines 31-44: 31 procedure division using program-control.
 32
 33 main-section.
 34 if new-instance
 35* First time in we push a new screenset onto the stack
 36 perform new-set-instance
 37 else
 38* Once we’ve initialized use existing screenset
 39 perform use-set-instance
 40 end-if
 41* Call Dialog System as long as we should be active
 42 perform until program-name not = this-program-name
 43 perform call-ds
 44 exit-program.

The main section of Programa checks whether the screenset instance
has been created. If it has, the program uses it; if it hasn’t, the program
creates it.

Once an instance exists, Dialog System is called to display it. Dialog
System is called until the name of the program in program-name is
changed from Programa.

Programa exits (and returns to Router) if program-name is not
Programa. Router, in turn, calls the program in program-name.

Lines 46-60: 46 new-set-instance
 47 ...
 58 ...
 59* Push a new screenset onto the stack
 60 move ds-push-set to ds-control.

The most important part of new-set-instance is specifying ds-push-
set so that when Dialog System is called. it places the screenset on the
stack.

Lines 62-66: 62 use-set-instance.
 63* Use existing screenset on the stack
 64 move ds-use-set to ds-control
Dialog System User’s Guide

11.2 Multiple Screensets and the Router Program 205

dspubb.book Page 205 Monday, May 13, 2002 8:57 AM
 65* This is what we’re called
 66 move this-program-name to ds-set-name.

When the screenset instance has been created, we can use it by telling
Dialog System the screenset name and directing Dialog System to use
that screenset from the stack.

Lines 67-101: 67 ...
 68 call-ds.
 69* Standard initialization and call
 70 initialize programa-flags
 71 call "dsgrun" using ds-control-block
 72 programa-data-block
 73 ds-event-block
 74 evaluate true
 75* When this Screenset flag is set we tell router to exit
 76 when programa-terminate-true
 77 set exit-on-return to true
 78 ...
 87 ...
 88 when programa-other-set-true
 89 move ds-event-screenset-id to program-name
 90* If the Programb menu item is selected, this flag is set
 91 when programa-program-b-true
 92* So we then request Programb to be dispatched
 93 move "programb" to program-name
 94* If the Programc menu item is selected, this flag is set
 95 when programa-program-c-true
 96* So we then request Programc to be dispatched
 97 move "programc" to program-name
 98* Its an event for us
 99 when other
100 move "Hello A" to programa-field1
101 end-evaluate.

This code fragment shows a standard call to Dialog System specifying
all three parameters, followed by an evaluation. This evaluation directs
the overall operation of the program, based on flags set in screenset
dialog.

Depending on the flags set in the screenset dialog, Programa exits,
switches screenset and program, calls a subprogram, or handles an
event for it.

The crucial element of this code is the switching of programs and
screensets when the OTHER-SET-TRUE flag is set. Dialog System places
the Screenset-ID (set using Configuration, Screenset on the Options
Dialog System User’s Guide

206 Chapter 11 Multiple Screensets

dspubb.book Page 206 Monday, May 13, 2002 8:57 AM
menu) of the screenset for which the event occurred in ds-event-
screenset-id.

This means that Programa can detect the correct screenset-id and hence
program name because this example, conveniently, calls the screenset
and its associated program by the same filename. If the screenset and its
associated program name differed, you would need to identify the
screenset then call the appropriate program.

Programa puts the screenset-id into ds-screenset-name and exits;
Router will call the identified program and hence load the correct
screenset.

11.2.8 Multiple Screenset Dialog
The following example dialog shows screenset dialog needed to handle
multiple screensets. The dialog listed here is taken from the Programa
screenset, but it is the same for the other screensets.

Dialog System uses the OTHER-SCREENSET event to detect that an event
has occurred in a screenset other than the one that is currently loaded.
In this example, this event is located in the global dialog table for each
screenset:

OTHER-SCREENSET
 SET-FLAG OTHER-SET(1)
 REPEAT-EVENT
 RETC

When such an event is detected, the flag OTHER-SET is set, to signal to
the program that another screenset is to be used.

Next, the REPEAT-EVENT function is executed. REPEAT-EVENT tells
Dialog System to repeat the last event the next time it goes for input.
This occurs when the next screenset is loaded and control is in the next
program. After the REPEAT-EVENT, the screenset returns to the calling
program using RETC .

The calling program, in this case Programa, can then check the screenset
flag. If the flag is set, the program can place the screenset-id in ds-
set-name (assuming the screenset name and program name are the
same) and exit to Router. Router then calls the appropriate program
and hence loads the correct screenset. Then, because of the REPEAT-
Dialog System User’s Guide

11.2 Multiple Screensets and the Router Program 207

dspubb.book Page 207 Monday, May 13, 2002 8:57 AM
EVENT function issued by the Programa screenset, the event that
caused the OTHER-SCREENSET event is repeated.

Note: The event repeated is not OTHER-SCREENSET; it is the event that
would have occurred if the correct screenset had been active.

For more information on these functions, refer to the topic Dialog
Statements: Functions in the Help.

11.2.9 The Sequence of Events
The previous sections have described the overall process of switching
screensets and the key events that occur. However, if you trace the
program flow, all is not quite so simple in practice. There are, in fact,
several program switches before control is left in the appropriate
program.

Why? The key reason is the change of focus. When the input focus
moves from one graphical object to another, two events occur. The
object losing focus receives the LOST-FOCUS event, and the object
gaining focus receives the GAINED-FOCUS event.

If the object that loses focus is a control object, the LOST-FOCUS event
also occurs for the window that contains that object. Similarly, if the
object that gains focus is a control object, the GAINED-FOCUS event
also occurs for the window that contains the object.

This table shows the sequence of events that actually occurs when
there is a simple change of focus from A’s window to B’s window.

Each screenset traps the OTHER-SCREENSET event and returns to the
calling program from Dialog System. Dialog System is then called with
the correct screenset (identified from ds-event-screenset-id).

System Event
Active
Screenset

Event
Screenset DS Event

Mouse-button-1-down A B OTHER-SCREENSET

Lost-focus (window A) B A OTHER-SCREENSET

Gained-focus (window B) A B OTHER-SCREENSET

Mouse-button-1-up B B ANY-OTHER-EVENT
Dialog System User’s Guide

208 Chapter 11 Multiple Screensets

dspubb.book Page 208 Monday, May 13, 2002 8:57 AM
Pressing the mouse button on B’s window when A has the focus causes
the sequence of events shown in this table.

The system event Mouse-button-1-down on window B causes Dialog
System to present an OTHER-SCREENSET event to the active screenset.
This gives program A a chance to switch to screenset B.

However, the next system event is window B losing focus. But, as you
can see in the table, this event occurs only after the switch to B. This in
turn causes an OTHER-SCREENSET event in B.

Another switch of screensets results. B now gains focus when A is active,
so another OTHER-SCREENSET event results. This causes B to become
active. The mouse button up event is now presented to B as ANY-
OTHER-EVENT (because all mouse events are translated to this event).

This sequence of events need not trouble you once you understand the
principle of screenset swapping because no matter how many screenset
swaps take place, the correct screenset is left active once a steady state
is reached.

Note: In this example, the mouse button down event is lost. You can
rectify this using the REPEAT-EVENT function within the OTHER-
SCREENSET dialog.

11.2.9.1 Repeating the Event

First, you must decide whether you need to repeat the event. The
purpose of repeating the event is clear. If you need the event, it must be
repeated in the correct screenset. However, in many cases, you do not
need the event, therefore you do not need to repeat it.

The event sequence caused by clicking buttonB on windowB when focus
is currently on buttonA on windowA is the following:

Mouse-Button-1-Down
Mouse-Button-1-Up
Lost-Focus on buttonA
Lost-Focus on windowA
Gained-Focus on windowB
Gained-Focus on buttonB
Button-Clicked on buttonB
Dialog System User’s Guide

11.3 Further Information 209

dspubb.book Page 209 Monday, May 13, 2002 8:57 AM
This sequence shows that you do not need REPEAT-EVENT in this
situation, because the Gained-Focus on windowB loads ScreensetB
before the Button-Clicked event causes a BUTTON-SELECTED event.

11.2.10 Setting the Focus

When a screenset is made active by calling Dialog System and
specifying ds-use-set in ds-control, it does not automatically
receive the focus. If the screenset switch is caused by the user (by
selecting a new window or control), the focus moves to the new
screenset because the user’s actions cause a GAINED-FOCUS event.

If the switch is caused by the program, you must specify a dialog
procedure name in ds-procedure before you call Dialog System. Use
a SET-FOCUS dialog function to set the focus on the appropriate
window.

11.3 Further Information
For a detailed description of the call interface see the topic The Call
Interface in the Help, which provides information on the Control Block,
including the Event Block, the Data Block, use of the Screenset
Animator, version checking, and values the calling program returns to
Dialog System.
Dialog System User’s Guide

210 Chapter 11 Multiple Screensets

dspubb.book Page 210 Monday, May 13, 2002 8:57 AM
Dialog System User’s Guide

211

dspubb.book Page 211 Monday, May 13, 2002 8:57 AM
12 Migrating to Different
Platforms

This version of Dialog System is primarily for Windows 95 and
Windows NT.

This chapter explains the major differences between these
environments and gives you guidelines for handling screensets that are
used in more than one environment.

You can run a screenset on other operating systems if you have the
appropriate earlier version of Dialog System, because the system uses
the appropriate run-time software (it is not the responsibility of the
calling program). Some object definitions are not portable across
environments. Dialog System provides optional portability warnings. If
enabled, Portability warnings on the Options, Include menu causes
Dialog System to display a warning message whenever you are about
to create an object that is not portable.

When dealing with portability issues, we recommend that you test your
application thoroughly, as Dialog System cannot guarantee to detect
all portability violations because of the way the environment is
constantly changing.

12.1 Differences Across Environments
Superficially, many of the objects and controls look the same on any of
the supported environments. Objects such as radio buttons and check
boxes provide the most obvious differences between Presentation
Manager and Windows.

The objects that Dialog System creates follow the appearance of similar
objects in the current environment. Therefore, in applications created
under Presentation Manager, radio buttons appear as outlined ovals
that are filled with a color when selected. As you move the screenset
Dialog System User’s Guide

212 Chapter 12 Migrating to Different Platforms

dspubb.book Page 212 Monday, May 13, 2002 8:57 AM
from one environment to another, the appearance of the objects
changes.

The behavior of the mouse varies between the environments but can be
fixed by the design of the application.

There are some objects and menu choices that are available on only
some environments. For example, the OLE2 object is available only
under Windows.

If you want an application to be portable, you must use the functions
and facilities that are common among the environments you want to
run on, so that the application has a common look and feel on all
environments, rather than taking advantage of any one environment’s
functions. If you don’t need a portable application, you can design just
for the one environment and take full advantage of anything specific to
that environment.

For example, if you want to exploit the 32-bit Windows interface, you
can use the class library of your COBOL system to extend your Dialog
System interface. However the interface will not be portable to any
earlier versions of Dialog System.

12.1.1 Desktop Mode
One major difference among the environments is how Dialog System
starts up.

Presentation
Manager:

Under Presentation Manager, Dialog System starts up with the Dialog
System window. Every window you create is created as a clipped
window within the Dialog System window, unless you switch to Desktop
mode. In Desktop mode, you create objects directly on the desktop.

Windows: Under Windows, Dialog System starts up in Desktop mode. This is
because Windows does not permit the creation of clipped windows
with menus. Obviously, this causes a problem because the first window
you need to create would be clipped if it was within the Dialog System
window. Creating windows directly on the desktop avoids this problem.

Windows: Under Windows you must be in Desktop mode to see a menu bar on a
window. However, you can edit a menu bar even if you are not in
Desktop mode.
Dialog System User’s Guide

12.2 Developing for Graphical and GUI Emulation Environments 213

dspubb.book Page 213 Monday, May 13, 2002 8:57 AM
12.2 Developing for Graphical and GUI
Emulation Environments

GUI emulation is supported in 16-bit versions of Dialog System. For
information on creating screensets that are portable for GUI
emulation, see your 16-bit product documentation.

12.3 General Portability Guidelines
These guidelines are primarily for portability between graphical
interfaces. If your screenset is to be portable to a GUI emulation
environment, consider the guidelines given in the section Developing
for Graphical and GUI Emulation Environments in your 16-bit product
documentation.

• For cross-resolution portability, you should bear in mind that a
lower resolution environment cannot display the same amount of
information as a higher resolution environment. For example, you
can display more information on an XGA screen than you can on a
VGA screen. For this reason, you should define screensets on the
lowest resolution available. This way, you will avoid the possibility
of application windows being clipped by the right/bottom edges of
the screen.

Dialog System does however provide multiple resolution support
for run-time use. See the topics Calls to Dsgrun and The Call
Interface in the Help, and the chapter Advanced Topics.

• Be aware of the amount of screen space available. For example, a
43-line GUI emulation screen can hold more information than a
standard VGA resolution, but a 25-line screen cannot.

• Not all fonts are available in all environments. Only the default
font, the system monospaced font, and the system proportional
font are guaranteed to be available in all graphical environments.
(GUI emulation does not support multiple fonts; use system
monospaced font in this mode.)
Dialog System User’s Guide

214 Chapter 12 Migrating to Different Platforms

dspubb.book Page 214 Monday, May 13, 2002 8:57 AM
• System proportional fonts are different in different environments.
This affects both static text, and text defined within objects such as
buttons. Buttons are particularly important because initially they
are defined to fit the text inside them. This guarantees the visibility
of the button text, regardless of the environment in which the
buttons were created.

However, this does mean that the width of the buttons varies to
accommodate the text. This is why, for example, closely horizontally
spaced buttons under VGA can cause horizontal overlap when
viewed under XGA. Sizing a button will remove this feature and
avoid the overlap. However, the button text may be clipped.
Changing to a typeface with a particular point size (rather than
using the system proportional font) may help.

The default border of a default push button is drawn around the
defined area of the button. Some environments emphasize this
more than others. Again, the solution is simply to avoid close
spacing of objects.

• Use Fit-Text (on button properties dialog boxes) consistently. For
each button group, do not mix the use of Fit-Text. Select this
property for all buttons in the group, or for none of them.

For example, consider two push buttons containing identical text.
Both initially have Fit-Text selected. If you now de-select Fit-Text for
one of the buttons, you will not notice any difference in the size of
either button. They will both have the same dimensions. Now, if you
save this definition and load it on another environment, you will
almost certainly notice a difference in size. In fact, depending on
the text you have chosen, one button may actually clip the text.

• Portability of Fonts. Fonts that have been assigned style names are
portable among environments. Any font with a style name can be
remapped at run time to use a completely different font. To do this
mapping, Dialog System looks for a binary file containing mapping
information. This is the font side file. See the topic Font Side files in
the Help for more information.

• For portability to GUI emulation, select Emulation on the Alignment
dialog box. You can set this option as a default in ds.cfg. See the
topic Dialog System Overview in the Help.
Dialog System User’s Guide

12.4 Other Cross Environment Issues 215

dspubb.book Page 215 Monday, May 13, 2002 8:57 AM
12.4 Other Cross Environment Issues
If you are creating a screenset for use on all three graphical
environments, you should select Portability Warnings on the Options,
Include menu, so that you are aware of the implications when you
create particular types of objects.

When a warning is displayed, you can continue to create the object
that caused it (and ignore the warning), but if you intend to run the
screenset on the environment mentioned in the warning, the results
will not be as you intend. In most cases, you will be able to redesign
that part of the screenset to use objects that are supported on all the
target environments.

In particular, note the following:

• Clipped child windows cannot have menu bars under Windows.
Presentation Manager will allow this.

• Non-clipped windows will not be unshown when the parent
window is unshown under Windows. Write Dialog to take this into
account.

• Non-clipped windows should have a title bar under Windows.

• Center and Right justification is not available under Windows.

• Setting color on push buttons or scroll bars has no effect under
Windows.

• Under Windows, windows with title bars must have a border.

• Message boxes are always movable under Windows.

• Read-only multiple line entry fields are not supported under
Windows 3.0, but they are under Windows 3.1.

• Push buttons without borders are not supported under Windows.
Dialog System User’s Guide

216 Chapter 12 Migrating to Different Platforms

dspubb.book Page 216 Monday, May 13, 2002 8:57 AM
12.5 Backward Compatibility Issues
There are two issues here:

• Notebooks.

• Containers.

12.5.1 Notebooks
The tab control object replaces the notebook control object that was
available in previous versions of Dialog System. The functionality of the
tab control is similar to that of the notebook, but the following features
that were available with the notebook control are no longer available
with the tab control:

• Bindings.

The backpage intersection and binding properties of the notebook
are ignored.

• Minor tabs.

Minor tabs are converted into major tabs.

• Pages with no tabs.

All tab control pages have tabs.

• Tab text alignment.

The bitmaps and text displayed in tabs are always centered within
the tab.

• Tab shape.

The shape of tab control page tabs is fixed.

• Status line text.

Tab controls do not have status lines.

• Tab shape.

Tab control tabs are always rectangular.
Dialog System User’s Guide

12.5 Backward Compatibility Issues 217

dspubb.book Page 217 Monday, May 13, 2002 8:57 AM
In addition, the base release of Windows 95 does not support tab
orientation. However, an upgrade to the operating system is included
in Microsoft Internet Explorer 3.0 and later which provides this support.
Also, note that unlike with notebooks, display corruption may result if
the tab text or bitmap does not fit completely within the tab.

Dialog System will preserve the properties of notebook objects created
using previous versions of Dialog System. However, those properties
that are no longer supported cannot be edited from within the
definition software.

12.5.2 Containers
The container implementation in Dialog System uses a Windows
control called a List View. This control provides a subset of the
functionality that was available with the container object.

The main limitation of the List View control is that the first column in
the list view must contain only icons, and the remaining columns must
contain only text.

In addition, the following features of the container are no longer
supported:

• Overall title.

There is no overall title in a List View. If an overall title is specified,
it will be ignored.

• The formatting of the list view columns is defined by Windows.

All flags used to control the formatting of column headings or data
is ignored, including alignment, separator, and column width
settings.

• Delta events are not supported.

Setting of delta events will be ignored and no delta events will be
generated.

• Columns cannot be hidden once created.

The Sc and Hc functions of the Dscnr Dialog System extension have
no effect.
Dialog System User’s Guide

218 Chapter 12 Migrating to Different Platforms

dspubb.book Page 218 Monday, May 13, 2002 8:57 AM
• Fonts cannot be set.

If you intend to implement any new container objects in your
application, consider using the List View object in the GUI class library,
as it provides more control over the list view object.

12.6 Compatibility Chart
Environment:

Presentation
Manager

Windows GUI
Emulation

Windows NT
and 95
(16-bit)

Windows NT
and 95
(32-bit)

3-D objects x y x y y

Bitmaps y y y y y

Check box y y y y y

Color y(9) y(9) x y(9) y(9)

Container y y x y x(11)

Dialog box y y y y y

Entry field y y y y y

Group box y y y y y

Fonts y(8) y(8) x y(8) y(8)

Icon/Bitmapped buttons y y x y y

List box y y y y y

List view x x x x y

Menu bar y y y y y

Message box y y (4) y y (4) y (4)

Multiple line entry field y y (5) y y y

Primary window y (1) y (1) y (1) y (1) y (1)

Push button y y (6) y y (6) y (6)

Radio button y y y y y

Scroll bars y y y y y

Secondary window
(clipped)

y y (3) y y (3) y (3)
Dialog System User’s Guide

12.6 Compatibility Chart 219

dspubb.book Page 219 Monday, May 13, 2002 8:57 AM
Notes:

• System position has no effect.

• The following colors are common across all environments: Black,
Blue, Brown, Cyan, Green, Magenta, Red, White, Yellow.

Secondary window (not
clipped)

y y(2) y y (2) y (2)

Selection box y y y y y

Tab Control y y x y x(10)

Tab Control Page x x x x y(10)

Text y y y(7) y y

User control x x x x y

Environment:

Presentation
Manager

Windows GUI
Emulation

Windows NT
and 95
(16-bit)

Windows NT
and 95
(32-bit)
Dialog System User’s Guide

220 Chapter 12 Migrating to Different Platforms

dspubb.book Page 220 Monday, May 13, 2002 8:57 AM
Dialog System User’s Guide

221

dspubb.book Page 221 Monday, May 13, 2002 8:57 AM
13 Using Panels V2

Dialog System has Panels Version 2 (Panels V2) as its underlying
technology.

Using Panels V2 with Dialog System enables you to:

• Maintain finer control of objects than with Dialog System alone.

For example, using Panels V2 calls, you can switch off the System
Menu.

• Access Panels V2 features that Dialog System does not support.

For example, the rubber banding techniques that you see in the
Definition Facility software do not exist in Dialog System but are
available in Panels V2.

This chapter shows how you can enhance your Dialog System
application with Panels V2.

13.1 Calling Panels V2
The following fragment is an example of a Panels V2 call statement.

 call "PANELS2" using p2-parameter-block
 p2d-dialog-box-record
 new-title-buffer
 attribute-buffer

Panels V2 calls Pan2win, and Pan2win issues the appropriate Windows
API calls.

The set of functions that Panels V2 provides are the same regardless of
the environment you are using, assuming of course that the
environment supports the display feature.

Dialog System is based on this technology.
Dialog System User’s Guide

222 Chapter 13 Using Panels V2

dspubb.book Page 222 Monday, May 13, 2002 8:57 AM
13.2 Dialog System and Panels V2 Events
Figure 13-1 shows a typical Dialog System application that contains calls
to Panels V2.

Figure 13-1. Dialog System/Panels V2 Events

Notice how events are handled. There is no direct line for events
between Panels V2 and your application. When an event occurs, Panels
V2 detects the event and returns the event information through Dialog
System (Dsgrun). Dialog System then returns the event information to
your program through the Dialog System Event Block (dssysinf.cpy).
You must use dialog to determine if (and how) you want to handle the
event in Dialog System or your application.
Dialog System User’s Guide

13.3 Copyfiles 223

dspubb.book Page 223 Monday, May 13, 2002 8:57 AM
13.3 Copyfiles
You must include several copyfiles in the Working-Storage Section of
your program. For example:

 working-storage section.

 copy "ds-cntrl.mf".
 copy "clip.cpb".
 copy "pan2link.cpy".
 copy "dssysinf.cpy".

The first two you are already familiar with: the Dialog System Control
Block and the Data Block generated from your screenset. See the topic
The Call Interface in the Help for a description of these files.

The other two copyfiles are described in the next two sections.

13.3.1 Panels V2 Copyfile
(pan2link.cpy)
Your COBOL program also should contain the pan2link.cpy copyfile .

The file contains:

• Record definitions.

• Predefined level-78 parameter definitions.

• A Micro Focus key list.

Although this file is not absolutely necessary, the definitions in this file
greatly simplify the writing of the Panels V2 part of the application.

Browse this file to get an idea of the type of information it contains.
Dialog System User’s Guide

224 Chapter 13 Using Panels V2

dspubb.book Page 224 Monday, May 13, 2002 8:57 AM
13.3.2 Dialog System Event Block
(dssysinf.cpy)
This file contains the definitions of the Dialog System Event Block.
When an event occurs, information about the event is passed through
the Panels V2 Event Block back to Dialog System. (Refer to Figure 13-1.)
dssysinf.cpy is just a copy of the Panels V2 Event Block with extra fields
added on for Dialog System use.

 01 ds-event-block.
 78 ds-eb-start value next.
 03 ds-ancestor pic 9(9) comp-5.
 03 ds-descendant pic 9(9) comp-5.
 03 ds-screenset-id pic x(8).
 03 ds-event-screenset-details.
 05 ds-event-screenset-id pic x(8).
 05 ds-event-screenset-instance-no pic 9(2) comp-x.
 03 ds-event-reserved pic x(11).
 03 ds-event-type pic 9(4) comp-5.
 03 ds-event-data.
 05 ds-gadget-event-data.
 07 ds-gadget-type pic 9(2) comp-x.
 07 ds-gadget-command pic 9(2) comp-x.
 07 ds-gadget-id pic 9(4) comp-5.
 07 ds-gadget-return pic 9(4) comp-5.
 05 ds-mouse-event-data.
 07 ds-mouse-x pic s9(4) comp-5.
 07 ds-mouse-y pic s9(4) comp-5.
 07 ds-mouse-state pic 9(2) comp-x.
 07 ds-mouse-moved-flag pic 9(2) comp-x.
 07 ds-mouse-over pic 9(2) comp-x.
 07 filler pic x(3).
 78 ds-eb-size value next - ds-eb-start.

 05 ds-keyboard-event-data
 redefines ds-mouse-event-data.
 07 ds-char-1.
 09 ds-byte-1 pic 9(2) comp-x.
 07 ds-char-2.
 09 ds-byte-2 pic 9(2) comp-x.
 07 filler pic x(8).
 05 ds-window-event-data redefines ds-mouse-event-data.
 07 ds-window-x pic s9(9) comp-5.
 07 ds-window-y pic s9(9) comp-5.
 07 ds-window-command pic 9(2) comp-x.
 07 filler pic x.
Dialog System User’s Guide

13.4 Building a Dialog System/Panels V2 Application 225

dspubb.book Page 225 Monday, May 13, 2002 8:57 AM
The fields in dssysinf.cpy of particular interest are ds-descendant
and ds-ancestor. When Dialog System creates an object it gets back a
unique identifier for that object called a handle. If an event occurs on
that object, Panels V2 passes back to Dialog System the handle of the
object as well as the handle of the parent window of the object. These
two handles, ds-descendant and ds-ancestor, are filled whenever
an event occurs.

Note: The format of dssysinf.cpy has changed from Dialog System V2.1.
If you have any Dialog System V2.1 programs that used dssysinf.cpy,
you must re-compile them.

13.4 Building a Dialog System/Panels V2
Application

The steps you must follow in a Dialog System/Panels V2 application are:

• Establish cooperation between Dialog System and Panels V2.

• Identify the Dialog System objects to Panels V2.

• Perform Panels V2 functions.

To illustrate these steps, the following sections present a simple
example of a Panels V2 function that renames a push button. Although
a dialog function is available to do this (SET-OBJECT-LABEL), this
example illustrates the main features of the Panels V2 call interface.

13.4.1 Establishing Dialog System and
Panels V2 Communication

In your COBOL program, initialize Dialog System with a statement like:

call "dsgrun" using ds-control-block
 data-block
 ds-event-block
Dialog System User’s Guide

226 Chapter 13 Using Panels V2

dspubb.book Page 226 Monday, May 13, 2002 8:57 AM
One of the items returned by Dialog System is ds-session-id (this
item is stored in the Control Block). ds-session-id is the thread
identifier of the Dialog System session. For your application to
cooperate with Dialog System in its communication with Panels V2, you
must make this identifier known to Panels V2. Do this with a statement
like:

move ds-session-id to p2-mf-reserved

where p2-mf-reserved is a data item in the Panels V2 parameter
block.

This statement establishes the necessary communication link between
Dialog System and Panels V2. Now you can make direct Panels V2 calls.

13.4.2 Identifying Dialog System
Objects to Panels V2
The MOVE-OBJECT-HANDLE function lets you save the handle of an
object in a numeric data item in the Data Block. This ensures the same
objects are being referenced by both the Panels V2 and the Dialog
System parts of your application. As an example:

MOVE-OBJECT-HANDLE RENAME-PB PB-HAND
MOVE-OBJECT-HANDLE RENAME-WIN WIND-HAND

stores the handle of a push button named RENAME-PB in a numeric item
PB-HAND and the handle of the window named RENAME-WIN in WIND-
HAND. RENAME-WIN and WIND-HAND are defined in data definition as:

RENAME-HAND C 4.00
WIND-HAND C 4.00

Now your application (and hence Panels V2), has access to your Dialog
System objects.
Dialog System User’s Guide

13.4 Building a Dialog System/Panels V2 Application 227

dspubb.book Page 227 Monday, May 13, 2002 8:57 AM
13.4.3 Perform Panels V2 functions
This fragment shows the code necessary to change the title of a push
button.

 1 rename-button section.
 2
 3 initialize p2-parameter-block
 4 initialize p2g-button-record
 5 move 250 to p2g-button-text-length
 6 move pb-hand to p2-descendant
 7 move ds-session-id to p2-mf-reserved
 8 move pf-get-button-details to p2-function
 9 call "PANELS2" using p2-parameter-block
10 p2g-button-record
11 text-buffer
12 end-call
13 perform varying ndx1 from 30 by -1 until ndx1 = 1 or
14 rename-text(ndx1:1) not = " "
15 continue
16 end-perform
17 move ndx1 to p2g-button-text-length
18 move pf-set-button-details to p2-function
19 call "PANELS2" using p2-parameter-block
20 p2g-button-record
21 rename-text
22 end-call.

Line 1: rename-button section.

This section illustrates the Panels V2 call interface.

Lines 3-5: initialize p2-parameter-block
 initialize p2g-button-record
 move 250 to p2g-button-text-length

Initialize some Panels V2 parameters.

Line 6: move pb-hand to p2-descendant

pb-hand is the handle of the push button. This field is in the Data
Block.
Dialog System User’s Guide

228 Chapter 13 Using Panels V2

dspubb.book Page 228 Monday, May 13, 2002 8:57 AM
Line 7: move ds-session-id to p2-mf-reserved

ds-session-id is the thread identifier of the Dialog System session.
See the section Establishing Dialog System and Panels V2
Communication.

Line 8: move pf-get-button-details to p2-function

pf-get-button-details is a Panels V2 function to retrieve the details
of a push button. Because we are only interested in changing the title,
all the remaining features are the same.

Lines 9-12: call "PANELS2" using p2-parameter-block
 p2g-button-record
 text-buffer
 end-call

Panels V2 call statement.

Lines 13-16: perform varying ndx1 from 30 by -1 until ndx1 = 1 or
 rename-text(ndx1:1) not = " "
 continue
 end-perform

This perform clause removes trailing spaces from rename-text, which
contains the new name for the button.

Line 17: move ndx1 to p2g-button-text-length

After removing trailing spaces, ndx1 contains the actual length of the
name. p2g-button-text-length is the Panels V2 parameter that
contains the length of the title buffer.

Line 18: move pf-set-button-details to p2-function

This Panels V2 function changes the attributes of a push button.
Dialog System User’s Guide

13.5 Sample Program 229

dspubb.book Page 229 Monday, May 13, 2002 8:57 AM
Lines 19-22: call "PANELS2" using p2-parameter-block
 p2g-button-record
 rename-text
 end-call.

Another Panels V2 call.

Warning: Do not create or delete any objects with Panels V2. Dialog
System assumes it is in complete control. For example, if Panels V2
creates an object, the handle is never passed to Dialog System. As a
result, any events related to that object by-pass Dialog System.

13.5 Sample Program
Two more extensive applications illustrating the Dialog System/Panels
V2 interface are available in the demo directory. One, Clip, shows how
you can incorporate some basic Panels V2 clipboard read and write
functions into your Dialog System application. The other, Dsp2demo,
shows some clipboard functions, setting colors, and window scrolling.

13.6 Panels V2 User Events
You can generate and receive Panels V2 user events in Dialog System.
See the function descriptions for POST-USER-EVENT and GET-USER-
EVENT-DATA in the Help. The first 32,000 events are reserved for Micro
Focus use.
Dialog System User’s Guide

230 Chapter 13 Using Panels V2

dspubb.book Page 230 Monday, May 13, 2002 8:57 AM
Dialog System User’s Guide

231

dspubb.book Page 231 Monday, May 13, 2002 8:57 AM
14 Using the Client/Server
Binding

This chapter shows you how the Client/Server Binding works and then
describes how to connect your user programs to the generic
client/server modules.

14.1 Introduction
The Client/Server Binding enables you to implement a client/server
architecture with a Dialog System front end using the Micro Focus
Common Communications Interface component (CCI) "under the
covers". The Client/Server Binding removes the requirement for you to
include communications code in your application by providing two
modules called mfclient and mfserver. These are generic modules
which can be used to drive any application.

Based on information contained in a configuration file, the modules
manage the communication and transfer of data between themselves
and are able to interact with user-defined programs at each end of the
link to process this data. mfclient is called by a user client program
which handles the user interface, and mfserver calls a user server
program which handles data access and business logic. However, as
these user client and server programs are user-defined, they can do
anything you require.

The user programs must use the copyfile mfclisrv.cpy, described in the
section The mfclisrv.cpy Copyfile, to interact with the generic
client/server modules.

A sample two-tier application, based on the Dialog System CUSTOMER
demonstration, is available in the directory DialogSystem\demo\csbind
of your installation directory. This sample application demonstrates
how to use use the Client/Server Binding and is referred to throughout
this chapter. For more information on the sample application please
Dialog System User’s Guide

232 Chapter 14 Using the Client/Server Binding

dspubb.book Page 232 Monday, May 13, 2002 8:57 AM
see the file csbind.txt installed in the DialogSystem\demo\csbind
directory.

14.2 How the Client/Server Binding Works
This section illustrates how a two-tier application, created using the
Client/Server Binding works.

The Client/Server Binding works by having a non-dedicated copy of
mfserver running on the server tier; that is, mfserver communicates
with any and all clients using an agreed server name. This mfserver
module can be run with its built-in defaults since its only function is to
receive the starting and ending communications from the client.

This process is illustrated in the next diagram, Figure 14-1. The flow of
information illustrated in the diagram is explained below:

1 The user’s client program (custint) CALLs mfclient.

2 The first time mfclient is called, it reads configuration information
from the .cfg file.

3 mfserver receives the connection request.

4 mfserver spawns a secondary server for each client. The server name
is internally generated, based on the name of the initial server with
a numeric ID added (for example, mfserver01). Alternatively, you
can specify a name in the configuration file.

5 mfserver sends the secondary server name (mfserver01) back to
mfclient and terminates the conversation.

6 mfclient connects with the secondary server (mfserver01), passing
parameters obtained from the configuration file via the LNK-
PARAM-BLOCK. See the section The Client/Server Binding
Configuration File.

7 mfserver01 CALLs the user server program (custdata), passing the
parameters received from mfclient via the Linkage Section.

8 The first time the user server program (custdata) is called, it
performs any application initialization code and exits the program.
Control is returned to mfserver01.
Dialog System User’s Guide

14.2 How the Client/Server Binding Works 233

dspubb.book Page 233 Monday, May 13, 2002 8:57 AM
Figure 14-1. Client/Server Binding

9 mfserver01 returns control to mfclient.

10 mfclient ensures contact has been established and returns control
to the user client program (custint).

11 In the user client program (custint), data associated with the user
interface is mapped to areas assigned by mfclient within the
Linkage Section.

12 The user client program (custint) calls the user interface. up the
screenset and CALLs Dialog System.

13 The user enters input in the user interface (CUSTOMER).
Dialog System User’s Guide

234 Chapter 14 Using the Client/Server Binding

dspubb.book Page 234 Monday, May 13, 2002 8:57 AM
14 The user client program CALLs mfclient again to pass back the user-
entered data (for example a Customer Code) and any other
information required by the application server program (custdata)
via the Linkage Section.

15 mfclient passes the data to mfserver01 via its internal buffer.

16 mfserver01 CALLs the user server program (custdata).

17 The user server program (custdata) performs any appropriate data
access and business logic and returns the results to mfserver01 via
the Linkage Section.

18 mfserver01 returns control to mfclient.

19 mfclient passes the data back to the user client program (custint) via
the Linkage Section.

20 The user client program (custint) CALLs the user interface to display
data and accept any new user input.

Steps 14 thru 20 are repeated until the user exits the application.

21 mfclient informs the base server (mfserver), that the secondary
server (mfserver01) has terminated.

This use of initial and secondary servers resolves several issues:

• There is no need to have specific servers for different
applications. The secondary server is provided with relevant
details by the client from the client configuration file. Users can
still set up multiple servers, but there is no longer a requirement
to do so.

• There are no data access conflicts, as each user has his or her
own run unit which ensures that files are always in the same
state as when last accessed.

• In the event that a user makes a time-intensive request, only
that user will experience any delay. All other users will continue
to receive optimum responses. Processing time-intensive
requests can cause the client to lock up the interface. You can
deal with this in the following way:
Dialog System User’s Guide

14.3 Connecting Your Programs to the Generic Modules 235

dspubb.book Page 235 Monday, May 13, 2002 8:57 AM
You can issue an asynchronous request which returns a request
id to the program. You then make regular checks for the
completion of the request using the id which was returned. An
example of using asynchronous requests is given in the section
Connecting Your Client Program to mfclient.

14.3 Connecting Your Programs to the Generic
Modules

The following sections show you how to:

• Connect your user programs to the generic client and server
modules.

• Prepare the communications link.

14.3.1 Connecting Your Client
Application to mfclient
This section shows you how to connect your client program to the
mfclient module, which handles communications with the server. The
mfclient and mfserver modules pass information to each other via a
parameter block described in the mfclisrv.cpy copyfile.

The modules also use the same parameter block to pass information to
any user programs they have been requested to call in the
configuration files. For details on the LNK-PARAM-BLOCK, see the
section Connecting Your Server Application to mfserver.

To connect your client program calling the user interface, you must add
code to pass parameters to mfclient.

To use the Client/Server Binding, your client program will need to
include code similar to that below. This is an extract of the user
interface program (custint.cbl) supplied with Dialog System to
demonstrate how to use the Client/Server Binding.
Dialog System User’s Guide

236 Chapter 14 Using the Client/Server Binding

dspubb.book Page 236 Monday, May 13, 2002 8:57 AM
$SET ANS85
 WORKING-STORAGE SECTION.
 COPY "MFCLISRV.CPY".
 LINKAGE SECTION.
* The following two copyfiles are used by Dialog System
* user interfaces to communicate with the COBOL program
* which calls the interface
 COPY "DS-CNTRL.V1".
 COPY "CUSTOMER.CPB".
 PROCEDURE DIVISION.
 CLIENT-CONTROL SECTION.
 PERFORM UNTIL END-CONNECTION
 CALL LNK-CLIENT USING LNK-PARAM-BLOCK
 EVALUATE TRUE
 WHEN START-CONNECTION
 SET ADDRESS OF DS-CONTROL-BLOCK
 TO LNK-CBLOCK-PTR
 SET ADDRESS OF CUSTOMER-DATA-BLOCK
 TO LNK-DBLOCK-PTR
 PERFORM SETUP-SCRNSET
 PERFORM CALL-DIALOG-SYSTEM
 WHEN END-CONNECTION
 EXIT PERFORM
 WHEN OTHER
 PERFORM CALL-DIALOG-SYSTEM
 END-EVALUATE
 IF CUSTOMER-EXIT-FLG-TRUE
 SET CLIENT-ENDING TO TRUE
 END-IF
 END-PERFORM.
 CLIENT-CONTROL-END.
 STOP RUN.

You can add code to enable client counting, handle error message
displays yourself or handle asynchronous requests. For details, see the
sections Connecting Your Client Program to mfclient and Connecting
Your Server Program to mfserver.

14.3.2 Connecting Your Server
Application to mfserver

This section shows you how to connect your server program, which
performs data access and/or business logic, to the mfserver module
which handles communications with the client. The mfclient and
Dialog System User’s Guide

14.3 Connecting Your Programs to the Generic Modules 237

dspubb.book Page 237 Monday, May 13, 2002 8:57 AM
mfserver modules pass information to each other via a parameter
block described in the mfclisrv.cpy copyfile. The modules also use the
same parameter block to pass information to any user programs they
have been requested to call in the configuration files.

The following information does not apply if you are using an existing
application as your server program. For details on using the
Client/Server Binding in that way, see the section Running a
Client/Server Binding Application.

To use the Client/Server Binding:

• Your server program will need to include in the Linkage Section the
binding copyfile, mfclisrv.cpy, and any copyfiles required to pass
information between your client program and the user interface.

• Modify the Procedure Division header to include "LNK-PARAM-
BLOCK", which passes parameters from mfserver.

• Associate addresses passed by mfserver in the mfclisrv.cpy with the
copyfiles used by your user interface, in this example DS-CONTROL-
BLOCK and the SCREENSET-DATA-BLOCK are the data structures
defined in ds-cntrl.cpy and customer.cpb. For details on the
LNK-PARAM-BLOCK, see the section Connecting Your Server
Program to mfserver.

This is shown below in the code extract of the server program
(custdata.cbl) used to run the Client/Server Binding.

 LINKAGE SECTION.
 COPY "DS-CNTRL.V1".
 COPY "CUSTOMER.CPB".
 COPY "MFCLISRV.CPY".
 PROCEDURE DIVISION USING LNK-PARAM-BLOCK.
 CONTROLLING SECTION.
--
* ASSOCIATE THE DIALOG SYSTEM COPYBOOKS WITH AREAS RESERVED
* FOR THEM WITHIN LNK-PARAM-BLOCK
--
 SET ADDRESS OF DS-CONTROL-BLOCK TO LNK-CBLOCK-PTR.
 SET ADDRESS OF CUSTOMER-DATA-BLOCK TO LNK-DBLOCK-PTR.
 EVALUATE TRUE
 WHEN START-CONNECTION
 PERFORM PROGRAM-INITIALIZE
 WHEN OTHER
 PERFORM PROGRAM-BODY
 END-EVALUATE.
Dialog System User’s Guide

238 Chapter 14 Using the Client/Server Binding

dspubb.book Page 238 Monday, May 13, 2002 8:57 AM
 EXIT PROGRAM.
 PROGRAM-INITIALIZE SECTION.
 OPEN I-O CUSTOMER-FILE.
 PROGRAM-BODY SECTION.
 MOVE CUSTOMER-C-CODE TO FILE-C-CODE
 READ CUSTOMER-FILE

 PERFORM DERIVATIONS

You can add code to handle error message displays yourself. For details,
see the section Connecting Your Server Program to mfserver.

14.3.3 Preparing a Communications
Link
The Client/Server Binding controls the communications between your
client and server programs based on the contents of the configuration
file. That means there is no complicated communications programming
for you to do.

To run the demonstration, use the appropriate configuration (.cfg) file
unmodified. For your own application, you must copy and modify the
contents of one of these configuration files. The configuration file is an
ASCII text file containing parameters allowing you to specify key
information such as:

• The name of the user program to be called by mfserver.

• The maximum number of clients allowed to connect to the server.

For more details on using configuration files with the Client/Server
Binding, see the section The Client/Server Binding Configuration File.

Notes:

• This document assumes your communications link using CCI is
already correctly installed, configured and working on both your
client and server machines.

• You must use a network software vendor supported by Micro Focus
CCI. For full details on supported vendor’s software, see the product
description on the Micro Focus World-wide Web homepage, contact
Dialog System User’s Guide

14.4 Before Using the Client/Server Binding 239

dspubb.book Page 239 Monday, May 13, 2002 8:57 AM
your Sales representative or see the documentation supplied with
the Micro Focus software.

14.4 Before Using the Client/Server Binding
You can use the client/server binding with an existing standalone
application or an application architectured for client/server. For more
information on using existing standalone applications, see the section
Running a Client/Server Binding Application.

In either case, your application contains the following (examples of the
supplied Dialog System demonstration programs are shown):

You can use the client/server binding instead of creating your own
middleware code. For this, you need to:

• Create a configuration(.cfg) file to control the behavior of the
mfclient and mfserver modules and the communications
connection.

The configuration file is an ASCII text file containing parameters
allowing you to specify key information such as:

• Which communications protocol will be used.

• The name of the user program to be called by mfserver.

This configuration file format is described in detail in the section
The Client/Server Binding Configuration File. Sample configuration
files (custgui.cfg and customer.cfg) are provided with the
client/server binding demonstration programs.

Two-tier Demo
Program

Standalone Demo
Program

User Interface CUSTOMER.gs (GUI)

COBOL code to call the
interface

custint.cbl usexsrv.cbl

COBOL code to perform
data access and apply
business logic

custdata.cbl customer.cbl
Dialog System User’s Guide

240 Chapter 14 Using the Client/Server Binding

dspubb.book Page 240 Monday, May 13, 2002 8:57 AM
You can have separate configuration files for each application or
you can supply multiple entries in a single file. If using multiple
entries, each one must have its own tag name followed by the list of
parameters to which the tag relates. You also need to supply the tag
name to be used, by putting the relevant name in lnk-tagname in
your client interface program. This technique can be used to reduce
your command line length by specifying your multiple entries in a
file called mfclisrv.cfg for which the binding will search if no other
name is specified. This technique can also be used to allow you to
drive different applications from a single menu.

• Add code to your client program to call the mfclient module with
linkage parameters. This is explained in the section Connecting Your
Client Application to mfclient.

• Add code to your server program to enable it to be called with
linkage parameters from the mfserver module. This is explained in
the section Connecting Your Server Application to mfserver.

14.4.1 The mfclisrv.cpy Copyfile
The mfclient and mfserver modules pass information to each other via
the parameter block defined in the copyfile mfclisrv.cpy. For example,
the information includes addresses for the Dialog System
screensetdata-block and ds-control-block. The modules also
use this parameter block to pass information to any user programs they
have been requested to call in the configuration files. The mfclisrv.cpy
copyfile must be included in any of your COBOL programs which use the
mfclient and mfserver modules.

The mfclisrv.cpy copyfile is installed in the SOURCE directory of your Net
Express base installation directory.

14.4.2 The Client/Server Binding
Configuration File
This section describes the configuration file for the client/server binding.
This configuration file controls the behavior of the mfclient and
mfserver modules as well as the communications link.
Dialog System User’s Guide

14.4 Before Using the Client/Server Binding 241

dspubb.book Page 241 Monday, May 13, 2002 8:57 AM
You create one or more configuration files for your application. You
can have as many configuration files as your application requires, but
each file must have a .cfg extension. If you do not supply a
configuration filename yourself, the program will default to using the
name mfclisrv.cfg. You do not need a configuration file, but if you do
not supply one, the demonstration programs supplied with the
client/server binding are run by default.

If your client/server application is incorrectly set up, any invalid entries
found in the configuration file cause the programs reading them to
terminate with a message displayed on the screen detailing the invalid
entries.

These errors are also logged in the mfclisrv.log file, which is created in
the current directory, or in the directory indicated by the MFLOGDIR
environment variable. This enables a server which is not directly
connected to a terminal to log messages regarding problems it
encounters.

14.4.2.1 Possible Entries for the Configuration
File

Below are possible entries for the mfclisrv.cfg configuration file.
Entries are listed in alphabetical order. Any entries which you do not
specify in your configuration file will assume the default values.

**
* Micro Focus - Client/Server Module Configuration File
**

[mf-clisrv]

cblksize=nnnn PIC X(4) COMP-X [default:0]

Size of Dialog System control block.

clierrprog=xxxxxx PIC X(128) [default:none]

Name of program to handle communication errors instead of
mfclient. The name ’SAME’ will use the calling program to handle
any mfclient errors.
Dialog System User’s Guide

242 Chapter 14 Using the Client/Server Binding

dspubb.book Page 242 Monday, May 13, 2002 8:57 AM
commsapi=xxxx PIC X(4) [default:CCI]

API used for communications (CCI/NONE). The special entry ’NONE’
can be used when developing two tier applications to allow testing
to be undertaken on a single PC without any communications
products.

Data is passed directly between mfclient and the user server
program, bypassing mfserver and the communications requirement.

Note: This option cannot be used if an existing application is being
deployed as the user server program.

compress=nnn PIC 9(3) [default:000]

Compression routine indicator. The number indicates the name of
the compression routine to be used, that is, 001 uses the routine
CBLDC001. Zero indicates data compression will not be used.

dblksize=nnnn PIC X(4) COMP-X [default:0]

Size of the user data block. When using the binding modules with
Dialog System, this entry must match or be greater than the size of
the Data Block generated by Dialog System. If the data fields used
by the screenset are changed and the copyfile regenerated, change
this entry to reflect the size of the new Data Block. When using
multiple screensets, this entry should reflect the size of the largest
screenset Data Block.

Note: Unpredictable results can occur if this entry is less than the
actual size of the Data Block being used.

eblksize=nnnn PIC X(4) COMP-X [default:0]

Size of optional Dialog System Event block.

machinename= PIC X(34)

Name of the machine on which the server specified in the
servername entry is located. This prevents the system searching for
the first match of the defined name.

maxtrans=xxxx PIC 99 [default:0]

Maximum transfer package size in Kilobytes. If the total buffer size
exceeds this amount, the system will make multiple transfers of
’maxtrans’ size until the total buffer is transferred. The accepted
values are 1-62.
Dialog System User’s Guide

14.4 Before Using the Client/Server Binding 243

dspubb.book Page 243 Monday, May 13, 2002 8:57 AM
midconfig=xxxxx PIC X(128) [default:none]

Name of the configuration file to be used by mfclient when called
by mfserver as part of a cross-tier solution. Specifying this entry
causes mfserver to act as a router passing data to a local mfclient
module.

This mfclient module uses the configuration file to locate and
communicate with another server. This allows protocols and
communications API’s to be changed across the machines used.

protocol=xxxxxx PIC X(8) [default:CCITC32]

The CCI protocol to be used. This entry is applicable only if
commsapi is set to CCI. You can specify any of the supported CCI
protocols:

• Novel IPX (enter CCIIX32)

• NetBEUI (enter CCINB32)

• Dynamic Data Exchange (enter CCIDE32)

• TCP/IP (enter CCITC32)

If commsapi is set to CCI (the default setting) and you do not specify
a protocol, the client/server binding defaults to TCP/IP (CCITC32).

scrntype=xxxx PIC X(4) [default:none]

Required interface indicator when multiple types are supported,
that is, using the character control block to run both character and
GUI interfaces. scrntype is not validated by the client/server binding
modules

servername=xxx PIC X(14) [default:MFCLISRV]

Servername to be used for communications.

setenv=name value PIC X(148) [default:none]

Environment variable to be set on the server before the execution of
any server programs. The format is:

variable name PIC X(20) variable value PIC X(128)

The name and value fields must be separated by at least one space
and up to nine setenv entries can be specified.
Dialog System User’s Guide

244 Chapter 14 Using the Client/Server Binding

dspubb.book Page 244 Monday, May 13, 2002 8:57 AM
srvanim=x PIC X(16) [default:N]

Y or N. Setting this parameter to Y enables animation of the user
programs running on the server. This means that mfserver does not
have to be stopped and restarted with COBSW=+A as this is set up
dynamically.

On UNIX systems only, you can specify a value of x,filename to
enable cross-session animation of your programs. See the section
Animating your Application for more details.

srverrprog=xxxxxx PIC X(128) [default:none]

Name of program to handle communication errors instead of
mfserver. The name ’SAME’ will use the name set in the srvprog
entry for mfserver errors.

srvprog=xxxxxx PIC X(128) [default:custdata]

Name of user program to be called by mfserver.

srvtier=xxxxxx PIC X(128) [default:mfserver]

This holds the name of the server tier program. When specified, it
indicates that mfserver will be called by this program.

subserver=xxxx PIC X(14) [default:none]

Basename of the server to be used for communications after the first
contact with the main server instead of a name based on the initial
servername. For example, the default servername is MFCLISRV and
subservers will be named MFCLISRV00001, MFCLISRV00002..., but
setting and entry of say NEWSERV here would result in subservers
named NEWSERV00001, NEWSERV00002. This allows application
specific subserver names to be used without the need to change the
base server name.

timeout=nnnnn PIC X(4) COMP-5 [default: 120 secs)

Use to override the system timeout default. The timeout period is
specified in 1/10 (tenths) of a second. Previously issued calls retain
the timeout period that was in use when they were originally
invoked.

ublksize=nnnn PIC X(4) COMP-X [default:0]

Size of optional user Data Block.
Dialog System User’s Guide

14.4 Before Using the Client/Server Binding 245

dspubb.book Page 245 Monday, May 13, 2002 8:57 AM
14.4.2.2 Minimum Required Configuration File
Entries

The minimum number of entries required in the configuration files
varies depending on which of the following factors are being used:

• The application (for example Dialog System).

• The version of Dialog System (hence the size of the Dialog System
control block required).

• The functions of Dialog System (for example callouts).

• The number of servers.

• The communications protocol (for example CCITCP).

The following table shows the different entries needed for Dialog
applications which are and are not using an existing Dialog System
program as the server.

useraudit=x PIC X [default:N]

Toggle to control the logging of client connect and disconnect
details. When set, the following details are logged by both client
and server:

Date, Time, connect/disconnect indicator, Servername,
Machinename, and Protocol.

Not using a DS program as the
server

Using a DS program as the server

dblksize The size of the Data Block. The size of the Data Block.

srvprog The name of the program that
mfserver calls to perform the server-
side processing. This is the user
program on the server machine (that
is, the COBOL program performing
data access and business logic).
Dialog System User’s Guide

246 Chapter 14 Using the Client/Server Binding

dspubb.book Page 246 Monday, May 13, 2002 8:57 AM
When running multiple servers, you must supply the name of the server
to be used via the servername entry.

Any configuration file entries which are unset assume the specified
default values.

If you are not using TCP/IP, you must set the protocol entry.

14.4.2.3 Locating The Configuration File

You can specify where to locate the configuration file. The mfclient and
mfserver programs attempt to locate the configuration file in the
following ways:

1 They look for the MFCSCFG environment variable and use the
supplied filename if one is specified.

2 They examine the command line and use any filename defined
there in preference to that supplied via the MFCSCFG environment
variable.

3 If MFCSCFG is not set or contains no value, or if no filename has
been specified on the command line, the default name mfclisrv.cfg
is assumed and searched for in the current directory.

srvtier The name of the program that the base
server will spawn. By default, this is
mfserver, which should be changed only
if you wish to use an existing Dialog
System program as the server. This
existing program also contains the COBOL
code to perform data access and business
logic.

Cblksize The size of the Dialog System control
block (if you are not using the ds-
cntrl.r1 copybook).

The size of the Dialog System control
block (if you are not using the ds-cntr.r1
copybook).

Protocol The protocol to use. For example, CCITC32
for TCP.

Not using a DS program as the
server

Using a DS program as the server
Dialog System User’s Guide

14.5 Connecting Your Client Program to mfclient 247

dspubb.book Page 247 Monday, May 13, 2002 8:57 AM
4 If mfclisrv.cfg is not found, the default settings for the
configuration entries described earlier in this document will be
used.

In each case a full path of up to 128 characters can be used to identify
the location of the configuration file.

14.5 Connecting Your Client Program to
mfclient

In order to create programs using the client/server binding, add code
similar to that described below to your client and server programs, so
they can control the connection correctly. The amount of code required
is quite small. Comments have been included to help you understand
what the code is doing.

 WORKING-STORAGE SECTION.
 COPY "mfclisrv.cpy".

 LINKAGE SECTION.

 COPY "DS-CNTRL.V1".
 COPY "CUSTOMER.CPB".

 PROCEDURE DIVISION.
 Client-Control SECTION.

* The main loop is repeated until the connection with
* the server ends

 PERFORM UNTIL End-Connection

* ’lnk-client’ holds the name ’mfclient’
* The first time through we initialize the system and
* establish contact with the server.

 CALL lnk-client USING lnk-param-block

 EVALUATE TRUE
 WHEN start-connection

* Make the DS control block and the customer Data Block
Dialog System User’s Guide

248 Chapter 14 Using the Client/Server Binding

dspubb.book Page 248 Monday, May 13, 2002 8:57 AM
* accessible by assigning them address allocated by
* ’mfclient’.

 SET ADDRESS OF ds-control-block TO lnkcblock-ptr
 SET ADDRESS OF customer-data-block
 TO lnkdblock-ptr

* Having successfully established contact with the server,
* we complete local initialization and make the first call
* to Dialog System.

 PERFORM Setup-Scrnset
 PERFORM Call-Dialog-System
 WHEN end-connection
 EXIT PERFORM
 WHEN OTHER
 PERFORM Call-Dialog-System
 END-EVALUATE

* Check if the exit flag has been set by the user on the
* screen

 IF customer-exit-flg-true
 SET client-ending TO TRUE
 END-IF
 END-PERFORM
 STOP RUN.

Note: The client program has the Dialog System copybook in linkage
and maps it to an address provided by the binding. This copybook has
three other 01-level items which are not mapped. These are the Dialog
System version number and the Data Block version number. The reason
they are not mapped is that their values would not be picked up by
mapping, and it is the values they contain that we need. You can hard
code the Dialog System version number in the program, as this very
rarely changes. The Data Block version number, however, does change,
and putting a fixed value in your program means that you have to
remember to update it whenever the screenset is modified. To make
this easier, a support program used by the binding can extract the
screenset version number for you and allow you to set it dynamically. To
use this program, add the following items to working storage:

 01 ws-null PIC X(4) COMP-X.
 01 ws-scrnset-ver PIC X(4) COMP-X.
 01 ws-ret-stat PIC X COMP-X VALUE 0.

Dialog System User’s Guide

14.5 Connecting Your Client Program to mfclient 249

dspubb.book Page 249 Monday, May 13, 2002 8:57 AM
Add the following to the Procedure Division where the screenset
details are being set up. The screenset name being used must include
the correct extension. You would set ds-version-no to 3 for
extensions of .rs.

 MOVE "CUSTOMER.gs" TO ds-set-name
 MOVE 2 TO ds-version-no
 CALL "dsdblksz" USING
 ds-set-name
 ws-null
 ws-scrnset-ver
 ws-ret-stat
 END-CALL
 MOVE ws-scrnset-ver to ds-data-block-version-no

If you want to control the number of clients running an application, or
you choose to handle error message displays yourself, add code similar
to the following to your program’s initial EVALUATE statement.

 WHEN TOO-MANY-CLIENTS
 PERFORM OVER-CLIENT-LIMIT
 WHEN COMMS-ERROR
 PERFORM SHOW-ERROR
...

 OVER-CLIENT-LIMIT SECTION.
 DISPLAY SPACES AT 0101 WITH BACKGROUND-COLOR 7
 "MAXIMUM NUMBER OF CLIENTS EXCEEDED - SESSION ENDED"
 AT 1012 WITH FOREGROUND-COLOR 4
 SET CUSTOMER-EXIT-FLG-TRUE
 CLIENT-ENDING TO TRUE
 EXIT.

 SHOW-ERROR SECTION.
 DISPLAY LNK-ERROR-LOC AT 2201
 LNK-ERROR-MSG AT 2301 WITH SIZE LNK-ERROR-MSG-LEN.
 SHOW-ERROR-EXIT.
 EXIT.

If you want to handle asynchronous requests, add additional code
similar to the following to the EVALUATE statement:

 WHEN START-CONNECTION
 PERFORM GET-USER-INPUT
 IF MAKE-ASYNC-REQUEST <* USER ASYNCHRONOUS OPTION
 SET ASYNC-REQUEST TO TRUE
 END-IF
 WHEN ASYNC-OK
 SET TEST-ASYNC-RESULT TO TRUE
Dialog System User’s Guide

250 Chapter 14 Using the Client/Server Binding

dspubb.book Page 250 Monday, May 13, 2002 8:57 AM
 PERFORM DELAY-LOOP
 WHEN ASYNC-INCOMPLETE
 DISPLAY "REQUEST STILL BEING PROCESSED " AT 1010
 PERFORM DELAY-LOOP
 SET TEST-ASYNC-RESULT TO TRUE
 WHEN RESULT-OK
 DISPLAY "REQUEST COMPLETED " AT 1010
 PERFORM GET-USER-INPUT
 WHEN ASYNC-NOT-STARTED
 WHEN ASYNC-FAILED
 DISPLAY "ASYNCHRONOUS REQUEST FAILURE " AT 1010
 PERFORM SHOW-ERROR
 PERFORM GET-USER-INPUT
 WHEN COMMS-ERROR
 PERFORM SHOW-ERROR

14.6 Connecting your Server Program to
mfserver

 WORKING-STORAGE SECTION.

 LINKAGE SECTION.

 COPY "DS-CNTRL.V1".
 COPY "CUSTOMER.CPB".
 COPY "mfclisrv.cpy".

 PROCEDURE DIVISION USING lnk-param-block.
 Controlling SECTION.

* Associate the Dialog System copy books with their
* location within the CS binding parameter block

 SET ADDRESS OF ds-control-block TO lnk-cblock-ptr.
 SET ADDRESS OF customer-data-block TO lnk-dblock-ptr.
 EVALUATE TRUE
 WHEN start-connection
 PERFORM Program-Initialize
 WHEN customer-exit-flg-true
 PERFORM Program-Terminate
 WHEN OTHER
 PERFORM Program-Body
Dialog System User’s Guide

14.7 Running a Client/Server Binding Application 251

dspubb.book Page 251 Monday, May 13, 2002 8:57 AM
 END-EVALUATE.
 EXIT PROGRAM.

If you choose to handle error message displays yourself, add code
similar to the following to your program’s initial EVALUATE statement.

 WHEN COMMS-ERROR
 PERFORM SHOW-ERROR
 . . .
 SHOW-ERROR SECTION.
 DISPLAY LNK-ERROR-LOC AT 2201
 LNK-ERROR-MSG AT 2301
 WITH SIZE LNK-ERROR-MSG-LEN.
 SHOW-ERROR-EXIT.
 EXIT.

14.7 Running a Client/Server Binding
Application

The mfserver module is provided in .int code format so that it can be
run as it is, generated into .gnt code, or linked with other programs to
create executable modules (UNIX only).

The mfclient and mfserver modules are run as standard COBOL
programs, with both the client and server components started
manually.

When running an existing stand-alone program as a server, specify its
name, in the srvtier configuration entry, as the program which the
base server should run (srvtier). Communications are handled by a copy
of the mfserver module renamed dsgrun created as follows:

• For non-UNIX servers, you must copy the mfserver.int file to
DSGRUN.int.

• On UNIX, you can link the mfserver.int file to DSGRUN.int instead
of creating a separate program. On UNIX, you must also create a
cobconfig file containing the following entry:

set program_search_order=3
Dialog System User’s Guide

252 Chapter 14 Using the Client/Server Binding

dspubb.book Page 252 Monday, May 13, 2002 8:57 AM
and set the COBCONFIG environment variable to point to this file.
This ensures that the call to DSGRUN in the standalone application
will call the renamed mfserver module.

For details on the cobconfig file and environment variable, see your
UNIX COBOL documentation. For details on linking and building
executable modules, see the documentation for your chosen COBOL
development environment.

The main benefit of using an existing program as the server is that you
can have an application which runs on a single PC or a PC network, and
can be deployed as a client/server application simply by using the
binding and providing a single user interface program.

To run the client/server binding, first start the server program and then
start the client program.

The command line to start the server program on UNIX is:

cobrun mfserver [-b] [-p protocol] [-s server-name] [-v]

and on Windows and OS/2:

runw mfserver [-p protocol] [-s server-name] [-v]

where:

The command line to start the client program is:

runw program-name [config-filename]

where:

-b (UNIX only) allows you to run the server as a background process.
The command line should be terminated with the
ampersand (&) character. Any error messages
produced by the server are stored in the log file,
mfclisrv.log.

-p protocol specifies the communications protocol.

-s server-name indicates a server-name other than the default server-
name MFCLISRV.

-v displays the mfclient version number.

program-name Specifies the name of the user interface program.
Dialog System User’s Guide

14.8 Animating Your Application 253

dspubb.book Page 253 Monday, May 13, 2002 8:57 AM
For full details on running COBOL programs, see your COBOL system
documentation.

14.8 Animating Your Application
You can animate your client program using the standard animation
facilities of Net Express.

You can animate your server program by setting a configuration file
parameter, srvanim=y (see the section Possible Entries for the
Configuration File).

On PC servers, the Animator is started automatically when a client
connects to the server if srvanim=y is set.

On UNIX servers, the Animator is run on the terminal from which
mfserver was started, and so requires mfserver to be running in
foreground mode. This can cause problems as it is preferable to run
mfserver as a background process. A further restriction is that only one
user can animate through mfserver at any one time. These problems
can be avoided by setting srvanim=x,filename where filename is a file
created using the touch command. On the terminal that you want to
use to display Animator output, set COBANIM_2=animator and then
run the command:

anim filename

config-filename Specifies the name of the configuration file to be
used.

The client searches for its configuration file, using the
name specified by the MFCSCFG environment
variable, then using the name specified on the
command line. If neither exists, it searches for a
configuration file called mfclisrv.cfg (in this case, you
must have created a file of this name).

For further details on these and other configuration
file entries or full details on locating the
configuration file, see the section The Client/Server
Binding Configuration File.
Dialog System User’s Guide

254 Chapter 14 Using the Client/Server Binding

dspubb.book Page 254 Monday, May 13, 2002 8:57 AM
On the terminal that you want to use for your standard input and
output, run your application in the normal way, having added
srvanim=x,filename to your configuration file.

14.9 Managing the Server
The behavior of the server can be altered by running the program
mfcsmgr and passing it the required parameters and values. These
parameters can be divided into two groups:

• Location

The parameters in this group allow you to locate the target server,
and can have settings m, p, and s.

• Action.

These parameters control how the target server will be affected.
They can have settings a, c, o, r and t. Parameters o, r and t must be
specified singly as they generate an error message if combined with
any other parameters.

14.9.1 Shutting Down mfserver
The spawned servers are terminated by the client program when the
client makes a normal exit.

You must terminate the initial server program manually as it continues
to run even if it has no clients.

14.9.2 Managing Authorization
Passwords

To prevent accidental shutdown of an active server, it is possible to
assign a password to each server. This password must be supplied before
the server can be stopped or its parameters changed.
Dialog System User’s Guide

14.9 Managing the Server 255

dspubb.book Page 255 Monday, May 13, 2002 8:57 AM
14.9.3 Setting the Maximum Number
of Clients
The default number of clients the server can support is 65535, but you
can set a lower limit using one of the mfcsmgr functions. The number
you select is stored in the password file and will be used each time the
server is started.

14.9.4 Enabling Server Override

The server can support override options for the server-name, protocol
and machine-name. As the server does not use a configuration file, the
override parameters are supplied using the mfcsmgr program.

This generates a short exchange between the client and the server
which processes the selected function.

The mfcsmgr command line syntax for this is:

On Windows or OS/2 enter:

run mfcsmgr [-a] [-c nnnnn] [-d] [-i filename]
 [-m machine-name] [-p protocol]
 [-s server-name] [-o m,machinename]
 [-o p,protocol] [-o r]
 [-o s,servername] [-t] [-v]

or on UNIX enter:

cobrun mfcsmgr [-a] [-c nnnnn] [-d]
 [-i filename] [-m machine-name]
 [-p protocol] [-s server-name]
 [-o m,machinename] [-o p,protocol]
 [-o r] [-o s,servername] [-t] [-v]

where:

-a Changes the authorization password associated
with the target server.

-c nnnnn Sets the number of clients the server can support.

-d Deletes local override file when client exists.
Dialog System User’s Guide

256 Chapter 14 Using the Client/Server Binding

dspubb.book Page 256 Monday, May 13, 2002 8:57 AM
All the above flags can be specified with a - or /, and are not case
sensitive.

14.10 Advanced Topics
This section covers the following advanced topics:

• Creating audit trails.

• Overriding configuration file entries.

• Using the in-line configuration facility.

• Reduced data transfer facility.

• Server controlled file management facility.

-i filename Installs the specified file in the client’s local
directory when the client exists.

-m machine-name Specifies the machine-name on which the target
server is running. This is required if the same
server-name is used on more than one platform.

-p protocol Specifies the communications protocol (for
example CCITCP or CCITC32) being used.

-s server-name Indicates a server name other than the default
MFCLISRV.

-o m, machinename Specifies the machine-name on which the
overriding is running.

-o p, protocol Accesses the overriding server.

-o r Resets active override. Revert to original settings.

-o s, servername Overrides connections to the target server by
directing them to this server.

-t Terminates the server.

-v Displays the mfclient version number.
Dialog System User’s Guide

14.10 Advanced Topics 257

dspubb.book Page 257 Monday, May 13, 2002 8:57 AM
14.10.1 Creating Audit Trails
The client/server binding allows you to create an audit trail of dates
and times of clients connecting to servers. To enable this feature,
simply set the ’useraudit=y’ entry in your configuration file. This
information is created in the system log file described in the section
The System Error/Message Log.

14.10.2 Overriding Configuration File
Entries

In the start-up process for each client, the client/server:

1 Reads the configuration file.

2 Searches the client/server binding for a file called mfcsovrd.cfg in
the same location as the system log file. If the file is found, its
contents will override any parameters previously set up using the
configuration file.

The format of the override file is the same as the standard
configuration file, with the addition of the entry override-cntrl.
This entry is used to indicate the subject of the override and can be:

• A servername.

When using a servername, any clients using that server will
have their parameters modified by the contents of the override
file.

• A tagname.

If the entry is set to tagname, only clients using the selected
tagname will have their parameters changed.

The client override facility can be used, for example, if a server is
unavailable and applications need to be run on another machine. You
can change individual configuration files, but a single override file can
be used to re-route any number of applications.

The override facility can also be used on the server, but in this case the
server machine needs to be up and running. As before, either
servernames or tagnames can be overridden.
Dialog System User’s Guide

258 Chapter 14 Using the Client/Server Binding

dspubb.book Page 258 Monday, May 13, 2002 8:57 AM
An entry is added to the log file whenever an override file is detected
and all parameters which are subject to the override process are logged.

The following example shows how the override facility can be used to
re-route clients to another server:

[OVERRIDE-CNTRL]
OVERRIDE=SERVERNAME
[OLDSERVER]
SERVERNAME=NEWSERVER

In this example, the [override-cntrl] section specifies that the subject of
the override is a servername (override=servername) and then, under the
old servername ([oldserver]), the new servername
(servername=newserver) is specified. This results in the following log
file entries:

20/04/1997 11:01:02 Using Local File: mfcsovrd.cfg
Overriding Entries for Servername:OLDSERVER
servername=newserver
20/04/1997 11:01:02 Override Completed:

The following example shows how the override facility can be used to
override the server being used by all those clients which are using a
specified tag:

[OVERRIDE-CNTRL]
OVERRIDE=TAGNAME
[MF-CLISRV]
SERVERNAME=NEWSERV

In this example, the [override=cntrl] section specifies that the subject of
the override is a tagname (override=tagname) and then, under the
tagname ([mf-clisrv]), the parameter to be overridden (in this case the
servername) is specified (servername=newserv). This results in the
following log file entries:

20/04/1997 11:04:02 Using Local File: mfcsovrd.cfg
Overriding Entries for Tagname:MF-CLISRV
servername=newserver
20/04/1997 11:04:02 Override Completed:
Dialog System User’s Guide

14.10 Advanced Topics 259

dspubb.book Page 259 Monday, May 13, 2002 8:57 AM
14.10.3 Using the In-line Configuration
Facility
One of the most powerful features of the client/server binding is the
ability to control the communications requirements from configuration
files. This does however mean that end users can affect the way an
application runs by changing entries in these files. This may not be
desirable. It is possible to provide all the parameters to an application
in the client program. This means that the end user cannot alter the
way an application behaves because it no longer uses a configuration
file. Flexibility is maintained in that you still have no need to get into
detailed communications code: you simply supply the required
parameters within your client program.

The process is started by setting load-inlinecfg and completed by
setting end-inline-cfg in your mfclisrv.cpy copyfile in your client
program. Each parameter entry is loaded into the lnkerror-msg field
and mfclient is called to process it. The parameters have to be supplied
before the main processing loop is entered. See the example below.

 WORKING-STORAGE SECTION.

 01 ws-null PIC X(4) COMP-X.
 01 ws-scrnset-ver PIC X(4) COMP-X.
 01 ws-ret-stat PIC X COMP-X VALUE 0.

 COPY "mfclisrv.cpy".

 01 dialog-system PIC X(48).

 LINKAGE SECTION.

 COPY "DS-CNTRL.V1".
 COPY "CUSTOMER.CPB".

 PROCEDURE DIVISION.

 Client-Control SECTION.

 SET load-inline-cfg TO TRUE
 MOVE "clierrprog=same" TO lnk-error-msg
 CALL lnk-client USING lnk-param-block

 MOVE "srverrprog=same" TO lnk-error-msg
 CALL lnk-client USING lnk-param-block
Dialog System User’s Guide

260 Chapter 14 Using the Client/Server Binding

dspubb.book Page 260 Monday, May 13, 2002 8:57 AM
 MOVE "servername=mainserv" TO lnk-error-msg
 CALL lnk-client USING lnk-param-block

 SET end-inline-cfg TO TRUE

* The main loop is repeated until the connection with
* the server ends

 PERFORM UNTIL End-Connection

* ’lnk-client’ holds the name ’mfclient’
* The first time through we initialize the system and
* establish contact with the server.

 CALL lnk-client USING lnk-param-block

 EVALUATE TRUE
 WHEN start-connection

 The rest of the program is standard from this
 point onwards

It is also possible to combine an external configuration file with the
inline configuration facility. This is ideal because the end-user can
modify the system to his own requirements, but the final control
remains within the client program. The configuration file is processed
first, followed by the inline entries. This means that any unwanted
parameters supplied in the configuration file can be overridden by the
inline entry. In this case the process is started by setting use-
combined-cfg and completed as before by setting end-inline-cfg.

 WORKING-STORAGE SECTION.

 01 ws-null PIC X(4) COMP-X.
 01 ws-scrnset-ver PIC X(4) COMP-X.
 01 ws-ret-stat PIC X COMP-X VALUE 0.

 COPY "mfclisrv.cpy".

 01 dialog-system PIC X(48).

 LINKAGE SECTION.

 COPY "DS-CNTRL.V1".
 COPY "CUSTOMER.CPB".

Dialog System User’s Guide

14.10 Advanced Topics 261

dspubb.book Page 261 Monday, May 13, 2002 8:57 AM
 PROCEDURE DIVISION.
 Client-Control SECTION.

 SET use-combined-cfg TO TRUE
 CALL lnk-client USING lnk-param-block
 SET load-inline-cfg TO TRUE
 MOVE "servername=mainserv" TO lnk-error-msg
 CALL lnk-client USING lnk-param-block
 SET end-inline-cfg TO TRUE

* The main loop is repeated until the connection with
* the server ends

 PERFORM UNTIL End-Connection

* ’lnk-client’ holds the name ’mfclient’
* The first time through we initialize the system and
* establish contact with the server.

 CALL lnk-client USING lnk-param-block

 EVALUATE TRUE
 WHEN start-connection

 The rest of the program is standard from this
 point onwards

14.10.4 Reduced Data Transfer Facility
Reduced Data Transfer (RDT) provides a way for you to control the
amount of data being passed across the network and for you to limit
this data to the absolute minimum required to achieve the desired
result.

The client/server binding assigns a buffer large enough to hold the
Data Blocks defined in the configuration file. This buffer is transferred
back and forth whenever control is shifted between the client and
server programs. This can impose a load on the network which some
users may find unacceptable. Imagine you have a buffer of 24K which
contains a 22K record area. If the file which holds these records has a
10 byte key, you can see that sending the key from client to server uses
24K when only 10 bytes are actually required. In reality, you need one
or two bytes more than this, but it is much less than the size of the
entire buffer.
Dialog System User’s Guide

262 Chapter 14 Using the Client/Server Binding

dspubb.book Page 262 Monday, May 13, 2002 8:57 AM
RDT requires a control flag (use-rdt) and three parameters to be set in
mfclisrv.cpy in your client program:

For example, consider an application which allows you to ADD, DELETE
and LOAD customer details to and from an index file. The record key for
the customer details is a customer code. The application also has a
CLEAR option to clear all customer information from the interface. The
application is the customer example program installed with this
product. The code extract below is based on this example application,
and we are using the user-data-block area to hold the record key
which is six bytes long. The Data Block area (dblksize) used by the
application to pass the customer record details between the client and
the server is called customer-data-block. The data item customer-c-
code is a 6-byte data item within customer-data-block and is used
to store the record key.

On the client, the code would be similar to that shown below.

 EVALUATE TRUE
 WHEN customer-load-flg-true

lnk-usr-fcode User function indicator. Lets the user server program
know what to do with the data that has just arrived.

Lnk-usr-retcode Buffer start point. This indicates which of the four
data areas will be used as the start point for the
transfer:

1 Dialog System control block.

2 Data Block.

3 Dialog System event block.

4 User Data Block.

The numbers 11 through 14 can also be used and
indicate the same address areas but use data
compression on the transfer. Data compression must
have been enabled via a configuration file entry, or
the base (uncompressed) option will be used. A
value of zero results in nothing being transferred.
This allows you to have a NULL operation without
changing the flow of your code by adding various IF
statements. This is useful if you choose to process
certain functions locally in order to further reduce
network traffic.

Lnk-data-length The length of data to be transferred.
Dialog System User’s Guide

14.10 Advanced Topics 263

dspubb.book Page 263 Monday, May 13, 2002 8:57 AM
* User has entered customer code and selected the "LOAD"
* option on the interface to read and display the customer
* details relating to that code.

 MOVE customer-c-code TO user-data-block
 SET use-rdt TO TRUE
 MOVE 1 TO lnk-usr-fcode
 MOVE 4 TO lnk-usr-retcode
 MOVE 6 TO lnk-data-length

 WHEN customer-del-flg-true

* User has entered a customer code and selected the DELETE
* option to delete the customer record from the file.

 MOVE customer-c-code TO user-data-block
 SET use-rdt TO TRUE
 MOVE 2 TO lnk-usr-fcode
 MOVE 4 TO lnk-usr-retcode
 MOVE 6 TO lnk-data-length
 INITIALIZE customer-data-block

 WHEN customer-clr-flg-true

* User has selected the CLEAR option to clear the current
* customer details from the screen.

 SET use-rdt TO TRUE
 MOVE 0 TO lnk-usr-retcode
 INITIALIZE customer-data-block
 PERFORM Set-Up-For-Refresh-Screen
 END-EVALUATE

The CLEAR option uses a NULL operation because clearing the record is
done locally so there is no need to contact the server. Below is an
extract from the server program showing the code required to process
RDT. The client/server binding sets the flag "send-via-rdt" so you
can check the values of lnk-usr-fcode. On the server, the code
would be similar to that shown below.

 WHEN send-via-rdt
 EVALUATE lnk-usr-fcode
 WHEN 1

* For the LOAD function, the server program reads the
* customer details from the data file, and sends the data
* back to the client using the data area
* customer-data-block rather than using the RDT facility.
Dialog System User’s Guide

264 Chapter 14 Using the Client/Server Binding

dspubb.book Page 264 Monday, May 13, 2002 8:57 AM
* Unless the RDT flag is set, the client/server bindings
* will always pass the complete data area (defined by
* dblksize in the configuration file) between the client
* and the server.

 MOVE user-data-block TO customer-c-code
 SET customer-load-flg-true TO TRUE
 PERFORM... .rest of program... .

 WHEN 2
 MOVE user-data-block TO customer-c-code
 SET customer-del-flg-true TO TRUE
 PERFORM... .rest of program... .
 END-EVALUATE

14.10.5 Server Controlled File
Management Facility
One of the problems that accompanies any client/server solution,
especially as the number of clients increases, is the management of
client program updates and other changes.

The override facility (see the section Overriding Configuration File
Entries) enables you to re-route client applications while server
maintenance is carried out without having to change each client’s
configuration file entries. The override can be either local or remote,
but installing and removing a local override file on each client can be
time-consuming.

The mfcsmgr program enables you to install and delete override files on
the client using the -i and -d options respectively. See the section
Managing the Server. The install/delete is carried out as the client
program exits.

In fact, the -i option of the mfcsmgr program enables you to install any
type of file on the client system (in the client’s local directory). This
means that you can use it to install new screensets or program files,
enabling updates to be distributed from a central point. For security
reasons, the delete option has not been similarly enhanced: it will
delete an override file only; that is, a file called mfcsovrd.cfg.

Files to be installed using the -i option must be located on the server. If
the file is in the directory from which mfserver was started, you need
Dialog System User’s Guide

14.11 Running the Supplied Customer Example 265

dspubb.book Page 265 Monday, May 13, 2002 8:57 AM
only specify the filename. If it is anywhere else, you must supply a full
pathname in such a way that the filename can be extracted from the
path. For example, /u/live/update/newprog.int, d:\testprog.int and
$LIVE/newtest.int are all valid, but $newfile is not.

No programming changes are required to use these functions. A
message is displayed informing the client that a file is being transferred
and the details are recorded in the system log file.

14.11 Running the Supplied Customer
Example

See the file csbind.txt in the DialogSystem\demo\csbind directory for
instructions on how to run the Dialog System client/server binding
demonstration.

14.12 The System Error/Message Log
Both the client and server modules of the binding maintain a log of
errors and messages. All entries are date- and time-stamped and are
kept in a file called mfclisrv.log, which is written to the directory in
which the programs were started or to the directory named in the
MFLOGDIR environment variable. Check this log from time to time to
ensure that your system is performing correctly.

14.13 Client/Server Binding Limitations
The client/server binding imposes very few limitations, but you should
be aware of the following issues:

• You can run the client/server binding modules in .int or .gnt format
on Windows 95, Windows NT and UNIX platforms. In addition, on
Dialog System User’s Guide

266 Chapter 14 Using the Client/Server Binding

dspubb.book Page 266 Monday, May 13, 2002 8:57 AM
UNIX platforms, the client/server binding modules can be linked
with a user-written application program to create an executable
object.

• The number of clients that can be supported is not limited by the
client/server binding but may be limited by the capabilities of the
server, by the network protocol, or by the performance
requirements of your end users. On UNIX, for example, the limit is
set by the number of sub-processes that can be spawned by
mfserver. When a user logs onto a UNIX machine, he is assigned a
unique process-id which can support a limited number of sub-
processes. When clients connect via the client/server binding, they
all become sub-processes of the base server. Of course, you can get
around this limitation by altering the number of sub-processes
permitted, or by running multiple base servers. If your UNIX
machine is configured to support many hundreds of direct login
users, the client/server binding running on the same machine should
support the same number of clients once the sub-process limit issue
has been resolved.

• The client/server binding has no recovery facilities: if the network
goes down, data will be lost. Both ends of the connection will be
aware of the failure and the information will be logged but that is
all. The same is true of any RTS errors that cause termination of the
user programs at either end of a connection. The client/server
binding does not provide anything more than the standard RTS in
this regard.
Dialog System User’s Guide

267

dspubb.book Page 267 Monday, May 13, 2002 8:57 AM
15 Advanced Topics

This chapter introduces some of the more advanced system features
available with Dialog System.

Topics include:

• Running applications with multiple resolutions.

• How to interface to Dialog System and alternative error message
files.

• How to build an interface to a file selection facility.

• How to modify menu items at run time.

• More advanced ways to use the Call Interface.

• Adding Help.

15.1 Implementing Applications to Run on
Multiple Resolutions

When writing applications for production use on more than one
desktop resolution size, it is possible to implement COBOL program
and screenset changes which fully enable window, control and font
mapping support based on the current resolution. This section covers
the three areas that need to be implemented:

• Enabling the Screenset for multiple resolutions.

• Enabling font mapping.

• Setting the correct DSFNTENV environment variable using COBOL.
Dialog System User’s Guide

268 Chapter 15 Advanced Topics

dspubb.book Page 268 Monday, May 13, 2002 8:57 AM
15.1.1 Enabling the Screenset for
Multiple Resolutions
This feature is enabled by a CALLOUT to "dsrtcfg" with a flag of 9 and
an identifier that tells Dialog System what resolution the screenset was
DEFINED under.

The Dialog System run-time uses Panels V2 generic coordinates, which
provides a basis for cross-resolution support and compatibility with
differing graphics adapters. This results in differing coordinate values
for what otherwise appears to be the same resolution setting.

To check the identifier you need to supply for your definition platform,
a verification program is supplied with Dialog System: this displays a
message box detailing the resolution identifier you need to use to
implement the changes. This is executed as follows:

runw dsreschk

This program displays:

• The Panels V2 generic coordinates for the current resolution.

• A resolution identifier to be passed to the Dialog System run-time
call.

Code the following dialog in your SCREENSET-INITIALIZED or other
dialog table which will be executed before the windows creation:

CLEAR-CALLOUT-PARAMETERS $NULL

 CALLOUT-PARAMETER 1 CONFIG-FLAG $NULL
 CALLOUT-PARAMETER 2 CONFIG-VALUE $NULL
 MOVE 9 CONFIG-FLAG
 MOVE resolution id CONFIG-VALUE
 CALLOUT "dsrtcfg" 3 $PARMLIST

CONFIG-FLAG and CONFIG-VALUE should be C5 4 byte data fields.

Once implemented, all windows, dialog boxes and their child controls
will be resized in proportion to the current resolution. See the topic
Multiple Resolution and Dynamic Window Sizing in the Help.
Dialog System User’s Guide

15.1 Implementing Applications to Run on Multiple Resolutions 269

dspubb.book Page 269 Monday, May 13, 2002 8:57 AM
15.1.2 Enabling Font Mapping
In addition to enabling multiple resolution support in each of your
screensets, the objects you create need to be allocated a font style so
that their font used at run time may be adjusted depending upon the
resolution on which your production application runs.

When you specify a font using Fonts on the Edit menu, you can specify
both a typeface and a style name for that font. The style name is a
user-defined name that represents the specified typeface, pointsize
and attributes. This style name enables your fonts to be increased or
decreased in size appropriate to resolutions used at run time.

Select the font typeface, pointsize and attributes required, and enter
your required style name in the Selection box provided. For example,
My-Style.

Click Apply to apply the selected font style to the current object (or
group of objects).

When you specify a binary font side file (with a .dfb extension) using
Resource Files on the Options menu, Dialog System looks up the style
name in the binary font side file at run time and uses the details of that
font for the resolution platform in use. If the style is not found in the
side file, the default font is used.

Assume that you want to use a style created under 1024*768 resolution
and transfer that to the 640*480 resolution. You have specified a
binary font side file (with a .dfb extension) and saved the screenset.
When you save the screenset, a textual version of the font side file (.dft
file) is created (or appended to) and contains:

[NT]

FONT-RECORD
 STYLENAME My-Style
 ATTRIBUTES BITMAPPED, PROPORTIONAL
 POINTSIZE 12
 TYPEFACE "Roman"
END-RECORD

In order to transfer the screenset and binary font side file to the
production environment, you need to edit the .dft side file to
incorporate a new definition for running under each possible
resolution. The file now contains:
Dialog System User’s Guide

270 Chapter 15 Advanced Topics

dspubb.book Page 270 Monday, May 13, 2002 8:57 AM
[RESOLUTION1]
FONT-RECORD
 STYLENAME My-Style
 ATTRIBUTES BITMAPPED, PROPORTIONAL
 POINTSIZE 12
 TYPEFACE "Roman"
END-RECORD

[RESOLUTION2]
FONT-RECORD
 STYLENAME My-Style
 ATTRIBUTES BITMAPPED, PROPORTIONAL
 POINTSIZE 8
 TYPEFACE "Roman"
END-RECORD

Notes:

• The section marker NT has been altered to be appropriate to the
definition resolution.

• RESOLUTION2 was created by editing the file and reducing the
pointsize used.

Having added the new section marker and attributes, you need to
convert the side file to binary format:

run dsfntgen /t appstyle.dft /b appstyle.dfb /c

This creates the binary side file. Now you need to set the environment
variable:

set DSFNTENV=RESOLUTION2

Dialog System automatically selects the new font attributes for that
font style definition. DSFNTENV is set to RESOLUTION2 under 640*480
resolutions where smaller fonts are required as there is less available
display space.

If DSFNTENV is not set, then no mapping is performed and the default
values, stored in the screenset, are used. Provided your screensets are
consistent in use of style names you can use just one font side file for
applications consisting of many screensets.
Dialog System User’s Guide

15.1 Implementing Applications to Run on Multiple Resolutions 271

dspubb.book Page 271 Monday, May 13, 2002 8:57 AM
15.1.3 Setting the DSFNTENV
Environment Variable Using COBOL
You can place the setting of the required DSFNTENV environment
variable under control of your COBOL program. This section explains
how this is achieved, but you first need to determine the resolution
that the application is currently running in.

Do this by using the following code:

* Determine resolution & set DSFNTENV accordingly
 MOVE LOW-VALUES TO P2I-Initialization-Record
 MOVE P2I-Current-Environment TO P2I-Environment
 MOVE 0 TO P2I-Name-Length
 MOVE Pf-Initialize TO P2-Function
 CALL "PANELS2" USING P2-Parameter-block
 P2I-Initialization-Record
 END-CALL
 IF P2-Status NOT = 0
 DISPLAY "Warning: Unable to start PANELS2. " &
 "Error No = "
 P2-STATUS
 STOP RUN
 END-IF.

You should include the copyfiles pan2link.cpy, and pan2err.cpy in your
program’s Working-Storage section to obtain the required variables
and Panels V2 interface record.

You can then test the values returned in P2I-Screen-Width and P2I-
Screen-Height, and using the following code and COBOL reserved
words, set the environment variable to point to the font side file
section marker required.

 IF P2I-Screen-width = 640
 AND P2I-Screen-Height = 480
 DISPLAY "DSFNTENV" UPON ENVIRONMENT-NAME
 DISPLAY "RESOLUTION2" UPON ENVIRONMENT-VALUE
 END-IF
 IF P2I-Screen-width = 1024
 AND P2I-Screen-Height = 768
 DISPLAY "DSFNTENV" UPON ENVIRONMENT-NAME
 DISPLAY "RESOLUTION1" UPON ENVIRONMENT-VALUE
 END-IF
Dialog System User’s Guide

272 Chapter 15 Advanced Topics

dspubb.book Page 272 Monday, May 13, 2002 8:57 AM
This environment variable should be established before your first call to
Dialog System and will remain in existence until termination of the
COBOL run unit.

It is possible to refine targeted production platform resolutions further
(for example, 800*600 - Large fonts) by adding the following code
BEFORE the call to Panels V2:

ADD P2I-Generic-Coordinates TO P2I-Environment

This will alter the returned coordinates to be in line with the values
returned by the DSRESCHK program. You then need to adjust your
subsequent IF statements to reflect the supported production
resolutions.

You have now implemented multiple resolution support in your
screenset, enabled all screenset object fonts to be remapped at run
time, and established the correct environment variable according to the
current production resolution platform.

Provided the layout of your windows has been well designed, your
screenset should now be fully portable across different resolutions.

15.2 Using the Dialog System Error Message
File Handler

Your calling program can display error messages using the Dialog
System error message file handler and its display capabilities. You might
want to do this if you need to perform some complex validation that
Dialog System is not designed to perform.

The error message is stored in an error message file as normal. The
simplest method is to use the error message file that the screenset is
using. Alternatively, you can use one or more other error message files,
but you must explicitly open and close them.

To use the Dialog System error message file handler at run time, your
program needs to:

• Ensure that the error file has been opened.
Dialog System User’s Guide

15.2 Using the Dialog System Error Message File Handler 273

dspubb.book Page 273 Monday, May 13, 2002 8:57 AM
• Extract the error message.

• Pass the error message to Dialog System with instructions to display
it.

This fragment of code illustrates the procedures:

 1 working-storage section.
 2 ...
 3 01 error-file-linkage.
 4 03 short-file-name pic x(8).
 5 03 file-access pic xx.
 6 03 filler pic x(6).
 7 03 errhan-code pic xx.
 8
 9 01 error-file-data.
10 03 error-record-number pic 9(4) comp.
11 03 error-record-contents pic x(76).
12 ...
13 procedure division.
14 ...
15 initialize ds-control-block
16 initialize data-block
17 move "N" to ds-control
18 move data-block-version-no to ds-data-block-version-no
19 move version-no to ds-version-no
20 move "custom" to ds-set-name
21 call "dsgrun" using ds-control-block
22 data-block
23 ...
24 move "E" to ds-control
25 call "dsgrun" using ds-control-block
26 data-block
27 ...
28 move "CUSTERR" to short-file-name
29 move "R" to file-access
30 move 101 to error-record-number
31 call "dserrhan" using error-file-linkage
32 error-file-data
33 ...

Lines 3-11: 01 error-file-linkage.
 03 short-file-name pic x(8).
 03 file-access pic xx.
 03 filler pic x(6).
 03 errhan-code pic xx.

 01 error-file-data.
Dialog System User’s Guide

274 Chapter 15 Advanced Topics

dspubb.book Page 274 Monday, May 13, 2002 8:57 AM
 03 error-record-number pic 9(4) comp.
 03 error-record-contents pic x(76).

You need to define these records in the Working-Storage Section.

Lines 15-22: initialize ds-control-block
 initialize data-block
 move "N" to ds-control
 move data-block-version-no to ds-data-block-version-no
 move version-no to ds-version-no
 move "custom" to ds-set-name
 call "dsgrun" using ds-control-block
 data-block

Initial call to Dialog System.

Lines 24-26: move "E" to ds-control
 call "dsgrun" using ds-control-block
 data-block

If you intend to use the error message file the screenset uses, you must
make sure that it is open by calling Dialog System in the normal way,
but with the parameter "E" in ds-control. Dialog System immediately
returns control to the program having opened the file and replaces the
parameter "C" (ds-continue) in ds-control.

ds-err-file-open is a pre-defined value for ds-control. It is
defined in the Control Block as:

 05 ds-err-file-open pic x value "E".

Thus, an alternative to line 24 is:

 move ds-err-file-open to ds-control

Line 28: move "custerr" to short-file-name

Moves the name of the error file (not including the extension .err) to
the data item short-file-name.

Line 29: move "R" to file-access

"R" is for Read.
Dialog System User’s Guide

15.2 Using the Dialog System Error Message File Handler 275

dspubb.book Page 275 Monday, May 13, 2002 8:57 AM
Line 30: move 101 to error-record-number

Moves the number of the error message you want to display.

Lines 31-32: call"dserrhan" using error-file-linkage
 error-file-data

This call reads the error message file. If the call is successful, it returns
with errhan-code equal to "OK" and the error message in error-
record-contents. If the file is not found, the value "NF" (Not Found)
is placed in errhan-code. If the file is in use or if you tried to open
more than 16 files, the value "FU" (File in Use) is placed in errhan-
code. You do not need to close the error file because Dialog System
does this automatically.

You now need to put the error message in a data item in the Data
Block so Dialog System can display it. One way to do this is to set up a
procedure that displays a message box, using the data item as its
argument, then call Dialog System requesting that procedure.

For example, if you have a message box named ERR-DISPLAY-MB,
define a procedure with the following dialog:

 DISPLAY-ERR-MSG
 INVOKE-MESSAGE-BOX ERR-DISPLAY-MB ERR-MSG-EF $REGISTER

Then in your program, request this procedure when you return to
Dialog System with a statement such as:

 move "display-err-msg" to ds-procedure

where display-err-msg is the name of the procedure and ds-
procedure is a data item in the Control Block. On entry to Dialog
System, this procedure is executed.

15.2.1 Using an Alternative Error
Message File
To use an error message file other than the one specified by your
screenset, at run time your program needs to:

• Open the error file.

• Extract the error message.
Dialog System User’s Guide

276 Chapter 15 Advanced Topics

dspubb.book Page 276 Monday, May 13, 2002 8:57 AM
• Pass the error message to the Dialog System run-time system with
instructions to display it.

• Ensure that any error files not in use by the screenset are closed.

The only difference between using an alternative message file and the
Dialog System error message file is that you must explicitly open and
close the alternative file.

The following fragment of code illustrates the procedures:

 1 working-storage section.
 2 ...
 3 01 error-file-linkage.
 4 03 short-file-name pic x(8).
 5 03 file-access pic xx.
 6 03 filler pic x(6).
 7 03 errhan-code pic xx.
 8
 9 01 error-file-data.
10 03 error-record-number pic 9(4) comp.
11 03 error-record-contents pic x(76).
12 ...
13 procedure division.
14 ...
15 move "ALTERR" to short-file-name
16 move "NI" to file-access
17 move "C:\CUST\ALTERR.ERR" to error-file-data
18 call "dserrhan" using error-file-linkage
19 error-file-data
20 ...
21 move "ALTERR" to short-file-name
22 move "R" to file-access
23 move 101 to error-record-number
24 call "dserrhan" using error-file-linkage
25 error-file-data
26 ...
27 move "ALTERR" to short-file-name
28 move "NC to file-access
29 call "dserrhan" using error-file-linkage
30 error-file-data
31 ...

Lines 3-11: 01 error-file-linkage.
 03 short-file-name pic x(8).
 03 file-access pic xx.
 03 filler pic x(6).
 03 errhan-code pic xx.
Dialog System User’s Guide

15.2 Using the Dialog System Error Message File Handler 277

dspubb.book Page 277 Monday, May 13, 2002 8:57 AM
 01 error-file-data.
 03 error-record-number pic 9(4) comp.
 03 error-record-contents pic x(76).

Again, you need to define these records in the Working-Storage
Section.

Line 15: move "ALTERR" to short-file-name

Identifies the alternative file.

Line 16: move "NI" to file-access

"NI" is the file access code to open a new file .

Line 17: move "C:\CUST\ALTERR.ERR" to error-file-data

Specifies the path and name of the error file to be opened.

Lines 18-19: call "dserrhan" using error-file-linkage
 error-file-data

Reads the error file with the call statement. If the call is successful, it
returns with errhan-code equal to "OK" and the error message in
error-record-contents. If the call is unsuccessful, errhan-code is "NF"
for Not Found. If the file is already open or you try to open more than
16 files, errhan-code is "FU" for "File in Use".

Line 27: move "ALTERR" to short-file-name

Specifies the file to close.

Line 28: move "NC to file-access

"NC" is the close file code.

Lines 29-30: call "dserrhan" using error-file-linkage
 error-file-data

This call closes the file. errhan closes the file and returns to the
program.

You now need to display the error message. Refer to the section Using
the Dialog System Error Message File Handlerabove for a method to do
this.
Dialog System User’s Guide

278 Chapter 15 Advanced Topics

dspubb.book Page 278 Monday, May 13, 2002 8:57 AM
15.3 Building an Interface to a File Selection
Facility

When the user needs to enter the name of a file, it is useful to provide a
prompt that displays the files currently available on the system. The user
can then browse around the drives and directories on his system and
select an existing filename or enter the name of a new one.

For example, Dialog System uses this file selection facility when you
generate a copybook for a screenset and specify the filename to use.

This section describes how to provide this facility from your Dialog
System applications using the Dsdir Dialog System extension. Dialog
System Extensions (DSX) is the term given to dialog functions
implemented by using the CALLOUT dialog function. Dialog System
extensions are supplied to enable you to perform many regular
programming tasks, such as calling on-line help or providing a file
selection facility. For more information about Dialog System extensions,
see the topic Dialog System Extensions in the Help.

15.3.1 The Dirdemo Sample Screenset
A sample application, Dirdemo, illustrates how you can use the Dsdir
Dialog System extension in your applications. You can run the
application to see the facilities that are available with the Dsdir Dialog
System extension.

You can run the Dirdemo sample directly from the Dialog System
definition software. There is no COBOL program with this sample. Load
the screenset dirdemo.gs and run it through the Screenset Animator.
For information on running a screenset, see the chapter Using the
Screenset. Alternatively, you can run the Dirdemo sample using
Dsrunner. See the chapter Multiple Screensets for more information on
Dsrunner.

The program displays two prompts:

• A filename.

If you enter text into the filename field, initially only files matching
that filename are displayed. You can include the "*" and "?"
Dialog System User’s Guide

15.3 Building an Interface to a File Selection Facility 279

dspubb.book Page 279 Monday, May 13, 2002 8:57 AM
wildcard characters in the filename. For example, enter *.gs to see
a list of all Dialog System screensets. If you leave this field blank, a
default of *.* is provided.

• A window title.

The contents of the window title field are displayed as the title of
the file selection facility. For more information, see the description
of Dsdir in the topic Dialog System Extensions in the Help.

To use the file selection facility window select one of the options on
the pulldown menu:

None of the options in this menu actually opens a file. Once the user
has selected a file, you can decide which function to use.

15.3.2 The Dirdemo Data Block
To call the Dsdir Dialog System extension, you must define the
following in the screenset’s Data Block, in addition to any other data
that the screenset uses:

DSDIR-PARAMS 1
 DSDIR-FUNCTION X 4.0
 DSDIR-RETURN-CODE C 2.0
 DSDIR-FILENAME X 256.0

To set your own title for the file selector window, you also need to add
the following to the screenset’s Data Block:

DSDIR-PARAMS2
 DSDIR-TITLE X 256.0

These fields are described in the section about the Dsdir Dialog System
extension in the topic Dialog System Extensions in the Help.

Open Select a file to be opened. The user can select only a file
that already exists.

Save Select a file to be saved. The user can select any file that
already exists (or supply the name of a new file).

Check Check whether or not the file entered in the filename field
actually exists. When this function is selected, wildcard
characters are not accepted in the filename field.

Exit Exit.
Dialog System User’s Guide

280 Chapter 15 Advanced Topics

dspubb.book Page 280 Monday, May 13, 2002 8:57 AM
15.3.3 The Dirdemo Dialog
The Dirdemo sample calls the Dsdir Dialog System extension whenever a
file is required to be selected.

The dialog (attached to the main window) to do this is:

1 DO-DSDIR-CALL
2 CLEAR-CALLOUT-PARAMETERS $NULL
3 CALLOUT-PARAMETER 1 DSDIR-PARAMS $NULL
4 CALLOUT-PARAMETER 2 DSDIR-PARAMS2 $NULL
5 CALLOUT "Dsdir" 0 $PARMLIST
6 ...
17 @OPEN-PD
18 MOVE "open" DSDIR-FUNCTION(1)
19 EXECUTE-PROCEDURE DO-DSDIR-CALL
20 @SAVE-PD
21 MOVE "save" DSDIR-FUNCTION(1)
22 EXECUTE-PROCEDURE DO-DSDIR-CALL
23 @CHECK-PD
24 MOVE "chek" DSDIR-FUNCTION(1)
25 EXECUTE-PROCEDURE DO-DSDIR-CALL

Line 1: DO-DSDIR-CALL

This procedure makes the call to the Dsdir Dialog System extension.

Lines 2-4: CLEAR-CALLOUT-PARAMETERS $NULL
 CALLOUT-PARAMETER 1 DSDIR-PARAMS $NULL
 CALLOUT-PARAMETER 2 DSDIR-PARAMS2 $NULL

Defines the parameters required for the CALLOUT. Because more than
one parameter is required when the file selector window title is
specified, all the parameters must be defined before you make the
CALLOUT. The CLEAR-CALLOUT-PARAMETERS function is used to ensure
that any previously defined parameters are removed before the new
parameters are defined.

Line 5: CALLOUT "Dsdir" 0 $PARMLIST

This line calls the Dialog System extension using the previously defined
parameters. The file selector window is displayed, and the user can
select a file. When the user has selected a file, or cancelled the file
selection, control is returned to your screenset.
Dialog System User’s Guide

15.4 Modifying Menu Items at Run Time 281

dspubb.book Page 281 Monday, May 13, 2002 8:57 AM
Line 17: @OPEN-PD

The user selected the Open option on the pulldown menu.

Line 18: MOVE "open" DSDIR-FUNCTION(1)

This line sets up the parameter that tells the Dialog System extension to
allow the user to select a file to open. In this mode, the user can only
select files that already exist.

Line 19: EXECUTE-PROCEDURE DO-DSDIR-CALL

Carries out the procedure that calls the Dialog System extension.

Lines 20-22: @SAVE-PD
 MOVE "save" DSDIR-FUNCTION(1)
 EXECUTE-PROCEDURE DO-DSDIR-CALL

The user selected the Save option on the pulldown menu. In save
mode, the user can select any file, or specify the name of a new file.

Lines 23-25: @CHECK-PD
 MOVE "chek" DSDIR-FUNCTION(1)
 EXECUTE-PROCEDURE DO-DSDIR-CALL

The user selected the Check option on the pulldown menu. The chek
function requests the Dialog System extension to check for the
existence of the supplied filename. The file selector window is not
displayed.

15.4 Modifying Menu Items at Run Time
As well as defining menu items at definition time, you can define
dialog to add, delete, or change menu items at run time. For example,
you can add a list of recently opened files to your menu, or a list of
open windows in a Multiple Document Interface (MDI) application.

All the options for defining a menu bar at definition time can also be
used at run time, except that you can only add new items to an existing
menu bar, and you cannot add menu choices to context menus.
Dialog System User’s Guide

282 Chapter 15 Advanced Topics

dspubb.book Page 282 Monday, May 13, 2002 8:57 AM
You add menu choices to a menu bar using the ADD-MENU-CHOICE
dialog function. One of the parameters for this function is a text string
that specifies all the options for the menu item. The following example
shows all the options specified in their correct places, although in
practice, you should never define a menu item like this:

GET-MENU-CHOICE-REFERENCE MAINWIN EDITMENU PARENT-REF
ADD-MENU-CHOICE PARENT-REF "~item>" $EVENT-DATA
GET-MENU-CHOICE-REFERENCE MAINWIN $EVENT-DATA PARENT-REF
ADD-MENU-CHOICE PARENT-REF "*~choice@item&ctrl+c" $EVENT-DATA

Where:

PARENT-REF This parameter specifies which menu (or sub-menu) this
new item will be added to. The value of this parameter
must be obtained using the GET-MENU-CHOICE-
REFERENCE function. The value can never be zero.

* The asterisk causes the menu item to be created with
the checkmark type set to off (the default is none). The
asterisk must appear as the first character of the text
parameter, otherwise it will be assumed to be part of
the menu text. If you intend the asterisk to be part of
the menu text, add a space before it.

~ The tilde causes the next character to be defined as the
mnemonic character for the menu choice. You are not
warned if you define menu choices with duplicate
mnemonic characters (unlike when defining a menu
choice at definition time). The tilde character can
appear anywhere in the choice text.

> The greater than symbol, if it appears as the last
character of the text parameter, signifies that when the
menu item is selected, a submenu of choices is to be
displayed. If you specify that a menu choice is to display
a submenu, the checkmark state and shortcut key
settings are ignored.

choice The text up to the @ (at) defines the text that is
displayed in the menu bar (the choice text).
Dialog System User’s Guide

15.5 Using the Call Interface 283

dspubb.book Page 283 Monday, May 13, 2002 8:57 AM
When you create a menu bar item using this function, the ID of the
created menu bar item is returned. You can then use this ID with
functions such as DISABLE-MENU-CHOICE to manipulate the menu item
further.

You can delete menu items using the DELETE-MENU-CHOICE function.
The items that you delete can be menu items defined in menu bar
definition, or menu items added using the ADD-MENU-CHOICE
function.

Also, you can update the text of menu items by using the UPDATE-
MENU-TEXT function.

See the relevant functions in the Help for more details, including
examples of using the functions.

15.5 Using the Call Interface
The Dialog System call interface can be used by your calling program to
provide more sophisticated ways of using Dialog System. For example:

• You can use multiple screensets.

• You can use multiple instances of the same screenset.

@item The ’@’ signifies that the next text (up to the next @,
space, & or >) is the name of the menu item. Normal
Dialog System object naming rules apply to the menu
item name. If there is a procedure defined in the
screenset with the same name as the menu item,
selecting the menu item causes the procedure with that
name to be executed. The menu item name is optional.

&ctrl+c The ampersand signifies that the next text (up to the
next @, space, & or >) is the shortcut key for the menu
item. You can specify the shortcut key either in the
format you use when you define a menu choice in
menu bar definition (such as CTC), or in the format that
the shortcut key will be displayed on screen (for
example, Ctrl+C).
Dialog System User’s Guide

284 Chapter 15 Advanced Topics

dspubb.book Page 284 Monday, May 13, 2002 8:57 AM
Using these features, you can divide your user interface into logical
components that are used as required, use multiple copies of the same
screenset, and group all your error messages into a single file. See the
chapter Using the Screenset for details.

15.6 Adding Help
This section discusses the Helpdemo screenset in detail. The Helpdemo
screenset:

• Is located in DialogSystem\demo\helpdemo.

• Uses the Dsonline Dialog System extension - the Dialog System
extension that displays Windows help.

• Uses Windows Help to display context-sensitive help.

• Provides access to all the facilities of the Help system.

• Is supplied as a sample screenset.

You might want to run the screenset while you read this section.

15.6.1 Running the Helpdemo Sample
You can run the Helpdemo sample directly from the Dialog System
definition software. There is no COBOL program with this sample.

Load the screenset helpdemo.gs and run it through the Screenset
Animator.

For information on running a screenset, see the section Testing the
Screenset in the chapter Using the Screenset.

Alternatively, you can run the Helpdemo sample using Dsrunner. See the
chapter Multiple Screensets for more information on Dsrunner.
Dialog System User’s Guide

15.6 Adding Help 285

dspubb.book Page 285 Monday, May 13, 2002 8:57 AM
15.6.2 The Helpdemo Data Block
To call the Dsonline Dialog System extension, you must define the
following in the screenset’s Data Block, in addition to any other data
that the screenset uses:

DSONLINE-PARAMETER-BLOCK 1
 DSONLINE-FUNCTION X 18.0
 DSONLINE-RETURN C 2.0
 DSONLINE-HELP-FLAGS C 2.0
 DSONLINE-HELP-CONTEXT 9 18.0
 DSONLINE-HELP-TOPIC X 32.0
 DSONLINE-HELP-FILE X 256.0

The meaning of each of these fields is given in the description of the
Dsonline Dialog System extension in the topic Dialog System Extensions
in the Help.

15.6.3 The Helpdemo Dialog
The Helpdemo sample calls the Dsonline Dialog System extension
whenever help information is required. Help might be required for a
particular field, or when the user selects an option on the Help menu.

The dialog (attached to the main window) to do this is:

1 F1
2 MOVE 1 DSONLINE-HELP-CONTEXT(1)
3 BRANCH-TO-PROCEDURE CONTEXT-HELP
4 @HELP-CONTENTS
5 MOVE "cont" DSONLINE-FUNCTION(1)
6 BRANCH-TO-PROCEDURE CALL-ON-LINE
7 @HELP-INDEX
8 MOVE "indx" DSONLINE-FUNCTION(1)
9 BRANCH-TO-PROCEDURE CALL-ON-LINE
10 @EXIT-F3
11 SET-EXIT-FLAG
12 RETC
13 CONTEXT-HELP
14 MOVE "ctxt" DSONLINE-FUNCTION(1)
15 BRANCH-TO-PROCEDURE CALL-ON-LINE
16 CALL-ON-LINE
17 MOVE "helpdemo.hlp" DSONLINE-HELP-FILE(1)
18 MOVE 0 DSONLINE-HELP-FLAGS(1)
19 CALLOUT "dsonline" 0 DSONLINE-PARAMETER-BLOCK
Dialog System User’s Guide

286 Chapter 15 Advanced Topics

dspubb.book Page 286 Monday, May 13, 2002 8:57 AM
Line 1: F1

The user pressed the F1 key. Every entry field in this example has
individual control dialog for the event caused by the F1 key, so if this
dialog processes the event, it means that the focus is not on one of the
entry fields. When this event is processed, general help is provided.

Line 2: MOVE 1 DSONLINE-HELP-CONTEXT(1)

Set the context number to be displayed. The context numbers are
defined in the On-line help file. If you do not specify context numbers,
the On-line help file builder (ohbld) provides them for you. In this
example, 1 is the context number for general help.

Line 3: BRANCH-TO-PROCEDURE CONTEXT-HELP

Branches to the procedure that displays the help. Because all context
help is displayed in the same way, a procedure is used, to avoid
repeating dialog.

Line 4: @HELP-CONTENTS

The user selected Contents on the Help menu.

Line 5: MOVE "cont" DSONLINE-FUNCTION(1)

The Dsonline Dialog System extension can do several different things.
To tell it what to do, you must provide it with a function name (a four
character string). The cont function requests that the contents of the
On-line help file are displayed.

Line 6: BRANCH-TO-PROCEDURE CALL-ON-LINE

Branches to the procedure that calls the Dialog System extension.

Lines 7-9: @HELP-INDEX
 MOVE "indx" DSONLINE-FUNCTION(1)
 BRANCH-TO-PROCEDURE CALL-ON-LINE

The user selected Index on the Help menu. The indx function requests
that the index for the On-line help file be displayed.
Dialog System User’s Guide

15.6 Adding Help 287

dspubb.book Page 287 Monday, May 13, 2002 8:57 AM
Line 10: @EXIT-F3

The user selected Exit on the File menu, or pressed the F3 key.

Line 11: SET-EXIT-FLAG

The exit flag is a flag that Dsgrun returns to the calling program when
a RETC is executed. The exit flag tells Dsrunner that the screenset has
finished processing.

Line 12: RETC

Return to the calling program (in this example, either Dialog System or
Dsrunner).

Lines 13-15: CONTEXT-HELP
 MOVE "ctxt" DSONLINE-FUNCTION(1)
 BRANCH-TO-PROCEDURE CALL-ON-LINE

This procedure is used to display context help. The ctxt function
requests that context-sensitive help be displayed. The CALL-ON-LINE
procedure is used to call the Dialog System extension.

Lines 16-19: CALL-ON-LINE
 MOVE "helpdemo.hlp" DSONLINE-HELP-FILE(1)
 MOVE 0 DSONLINE-HELP-FLAGS(1)
 CALLOUT "dsonline" 0 DSONLINE-PARAMETER-BLOCK

This procedure calls the Dsonline Dialog System extension. It sets up
the name of the help file in the parameter block, and turns off all the
flag settings for the On-line Help system (see the Dsonline Dialog
System extension in the topic Dialog System Extensions in the Help for
information about the flags).

15.6.4 Entry Field Dialog
As well as the dialog on the main window, each entry field in the
window has dialog. Each entry field sets a different context number,
but otherwise, the dialog is the same.
Dialog System User’s Guide

288 Chapter 15 Advanced Topics

dspubb.book Page 288 Monday, May 13, 2002 8:57 AM
For the Product Code entry field, the dialog is:

1 F1
2 MOVE 2 DSONLINE-HELP-CONTEXT(1)
3 BRANCH-TO-PROCEDURE CONTEXT-HELP

This dialog is similar to that for the F1 key on the main window, but uses
a different context number, where 2 is the context number for help
about this entry field.

15.7 Further Information
See the chapters Using the Screenset and Multiple Screensets for further
information about controlling the use of screensets and using multiple
screensets and multiple instances of screensets.

The chapter Multiple Screensets also contains a detailed description of
the call interface. The topic The Call Interface in the Help also provides
information on the Control Block, including the Event Block, the Data
Block, use of the Screenset Animator, version checking, and the values
the calling program returns to Dialog System.
Dialog System User’s Guide

289

dspubb.book Page 289 Monday, May 13, 2002 8:57 AM
16 Questions and Answers

This chapter lists and answers questions that are frequently raised with
the Technical Support.

Note: Some of the questions relate to all environments. Some are
specific to particular environments. The notation in the left margin
indiactes which environment is affected.

The Checker rejects my Data Block that I generated
directly from my screenset. What is going wrong?

If you have written your program so that it expects to have all data
items in the Data Block prefixed with the screenset ID, you must
generate the screenset that way.

For example, the Customer program has the CUSTOMER prefix on all
the data items in the Data Block. If you generate the Data Block and do
not specify you want the Data Block prefixed with the screenset ID, the
data items are not prefixed by CUSTOMER and the checker rejects any
reference to the items.

How can I use the Screenset Animator facilities from
my program without recompiling?

You have two options:

• Make the name of the Dialog System run-time system a variable.
For example, the Customer demo can be changed to use the
following level-01 data item:

 01 dialog-system pic x(8) value "dsgrun".

Then, while debugging your application, you can change the value
of dialog-system to "ds". ds is the Dialog System run-time
system that enables you to use the Screenset Animator.
Dialog System User’s Guide

290 Chapter 16 Questions and Answers

dspubb.book Page 290 Monday, May 13, 2002 8:57 AM
Once you have done this, all future calls to the Dialog System run-
time will use Screenset Animator (even if you change the value of
dialog-system back to dsgrun).

• Use the "T" and "O" options in ds-control. Setting ds-control
to "T" turns the Screenset Animator on. Setting ds-control to "O"
turns the Screenset Animator off.

To turn Screenset Animator on:

a Set a breakpoint on the Dialog System CALL statement.

b Change the value of the data item ds-control to "T".

c Step on the call to Dsgrun.

The "T" option causes Dialog System to issue an internal call to
turn the Screenset Animator facility on and exit.

d Reset your cursor on the Dialog System CALL statement.

e Zoom your program again. Screenset Animator will appear the
next time a line of dialog is executed.

To turn Screenset Animator off:

a Change the value of the data item ds-control to "O".

b Step on the call to Dsgrun.

Screenset Animator will disappear. As with the "T" option, the
"O" option causes Dialog System to issue an internal call to turn
the Screenset Animator facility off and then exit.

c Reset your cursor on the Dialog System CALL statement.

d Zoom your program. Screenset Animator is turned off.

Why is a dialog box not displayed when I use a SHOW-
WINDOW function?

This happens if the dialog box is a modal dialog box, because SHOW-
WINDOW does not paint this type of dialog box on the screen. A modal
dialog box is shown only when the focus is set on it using the SET-FOCUS
function. SHOW-WINDOW does paint a window or a modeless dialog
box on the screen.
Dialog System User’s Guide

291

dspubb.book Page 291 Monday, May 13, 2002 8:57 AM
How do I validate fields as soon as they lose focus?

The most common problem with implementations of field-by-field
validation is that the application usually ends up in an infinite loop of
validation errors. For example, if an entry field loses focus and is
validated and the validation fails, focus is returned to the object.
However, this causes another control to lose focus, and if that control is
also validated, an infinite loop can result.

Another problem is that you might sometimes not want to validate a
field. For example, if a user clicks Cancel or Help in a dialog box, or
switches to a different application.

Here is one way to implement field-by-field validation which avoids the
infinite looping problems, and allows you to implement Cancel and
Help buttons:

1 Define a flag in your data block:

VALIDATION-ERROR-FOUND C5 1.0
VALIDATION-ERROR-FIELD C5 2.0
VALIDATION-ERROR-MESSAGE C5 80.0

If you already have an error message field defined in your
screenset, you can use that field instead of defining VALIDATION-
ERROR-MESSAGE. Otherwise define the VALIDATION-ERROR-
MESSAGE field as the error field.

2 Add the following global dialog:

REPORT-VALIDATION-ERROR
* Report a validation error
 INVOKE-MESSAGE-BOX VALIDATION-ERROR-MBOX
 VALIDATION-ERROR-MESSAGE $REGISTER
 SET-FOCUS VALIDATION-ERROR-FIELD
 TIMEOUT 1 CLEAR-VALIDATION-ERROR-TIMEOUT
 CLEAR-VALIDATION-ERROR-TIMEOUT
* Reset the validation error flag and TIMEOUT
 MOVE 0 VALIDATION-ERROR-FOUND
 TIMEOUT 0 $NULL
 DO-NOTHING
* Do-nothing procedure. Contains no functions.

The REPORT-VALIDATION-ERROR procedure is executed after a
short timeout. It reports a validation error that has been detected,
then sets focus on the field that is in error. Another timeout is then
set to execute the CLEAR-VALIDATION-ERROR-TIMEOUT once all
Dialog System User’s Guide

292 Chapter 16 Questions and Answers

dspubb.book Page 292 Monday, May 13, 2002 8:57 AM
the focus events have been processed. This event clears the flags
associated with the validation failure.

3 Add the following to SCREENSET-INITIALIZED dialog:

MOVE 0 VALIDATION-ERROR-FOUND

This clears the VALIDATION-ERROR-FOUND flag ready for the first
validation error.

4 Add the following line of dialog as the first line of LOST-FOCUS
dialog for any objects which have LOST-FOCUS dialog and which
could cause a focus change:

IF= VALIDATION-ERROR-FOUND 1 DO-NOTHING

5 In all places where you have dialog which causes a focus change due
to a validation error, add the following dialog immediately before
the dialog that causes the focus change:

MOVE $EVENT-DATA VALIDATION-ERROR-FIELD
 MOVE 1 VALIDATION-ERROR-FOUND
 TIMEOUT 1 REPORT-VALIDATION-ERROR

This dialog example assumes that $EVENT-DATA is set to the object
ID of the object that failed validation. $EVENT-DATA is set to the
object ID when a VAL-ERROR occurs.

6 If you want to cancel a validation error before it is reported, add the
following dialog where you want the error to be canceled:

EXECUTE-PROCEDURE CLEAR-VALIDATION-ERROR-TIMEOUT

If you want to cancel a validation error on a push button, you need
to cancel the error on a GAINED-FOCUS event on the button, not
the BUTTON-SELECTED event. A timeout can happen between the
GAINED-FOCUS and BUTTON-SELECTED events, which would trigger
the validation error message.

It is also particularly important that you cancel any validation error
when your application loses focus. Otherwise you will prevent users
from switching to a different application and you will also interfere
with the operation of Screenset Animator and the Net Express IDE.
To cancel any validation error when your application loses focus,
implement LOST-FOCUS dialog on the window. Note that this also
applies when switching focus to other windows in your application.

When a validation error causes the focus to be changed, this sets both
the VALIDATION-ERROR-FOUND flag and a very short TIMEOUT to clear
Dialog System User’s Guide

293

dspubb.book Page 293 Monday, May 13, 2002 8:57 AM
the flag again. Since TIMEOUT events do not happen if there are any
events still to be processed, the TIMEOUT event is guaranteed to
happen after the LOST-FOCUS event. If the LOST-FOCUS event finds the
VALIDATION-ERROR-FOUND flag set, then it doesn’t validate the field
that lost focus (and so doesn’t cause a focus change).

How can I get more information about a Dialog Sys-
tem run-time error?

When an error occurs in your application, the Dialog System run-time
returns an error code (DS-ERROR-CODE), and two additional error
details (DS-ERROR-DETAILS-1 and DS-ERROR-DETAILS-2), which allow
you to determine what went wrong with your application.

However, particularly with error code 17, you need to look up
information in several different tables in order to get all the
information available about the error. Also, some of the other error
codes use the error details to return more information about the error,
but you have to refer to the documentation in order to decode these.

Dialog System contains an error reporting module, dsexcept.dll, which
can decode the error codes for you, and can also provide additional
information that is not available from the error codes alone.

In order for dsexcept.dll to be active, you need to make sure that it is in
a directory pointed to by the $COBDIR environment variable. The
dsexcept.dll file can be found in your Dialog System \bin directory.

Notes:

• dsexcept.dll does not provide as much information for run-time
format screensets.

This is to prevent users of your production applications attempting
to debug or reverse-engineer your screensets.

• Screenset Animator disables the dsexcept.dll module.

Dialog System User’s Guide

294 Chapter 16 Questions and Answers

dspubb.book Page 294 Monday, May 13, 2002 8:57 AM
How much memory will my screenset take up at run
time?

It is impossible to determine exactly how much memory a screenset will
take up at run time. It depends on several factors, including the amount
of free memory you have available. However, in general the amount
memory used by a screenset is not particularly large.

All screensets are held in virtual files that are paged out to disk as
memory demands increase. The only memory that each screenset is
guaranteed to take up is 512 bytes required by the COBOL run-time
system (RTS) to manage the virtual files.

Each virtual file opened will require the 512 bytes (unless it is more than
64K bytes in which case it will require an extra 512 bytes). This means
that if Dialog System uses one virtual file for each screenset then the
minimum would be 512 bytes for each screenset.

If there is sufficient memory, the RTS will hold as many of the virtual
files in memory as it can. When there is insufficient memory, the RTS
starts to page the virtual files to disk.

Hence the memory taken up by the screenset is variable, but should
never be excessive.

For more information, see the topic Dialog System Limits in the Help.

How do I add color to a text field?

The Dialog System Text object is simply text painted on your window
and for this reason is not configurable. It is possible, however, to
achieve the effect you require through the use of an Entry Field object.
Select the Display-only property of this field, and define its initial text
(or master field value) to achieve the same results, but with the colors
configurable via the normal means.

How do I make screensets containing list-boxes display
more quickly?

If your list-box is tied to a master field group, it is possible to reduce
load time by temporarily adjusting the internally recognized size of that
group using the SET-DATA-GROUP-SIZE function. This tells Dialog
System that internally it should recognize only (n) items in that group
array - preventing data in occurrences beyond that figure being
Dialog System User’s Guide

295

dspubb.book Page 295 Monday, May 13, 2002 8:57 AM
inserted into objects. However, the calling program can access all the
data items in the group, and you may use the same function to reset
the internal size when appropriate.

Why does my application appear to enter a controlled
loop when using multiple screensets?

You might experience this when using DS-PUSH-SET and DS-USE-SET
combinations in router-based applications. Specifically, the effect is
usually attributed to coded dialog script, which forces the application
into an event-based loop.

When using multiple screensets in this manner, you use the following
dialog to re-activate a previous screenset:

OTHER-SCREENSET
 MOVE 1 OTHER-SET-EVENT-FLAG
 REPEAT-EVENT
 RETC

Your COBOL program then makes a decision based on the DS-EVENT-
SCREENSET-ID to reload the screenset on which the event occurred.

The error described is usually caused by setting a value in DS-
PROCEDURE, which causes execution of that dialog table in the
reloaded screenset. The executed procedure then carries out its own
functions, often causing more events in the original screenset, and
results in the effect being experienced.

The reason for this effect is explained in the chapter Multiple
Screensets, in the section The Sequence of Events.

DS-PROCEDURE should not be set when re-loading a screenset in
response to an OTHER-SCREENSET event.

Why, when my selection box has the auto-insert prop-
erty set to off, can list items become duplicated in the
dropdown list?

This is primarily caused by inappropiate use of this control.

Appropriate use of a selection box control is for the selection of an
item from a pre-defined list. If required, the user-selected item can be
Dialog System User’s Guide

296 Chapter 16 Questions and Answers

dspubb.book Page 296 Monday, May 13, 2002 8:57 AM
placed in an associated Master field, to be used by the application as
appropriate.

The important factor here is that the dialog functions which populate a
selection box insert the list items, delimited by the hexadecimal value
"0A". You cannot insert items into a selection box from a Master field
group.

Duplication occurs when the text in the associated Master field contains
a value other than that inserted into the list (that is, is SPACE delimited)
and is not delimited by X"0A". Duplication appears to occur but the
items are not delimited in the same way.

Incorrect population of the associated Master field, and the REFRESH-
OBJECT function are prime mechanisms causing this undesired behavior.

How do I control the tabbing order of controls?

Select the Edit, Controls menu option and re-order the displayed list as
required. See the topic Controls in the Help.

Compiling 256-color bitmap resources into a .dll will
not work.

256-color bitmaps must be specified as separate files to be included in a
Dialog System application, and the MFDSSW /B(n) environment variable
must be set. This environment variable determines palette behavior and
must be set to enable 256-color support.
Dialog System User’s Guide

297

dspubb.book Page 297 Monday, May 13, 2002 8:57 AM
Part 3: Programming
Tutorials

This part contains the following chapters:

• Chapter 17, “Sample Programs”

• Chapter 18, “Tutorial - Creating a Sample Screenset”

• Chapter 19, “Tutorial - Using the Sample Screenset”

• Chapter 20, “Tutorial - Adding and Customizing a Status Bar”

• Chapter 21, “Tutorial - Adding and Customizing a Menu Bar
and Toolbar”

• Chapter 22, “Tutorial - Adding an ActiveX Control”

• Chapter 23, “Tutorial - Using Bitmaps to Change the Mouse
Pointer”

• Appendix A , “Fonts and Colors”
Dialog System User’s Guide

298 Part 3: Programming Tutorials

dspubb.book Page 298 Monday, May 13, 2002 8:57 AM
Dialog System User’s Guide

299

dspubb.book Page 299 Monday, May 13, 2002 8:57 AM
17 Sample Programs

This chapter contains sample dialog for the following objects:

• Entry fields

• Push buttons

• Check boxes

• List boxes

• Scroll bars

• Tab controls

It also contains the following sample programs:

• Dsrnr

• Push-pop

• Custom1

17.1 Entry Fields
Entry fields are described in detail in the chapter Control Objects. This
section describes dialog required to:

• Validate entry fields.

• Edit multiple line entry fields.

• Use a scroll bar with an entry field. See the section Events
Associated with a Scroll Bar.
Dialog System User’s Guide

300 Chapter 17 Sample Programs

dspubb.book Page 300 Monday, May 13, 2002 8:57 AM
17.1.1 Validating Entry Fields
Entry fields are validated with the VALIDATE function. If validation fails,
the VAL-ERROR event is triggered. You can validate an entry field
explicitly:

VALIDATE AMOUNT-DEPOSITED-EF

Or you can validate an entry field implicitly by validating the parent
window. For example:

VALIDATE DEPOSIT-WIN

The recommended way is to validate the field implicitly when the user
accepts data on the window or dialog box that contains the field (for
example the user presses OK or Enter). This lets the user enter the
information, review it, and correct it if necessary before the validation.
If the validation fails, you can set the focus back on the field with the
error.

1 BUTTON-SELECTED
2 VALIDATE $WINDOW
3 INVOKE-MESSAGE-BOX ERROR-MB "All fields OK" $REGISTER
4 RETC
5 VAL-ERROR
6 INVOKE-MESSAGE-BOX ERROR-MB ERROR-MSG-FIELD $REGISTER
7 SET-FOCUS $EVENT-DATA

Line 1: BUTTON-SELECTED

In this example, validation is activated by selecting a push button.
Validation could also be activated by the window losing focus or a
particular field losing focus using the LOST-FOCUS event. For example,
focus is lost by the current control when the user uses the Tab key to
move to another control.

Line 2: VALIDATE $WINDOW

This statement validates all fields on the current window according to
the validation criteria you set up. If Dialog System detects an error, the
VAL-ERROR event is triggered. If no error is detected, Dialog System
continues as normal and executes the next function.
Dialog System User’s Guide

17.1 Entry Fields 301

dspubb.book Page 301 Monday, May 13, 2002 8:57 AM
Lines 3-4: INVOKE-MESSAGE-BOX ERROR-MB "All fields OK" $REGISTER
 RETC

The VAL-ERROR event did not occur. Invoke a message box informing
the user that no errors were detected and return to the program.

Line 5: VAL-ERROR

The VAL-ERROR event is detected. The special register $EVENT-DATA
identifies the entry field that failed validation.

Line 6: INVOKE-MESSAGE-BOX ERROR-MB ERROR-MSG-FIELD $REGISTER

Notify the user of the error using a message box. The second
parameter, ERROR-MSG-FIELD, contains the error message defined for
this validation error. ERROR-MSG-FIELD is defined as the error
message field in the data definition.

Line 7: The following dialog illustrates one way of coding the validation step.
The dialog is attached to a push button.

 SET-FOCUS $EVENT-DATA

Put the input focus back on the entry field that failed the validation.

Warning: You can validate the field when the user tries to move off it
by using the LOST-FOCUS event . However, if the validation fails and
you set the focus on the field, the focus always returns to the field
whenever the user tries to put the focus on another application. It is
better to validate the whole window.

17.1.1.1 Complex Data Validation

The procedures described in the previous section handle simple data
validation. Sometimes, more complex validation than Dialog System
can provide is needed. For example, the range of a valid credit limit
often depends on the number of years a customer has been with a
company.

This type of cross-field validation requires intervention because either
you need data that is not contained in your screenset, or the validation
is more sophisticated than the validation rules provided by Dialog
Dialog System User’s Guide

302 Chapter 17 Sample Programs

dspubb.book Page 302 Monday, May 13, 2002 8:57 AM
System. You need to return to the calling program to do this type of
checking.

See the chapter Advanced Topics for an example.

17.1.2 Editing Multiple Line Entry Fields
You can move text to an associated data item using either your
application program or dialog.

17.1.2.1 Moving Text Using Your Application
Program

An example of moving text to an associated data item in your
application program is the statement:

 move "Now is the time..." to large-entry-field

This moves the string to the Data Block item that is associated with the
MLE.

You can insert line feeds by using the hexadecimal character "0a". For
example:

 move "line1" & x"0a" & "line2"

where:

17.1.2.2 Moving Text Using Dialog

In this case, line feeds cannot be inserted. For example, use the
following statement in dialog:

 move "Now is the time..." large-entry-field

where large-entry-field is the data item associated with the MLE.

line1 and line2 are the text to be displayed on separate lines.

& concatenates the character strings.

x indicates a hexadecimal character.

0a is the hexadecimal character for a line feed.
Dialog System User’s Guide

17.2 Push Buttons 303

dspubb.book Page 303 Monday, May 13, 2002 8:57 AM
17.2 Push Buttons
This section covers samples of dialog for:

• A Pause push button.

• Dynamically changing bitmaps associated with a push button.

17.2.1 Dialog for a Pause Push Button
1 BUTTON-SELECTED
2 DISABLE-OBJECT $CONTROL
3 ENABLE-OBJECT CONTINUE-PB
4 BRANCH-TO-PROCEDURE PAUSE-SELECTED

Line 1: BUTTON-SELECTED

The user selects the Pause button, which triggers the BUTTON-
SELECTED event. This event is the primary event associated with a push
button.

Line 2: DISABLE-OBJECT $CONTROL

$CONTROL is a special register that identifies the currently selected
control. This function disables the current control (in this case, the
Pause push button). This means the button is unavailable to the user.

Line 3: ENABLE-OBJECT CONTINUE-PB

This statement enables the Continue push button. This means this
button becomes available for the user to select. CONTINUE-PB is the
name of the push button that you assigned to the push button in the
Push Button properties window.

Line 4: BRANCH-TO-PROCEDURE PAUSE-SELECTED

The functions in the PAUSE-SELECTED procedure are performed. In this
procedure you can, for example, set a flag and return to the calling
program.

For information on defining a push button, see the chapter Control
Objects.
Dialog System User’s Guide

304 Chapter 17 Sample Programs

dspubb.book Page 304 Monday, May 13, 2002 8:57 AM
17.2.2 Dialog for Dynamically Changing
Bitmaps Assigned to a Push Button
The following fragment of dialog illustrates one way to change
dynamically the bitmaps assigned to a push button.

Note: Before you can use bitmaps, you must make them available to
Dialog System. See the chapter Control Objects for further information.

1 ...
2 @SAVE
3 BRANCH-TO-PROCEDURE SAVE-FUNCTION
4 SAVE-FUNCTION
5 SET-OBJECT-LABEL GENERIC-PB SAVE-STATES
6 SET-FOCUS GENERIC-WIN
7 ...

Lines 2-3: @SAVE
 BRANCH-TO-PROCEDURE SAVE-FUNCTION

The user selected the Save option from a menu. Branch to the
procedure that does the save function.

Line 5: SET-OBJECT-LABEL GENERIC-PB SAVE-STATES

GENERIC-PB is the name assigned to the push button. SAVE-STATES is
an alphanumeric data item large enough to hold the names of the
replacement bitmaps and three null characters (x"0A").

Line 6: SET-FOCUS GENERIC-WIN

Set the keyboard focus to the window, so that all objects in the window
are refreshed, and continue.

In your program, fill save-states in the Data Block using a statement
like:

 move "save-normal" & x"0A" & "save-disabled" & x"0A" &
 "save-depressed" & x"0A" to save-states.

where save-normal, save-disabled, and save-depressed are the
names of the bitmaps that are displayed depending on the state of the
push button. The order you assign the names is important.
Dialog System User’s Guide

17.3 Check Boxes 305

dspubb.book Page 305 Monday, May 13, 2002 8:57 AM
The first name is the bitmap that is displayed when the push button is
in the "normal" state. The second name is the bitmap displayed when
the push button is disabled. The third name is the bitmap displayed
when the push button is pressed.

17.3 Check Boxes
Check boxes are described in detail in the chapter Control Objects. The
Objects sample program shows an example of using check boxes.

17.3.1 Selecting Items From a List
This example shows you how to select one or more of the products
from a list and display the items in a list box by clicking a Display push
button. See Figure 17-1.

Figure 17-1. Check Boxes With List Box

The data definitions for this sample screenset are:

1 WORKBENCH 9 1.00
2 TOOLSET 9 1.00
3 COBOL 9 1.00
4 DIALOG-SYSTEM 9 1.00
Dialog System User’s Guide

306 Chapter 17 Sample Programs

dspubb.book Page 306 Monday, May 13, 2002 8:57 AM
5 PRODUCTS 4
6 PRODUCT-DISPLAY X 15.00

Data items 1 to 4 are the data items associated with the corresponding
check boxes. Data items 5 and 6 are used for the list box that displays
the selected items.

The dialog (attached to the Display push button) for controlling this
example is:

 1 BUTTON-SELECTED
 2 MOVE " " PRODUCT-DISPLAY(1)
 3 MOVE " " PRODUCT-DISPLAY(2)
 4 MOVE " " PRODUCT-DISPLAY(3)
 5 MOVE " " PRODUCT-DISPLAY(4)
 6 MOVE 1 $REGISTER
 7 IF= WORKBENCH 0 CHECK-TOOLSET
 8 MOVE "Workbench" PRODUCT-DISPLAY($REGISTER)
 9 INCREMENT $REGISTER
10 BRANCH-TO-PROCEDURE CHECK-TOOLSET
11
12 CHECK-TOOLSET
13 IF= TOOLSET 0 CHECK-COBOL
14 MOVE "Toolset" PRODUCT-DISPLAY($REGISTER)
15 INCREMENT $REGISTER
16 BRANCH-TO-PROCEDURE CHECK-COBOL
17
18 CHECK-COBOL
19 IF= COBOL 0 CHECK-DIALOG-SYSTEM
20 MOVE "COBOL" PRODUCT-DISPLAY($REGISTER)
21 INCREMENT $REGISTER
22 BRANCH-TO-PROCEDURE CHECK-DIALOG-SYSTEM
23
24 CHECK-DIALOG-SYSTEM
25 IF= DIALOG-SYSTEM 0 DISPLAY-PRODUCTS-DB
26 MOVE "Dialog System" PRODUCT-DISPLAY($REGISTER)
27 BRANCH-TO-PROCEDURE DISPLAY-PRODUCTS-DB
28
29 DISPLAY-PRODUCTS-DB
30 REFRESH-OBJECT CHECKB-LB
31 SET-FOCUS CHECKB-DB

Line 1: BUTTON-SELECTED

The user selected the Display push button .
Dialog System User’s Guide

17.3 Check Boxes 307

dspubb.book Page 307 Monday, May 13, 2002 8:57 AM
Lines 2-5: MOVE " " PRODUCT-DISPLAY(1)
 MOVE " " PRODUCT-DISPLAY(2)
 MOVE " " PRODUCT-DISPLAY(3)
 MOVE " " PRODUCT-DISPLAY(4)

Initialize the list box items, by moving a blank string to the items in the
PRODUCT-DISPLAY group.

Line 6: MOVE 1 $REGISTER

Initialize the index ($REGISTER) . $REGISTER is an internal register that
you can use to store a numeric value. In this case, use it as an index into
the list box.

Line 7: IF= WORKBENCH 0 CHECK-TOOLSET

If the Workbench check box has not been checked, branch to the
procedure that checks if the Toolset check box has been checked. If the
Workbench check box has been checked, continue to the next function
and do not branch.

Lines 8-9: MOVE "Workbench" PRODUCT-DISPLAY($REGISTER)
 INCREMENT $REGISTER

To get here, the user selected the Workbench check box. Fill the list box
data item and increment the index.

Line 10: BRANCH-TO-PROCEDURE CHECK-TOOLSET

Branch to the procedure that checks the Toolset check box.

Lines 12-27: CHECK-TOOLSET
 IF= TOOLSET 0 CHECK-COBOL
 MOVE "Toolset" PRODUCT-DISPLAY($REGISTER)
 INCREMENT $REGISTER
 BRANCH-TO-PROCEDURE CHECK-COBOL

 CHECK-COBOL
 IF= COBOL 0 CHECK-DIALOG-SYSTEM
 MOVE "COBOL" PRODUCT-DISPLAY($REGISTER)
 INCREMENT $REGISTER
 BRANCH-TO-PROCEDURE CHECK-DIALOG-SYSTEM

 CHECK-DIALOG-SYSTEM
 IF= DIALOG-SYSTEM 0 DISPLAY-PRODUCTS-DB
 MOVE "Dialog System" PRODUCT-DISPLAY($REGISTER)
Dialog System User’s Guide

308 Chapter 17 Sample Programs

dspubb.book Page 308 Monday, May 13, 2002 8:57 AM
 BRANCH-TO-PROCEDURE DISPLAY-PRODUCTS-DB

This is similar dialog for the other check boxes.

Lines 29-31: DISPLAY-PRODUCTS-DB
 REFRESH-OBJECT CHECKB-LB
 SET-FOCUS CHECKB-DB

Display the selected products in the list box.

17.4 List Boxes
You can update items in a list box in three ways:

• By using a group item.

• By using dialog which updates the items at run time.

• By using a delimited string.

17.4.1 Adding Items Using Group Item
You can associate the list box with a group item, so that each line in the
list box displays an occurrence of the group. Selected items in the group
then occupy fields in each line.

The sample application Saledata illustrates this method of accessing a
list box. Using an existing file, the application loads a set of sales data to
a group item (SALES-GROUP) in the Data Block. The list box (SALES-LB)
displays the data. Then you can update (insert, change, delete) entries
or view the set of data in different sort orders.

This Data Block section defines the data referenced in the following
dialog:

SALES-GROUP 100
 SALES-NAME X 20.00
 SALES-REGION X 4.00
 SALES-STATE X 2.00
TMP-NAME X 20.00
TMP-REGION X 4.00
Dialog System User’s Guide

17.4 List Boxes 309

dspubb.book Page 309 Monday, May 13, 2002 8:57 AM
TMP-STATE X 2.00
NUMBER-OF-RECORDS 9 3.00

The following portions of dialog are those dealing with the list box:

 1 SET-DATA-GROUP-SIZE SALES-GROUP NUMBER-OF-RECORDS
 2 ...
 3 ITEM-SELECTED
 4 MOVE $EVENT-DATA $REGISTER
 5 ...
 6 PROC-INSERT
 7 INSERT-OCCURRENCE SALES-GROUP $REGISTER
 8 MOVE TMP-NAME SALES-NAME($REGISTER)
 9 MOVE TMP-REGION SALES-REGION($REGISTER)
10 MOVE TMP-STATE SALES-STATE($REGISTER)
11 INCREMENT NUMBER-OF-RECORDS
12 INCREMENT $REGISTER
13 REFRESH-OBJECT SALES-LB
14 SET-LIST-ITEM-STATE SALES-LB 1 $REGISTER
15 ...
16 PROC-CHANGE
17 MOVE TMP-NAME SALES-NAME($REGISTER)
18 MOVE TMP-REGION SALES-REGION($REGISTER)
19 MOVE TMP-STATE SALES-STATE($REGISTER)
20 UPDATE-LIST-ITEM SALES-LB SALES-GROUP $REGISTER
21 SET-LIST-ITEM-STATE SALES-LB 1 $REGISTER
22 ...
23 PROC-DELETE
24 DELETE-OCCURRENCE SALES-GROUP $REGISTER
25 DECREMENT NUMBER-OF-RECORDS
26 DECREMENT $REGISTER
27 REFRESH-OBJECT SALES-LB
28 SET-LIST-ITEM SALES-LB 1 $REGISTER

Line 1: SET-DATA-GROUP-SIZE SALES-GROUP NUMBER-OF-RECORDS

This statement defines the internal size of the data group. This is the
number of occurrences of a group that you can access. Refer to the
description of the SET-DATA-GROUP-SIZE function in your help for a
complete definition of internal size.

Lines 3-4: ITEM-SELECTED
 MOVE $EVENT-DATA $REGISTER

You can browse the list box until you find the item you want to select.
The ITEM-SELECTED event is triggered when the item (list box row) is
selected. The special event register $EVENT-DATA contains the row
Dialog System User’s Guide

310 Chapter 17 Sample Programs

dspubb.book Page 310 Monday, May 13, 2002 8:57 AM
number of the item selected. Use $REGISTER to keep track of the
current location in both the group data and the list box.

Line 6: PROC-INSERT

This procedure inserts an item in the position now occupied by the
selected item.

Line 7: INSERT-OCCURRENCE SALES-GROUP $REGISTER

Insert a blank occurrence into the data group at the specified location.
The selected item and all items following are moved down one row. The
list box is not affected. This function only updates the data group.

Lines 8-10: MOVE TMP-NAME SALES-NAME($REGISTER)
 MOVE TMP-REGION SALES-REGION($REGISTER)
 MOVE TMP-STATE SALES-STATE($REGISTER)

Update the group item with the new information.

Line 11: INCREMENT NUMBER-OF-RECORDS

Increment the number of records in the data group.

Line 12: INCREMENT $REGISTER

Update the pointer to the current row. This keeps the pointer
addressing the same row it was before the insertion.

Line 13: REFRESH-OBJECT SALES-LB

A list box associated with a group item must be refreshed before it
reflects changes in the data. The INSERT-OCCURRENCE and DELETE-
OCCURRENCE functions have no effect on a list box. If you have only
one entry in the list box that needs to be refreshed, you can use the
UPDATE-LIST-ITEM function. However, in the case of an insertion, all
rows in the data group after the insertion row are changed. It is better
to use the REFRESH-OBJECT function.

Line 14: SET-LIST-ITEM-STATE SALES-LB 1 $REGISTER

Change the state of the current row to "selected" . This is the same row
that was selected before the insertion.
Dialog System User’s Guide

17.4 List Boxes 311

dspubb.book Page 311 Monday, May 13, 2002 8:57 AM
Line 16: PROC-CHANGE

This procedure changes the contents of the selected item.

Lines 17-19: MOVE TMP-NAME SALES-NAME($REGISTER)
 MOVE TMP-REGION SALES-REGION($REGISTER)
 MOVE TMP-STATE SALES-STATE($REGISTER)

Update the group item with the new information.

Line 20: UPDATE-LIST-ITEM SALES-LB SALES-GROUP $REGISTER

Because only one row in the list box changed, you can use the UPDATE-
LIST-ITEM function. You do not have to refresh the entire list box since
all other rows remain the same.

Line 21: SET-LIST-ITEM-STATE SALES-LB 1 $REGISTER

Change the state of the current row to "selected". This is the same row
that was selected before the change.

Line 24: DELETE-OCCURRENCE SALES-GROUP $REGISTER

Delete the occurrence from the data group at the selected location. All
items following are moved up one row.

Line 25: DECREMENT NUMBER-OF-RECORDS

Decrement the number of records in the data group.

Line 26: DECREMENT $REGISTER

Update the pointer to the current row. This keeps the pointer
addressing the same row.

Line 27: REFRESH-OBJECT SALES-LB

Refresh the list box.

Line 28: SET-LIST-ITEM SALES-LB 1 $REGISTER

Change the state of the current row to "selected". This is the row
following the one that was deleted.
Dialog System User’s Guide

312 Chapter 17 Sample Programs

dspubb.book Page 312 Monday, May 13, 2002 8:57 AM
17.4.2 Adding Items Using Dialog
You can also maintain items in a list box at run time using the dialog
functions INSERT-LIST-ITEM, UPDATE-LIST-ITEM, and DELETE-LIST-ITEM .

For example, the following dialog fragment is one way to add the
abbreviations for months to a list box named MONTH-LB.

SCREENSET-INITIALIZED
 INSERT-LIST-ITEM MONTH-LB "Jan" 1
 INSERT-LIST-ITEM MONTH-LB "Feb" 2
 INSERT-LIST-ITEM MONTH-LB "Mar" 3
 INSERT-LIST-ITEM MONTH-LB "Apr" 4
 INSERT-LIST-ITEM MONTH-LB "May" 5
 INSERT-LIST-ITEM MONTH-LB "Jun" 6
 INSERT-LIST-ITEM MONTH-LB "Jul" 7
 INSERT-LIST-ITEM MONTH-LB "Aug" 8
 INSERT-LIST-ITEM MONTH-LB "Sep" 9
 INSERT-LIST-ITEM MONTH-LB "Oct" 10
 INSERT-LIST-ITEM MONTH-LB "Nov" 11
 INSERT-LIST-ITEM MONTH-LB "Dec" 12

This is an effective way of populating a list box if you have a few choices
in your list and you want to keep the Data Block as small as possible.
Although it does not require much time to fill a small list box this way, it
does take a little time and does add to the number of dialog statements
that have to be searched. The section How Dialog System Searches for
Event Dialog in the chapter Using Dialog describes the rules for
searching dialog.

As an alternative, the following dialog can be used:

SCREENSET-INITIALIZED
 INSERT-LIST-ITEM MONTH-LB "Jan" 0
 INSERT-LIST-ITEM MONTH-LB "Feb" 0
 INSERT-LIST-ITEM MONTH-LB "Mar" 0
 INSERT-LIST-ITEM MONTH-LB "Apr" 0
 INSERT-LIST-ITEM MONTH-LB "May" 0
 INSERT-LIST-ITEM MONTH-LB "Jun" 0
 INSERT-LIST-ITEM MONTH-LB "Jul" 0
 INSERT-LIST-ITEM MONTH-LB "Aug" 0
 INSERT-LIST-ITEM MONTH-LB "Sep" 0
 INSERT-LIST-ITEM MONTH-LB "Oct" 0
 INSERT-LIST-ITEM MONTH-LB "Nov" 0
 INSERT-LIST-ITEM MONTH-LB "Dec" 0
Dialog System User’s Guide

17.4 List Boxes 313

dspubb.book Page 313 Monday, May 13, 2002 8:57 AM
A value of 0 for the third parameter tells Dialog System to insert the
data item at the end of the list.

17.4.3 Adding Items Using a Delimited
String
Another way to insert a few items in a list box is the INSERT-MANY-LIST-
ITEMS function using a data item passed from your program. For
example, the following dialog inserts the same month abbreviations
into MONTH-LB:

SCREENSET-INITIALIZED
 INSERT-MANY-LIST-ITEMS MONTH-LB MONTHS-STRING 48

where the parameters are:

In the Working-Storage Section of your program, define the string as:

01 months.
 03 pic x(4) value "Jan" & x"0A".
 03 pic x(4) value "Feb" & x"0A".
 03 pic x(4) value "Mar" & x"0A".
 03 pic x(4) value "Apr" & x"0A".
 03 pic x(4) value "May" & x"0A".
 03 pic x(4) value "Jun" & x"0A".
 03 pic x(4) value "Jul" & x"0A".
 03 pic x(4) value "Aug" & x"0A".
 03 pic x(4) value "Sep" & x"0A".
 03 pic x(4) value "Oct" & x"0A".
 03 pic x(4) value "Nov" & x"0A".
 03 pic x(4) value "Dec" & x"0A".

MONTH-LB The name of the list box you defined in the List Box
Properties dialog box.

MONTHS-STRING A data item, passed from your program, with the
individual list items delimited by x"0A". It is defined
in the Data Definition facility as:

MONTHS-STRING X 48

48 The number of characters to copy to the list box.
See the topic INSERT-MANY-LIST-ITEMS in the Help
for more details about this parameter.
Dialog System User’s Guide

314 Chapter 17 Sample Programs

dspubb.book Page 314 Monday, May 13, 2002 8:57 AM
Then move the string to the Data Block with a statement like:

move months to months-string

17.5 Scroll Bars
This section covers:

• Events associated with a scroll bar.

• Scroll bar properties.

17.5.1 Events Associated with a Scroll
Bar
Two events are associated with a scroll bar; SLIDER-MOVING and SLIDER-
RELEASED.

The SLIDER-MOVING event occurs when the slider has been moved to a
new position.

For example, in the dialog to implement this feature:

1 SLIDER-MOVING
2 MOVE $EVENT-DATA COUNTER
3 REFRESH-OBJECT COUNTER-DISP
4 SLIDER-RELEASED
5 MOVE $EVENT-DATA COUNTER
6 REFRESH-OBJECT COUNTER-DISP

lines 1 to 3 display the position of the slider in the entry field COUNTER-
DISP.

The SLIDER-RELEASED event occurs when the slider has been released.
Lines 4 to 6 in the dialog use this event and also display the position of
the slider. A complete description of this dialog is:
Dialog System User’s Guide

17.5 Scroll Bars 315

dspubb.book Page 315 Monday, May 13, 2002 8:57 AM
Line 1: SLIDER-MOVING

The slider is moved to a new position. This triggers the SLIDER-
MOVING event.

Line 2: MOVE $EVENT-DATA COUNTER

When the slider is moved, the special register $EVENT-DATA contains
the new slider position. This position is expressed in relation to the
minimum and maximum values. COUNTER is a Data Block data item that
is attached to the entry field COUNTER-DISP.

Line 3: REFRESH-OBJECT COUNTER-DISP

The entry field must be refreshed to reflect the new data value.

Line 4: SLIDER-RELEASED

The slider is released at a new position. This triggers the SLIDER-
RELEASED event.

Line 5: MOVE $EVENT-DATA COUNTER

When the slider is released, $EVENT-DATA contains the new slider
position. Again, COUNTER is a Data Block data item that is attached to
the entry field COUNTER-DISP.

Line 6: REFRESH-OBJECT COUNTER-DISP

Refresh the entry field.

The scroll bar example in the sample application Objects shows how to
use an entry field this way.

17.5.2 Scroll Bar Properties
The Scroll Bar Properties dialog box enables you to assign defaults to
scroll bar properties such as slider range, slider position and slider size.
Using dialog, you can change these properties .

For example, this dialog fragment changes the properties of a scroll bar
named EMP-LIST-SB.
Dialog System User’s Guide

316 Chapter 17 Sample Programs

dspubb.book Page 316 Monday, May 13, 2002 8:57 AM
SET-SLIDER-RANGE EMP-LIST-SB 0 50
SET-SLIDER-POSITION EMP-LIST-SB 25
SET-SLIDER-SIZE EMP-LIST-SB 5

Refer to the topic Dialog Statements: Functions in the Help for a full
description of these functions.

For information on defining a scroll bar, see the topic Objects and
Properties in the Help.

17.6 Tab Controls
Pages can be inserted and deleted from a tab control using the COPY-
PAGE and DELETE-PAGE functions. This enables the tab control to be
maintained dynamically.

As an example, you could write an application which stored customer
contact information such as address, contact history, and sales
information. This information for each customer could be displayed in a
tab control.

See Figure 17-2 below.

Figure 17-2. Sample Tab Control Page
Dialog System User’s Guide

17.6 Tab Controls 317

dspubb.book Page 317 Monday, May 13, 2002 8:57 AM
If, for example, one page of sales information was not sufficient, you
could add a second page as follows:

 1 ADD-MORE-SALES-INFO
 2 COPY-PAGE SALES-INFO-PAGE 0 2
 3 SET-OBJECT-LABEL SALES-INFO-PAGE
 "Sales Information 2"

Line 1: ADD-MORE-SALES-INFO

A procedure to add another sales information page to the tab control.

Line 2: COPY-PAGE SALES-INFO-PAGE 0 2

COPY-PAGE makes a copy of the tab control page and inserts it in the
correct location in the tab control. SALES-INFO-PAGE is the name
assigned to the page. The second parameter, 0, is the position to copy
to; 0 means last, 1 means first. The third parameter specifies the
instance number for the page. The instance number overrides the
subscript of any entry fields with subscripted master fields that appear
on the page. Remember, however, that any pages you create in the tab
control will always appear unless you explicitly delete them (see
below).

Line 3: SET-OBJECT-LABEL SALES-INFO-PAGE "Sales Information 2"

Changes the text in the tab on the new page. Note that after a COPY-
PAGE, SALES-INFO-PAGE refers to the new page, not the original.

To delete a page from a tab control, the DELETE-PAGE function is used.
For example, if a customer had no sales information, you could delete
the page as follows:

BUTTON-SELECTED
 DELETE-PAGE SALES-INFO-PAGE

See the Help for a detailed description of these functions.
Dialog System User’s Guide

318 Chapter 17 Sample Programs

dspubb.book Page 318 Monday, May 13, 2002 8:57 AM
17.7 The Call Interface
Details about using the call interface can be found in the chapter Using
the Screenset. This section covers:

• Using Dsrnr.

• Pushing and popping screensets.

• Using multiple instances of screensets.

17.7.1 Using Dsrnr
Dsrnr is a sample subprogram supplied with Dialog System. To launch it:

1 Start Dsrunner (see the chapter Multiple Screensets for full details).

runw dsrunner

2 Select Open a screenseton the File menu in the Dsrunner window.

3 Select Dsrnr from the file selector that is displayed (it is in your
demonstration directory).

The Dsrnr main window appears. You can load multiple instances of
Dsrnr (you can have up to 32 screensets on the stack at any time)
simply by opening it again. If you want, you can run the
subprogram through the Animator.

Now let’s take a detailed look at key sections of the sample code.

 14 linkage section.
 15
 16* data block from screenset
 17 copy "dsrnr.cpb".
 18
 19* (optional) dsrunner info and ds event blocks
 20 copy "dsrunner.cpy".
 21 copy "dssysinf.cpy".

You must copy the Data Block copyfile into your program to be able to
access the screenset data. You can, optionally, also copy in the dsrunner
copyfile that represents the linkage between Dsrunner and your
subprogram, dsrunner.cpy. If you want to process Panels2 event
Dialog System User’s Guide

17.7 The Call Interface 319

dspubb.book Page 319 Monday, May 13, 2002 8:57 AM
information you also need to copy in dssysinf.cpy. Notice that these
are copied into the linkage section because they are parameters of the
subprogram.

 24 procedure division using data-block
 25 dsrunner-info-block
 26 ds-event-block.

You must specify the data-block parameter. The other two parameters
are optional. Use dsrunner-info-block if you want to be informed of
errors. Use ds-event-block if you want to use Panels2 and Dialog System
together.

 27 main section.
 28* Put out a message if we are run from the command line
 29* instead of being called by DSRUNNER.
 30 if (address of data-block = null)
 31 display "This is a subprogram, and must be CALLed"
 32* display "(Preferably from DSRUNNER)."
 33 exit program
 34 stop run
 35 end-if

You need to check that the subprogram is being called and you can do
that easily by checking that it is being passed a Data Block address.

 37 move 0 to return-code
 38
 39* Determine if this is the first time we’ve been called
 40* with this data block. We can do this by checking the
 41* data blockfor low values, which is what DSRUNNER
 42* initialises all data blocks with.
 43 if (data-block = all low-values)
 44* This is the first time we have been called with this
 45* Screenset/Data-Block. Perform any initialisation,
 46* and then exit. The screenset is not loaded (and no
 47* SCREENSET-INITIALIZED event occurs) until after
 48* we return from here.
 49 perform initialisation
 50 else
 51* This is not the first time we have been called,
 52* therefore do our normal handling.
 53 perform handle-screenset-request
 54 end-if
 55
 56 continue.
 57
Dialog System User’s Guide

320 Chapter 17 Sample Programs

dspubb.book Page 320 Monday, May 13, 2002 8:57 AM
 58 exit-main.
 59
 60 exit program
 61 stop run.

Each time the subprogram is called as a new instance, it must perform
any required initialization of the Data Block. Line 43 shows how to
check if this is the first time the subprogram has been called with this
Data Block (new instance of screenset). Once the subprogram has
performed its initialization, you must return to Dsrunner. Dsrunner will
call your program whenever a RETC occurs in the screenset associated
with this subprogram.

 64 initialisation section.
 65* Perform any pre-screenset initialisation here.
 66
 67 initialize data-block
 68 move dsrunner-screenset-instance to my-instance-no
 69
 70 continue.

Line 68 shows how the subprogram can find out its instance number.

 73 handle-screenset-request section.
 74* We end up here whenever the screenset does a RETC, or
 75* a DSGRUN error has occurred, and DSRUNNER is calling us
 76* to do any error handling before we get terminated.
 77
 78* Have we been called because screenset caused an error?
 79 if (dsrunner-error-code not = 0)
 80* Yes, so handle it
 81 perform handle-dsgrun-error
 82 exit section
 83 end-if
 84* Have we been called because of a validation error?
 85 if (dsrunner-validation-error-no not = 0)
 86* Yes, so handle it
 87 perform handle-validation-error
 88 exit section
 89 end-if
 90
 91* Must have been a normal RETC from our screenset, so
 92* just service the screenset request.
 93
 94 move "successful" to program-string
 95
Dialog System User’s Guide

17.7 The Call Interface 321

dspubb.book Page 321 Monday, May 13, 2002 8:57 AM
 96 evaluate reason-for-returning
 97 when "+"
 98 add program-value-1 to program-value-2
 99 giving result-value
100
101 when "-"
102 subtract program-value-1 from program-value-2
103 giving result-value
104
105 when "*"
106 multiply program-value-1 by program-value-2
107 giving result-value
108
109 when "/"
110 divide program-value-1 by program-value-2
111 giving result-value
112 on size error
113 move "Bad result from divide"
114 to program-string
115 when other
116 move "sorry, unsupported function"
117 to program-string
118 end-evaluate
119
120 continue.

This section of code handles screenset requests following a RETC dialog
function within the screenset associated with this subprogram.

Checks are made in line 79 and in line 85 to see if there has been a
Dsrunner error or a validation error of some sort. If either error has
occurred it is handled accordingly, otherwise the screenset request is
handled.

123 handle-dsgrun-error section.
124* We end up here when a DSGRUN error occurs in the
125* screenset. In this example I am deciding to display the
126* error message myself. If this is the first time this
127* has occurred, I continue, otherwise I set the
128* RETURN-CODE indicating that DSRUNNER should terminate
129* me. If the return-code is zero DSRUNNER would continue
130* as if nothing had happened.
131 move dsrunner-error-code to error-number
132 move dsrunner-error-details-1 to error-details1
133 move dsrunner-error-details-2 to error-details2
134 display "dsrnr: "
135 "dsgrun error " error-number
136 ", " error-details1
Dialog System User’s Guide

322 Chapter 17 Sample Programs

dspubb.book Page 322 Monday, May 13, 2002 8:57 AM
137 ", " error-details2
138
139 if (handle-error-count = 0)
140 add 1 to handle-error-count
141 else
142* This will force dsrunner to terminate me
143 move 1 to return-code
144 end-if
145
146 continue.

This section of code handles dsrunner errors.

Line 143 shows how to terminate Dsrunner by returning a non-zero
return code.

149 handle-validation-error section.
150* We end up here when a screenset validation error has
151* occurred. Same rules apply here as for above.
152
153 move dsrunner-validation-error-no to error-number
154
155 display "dsrnr: validation error code " error-number
156
157* This will force dsrunner to terminate me
158 move 1 to return-code
159
160 continue.

This section of code handles user input errors.

17.7.2 The Push-pop Sample Program
The following sample program, push-pop.cbl, demonstrates the use of
the pushing and popping of screensets.

The COBOL programs, screensets, and associated files are included on
your samples disk. Instructions for compiling and running these
programs are given in the chapter Using the Screenset.

Push-pop uses three screensets:

• A file manager screenset.

• A print manager screenset.
Dialog System User’s Guide

17.7 The Call Interface 323

dspubb.book Page 323 Monday, May 13, 2002 8:57 AM
• A main screen from which the other screensets are called.

A full listing of the program is provided below. An explanation of the
functions used for pushing and popping is given after.

 1 $SET ANS85 MF
 2
 3 working-storage section.
 4 copy "ds-cntrl.mf ".
 5 copy "pushmain.cpb ".
 6 copy "filemgr.cpb ".
 7 copy "printmgr.cpb ".
 8
 9 01 new-screenset-name pic x(12).
10
11 01 action pic 9.
12 78 load-file value 1.
13 78 load-print value 2.
14 78 exit-program value 3.
15 01 end-of-actions-flag pic 9.
16 88 end-of-actions value 1.
17
18 procedure division.
19
20 main-process.
21 perform program-initialize
22 call "dsgrun" using ds-control-block,
23 pushmain-data-block
24 perform process-actions until end-of-actions
25 stop run.
26
27 program-initialize.
28 initialize ds-control-block
29 initialize pushmain-data-block
30 move ds-new-set to ds-control
31 move pushmain-data-block-version-no to
32 ds-data-block-version-no
33 move pushmain-version-no to ds-version-no
34 move "pushmain" to ds-set-name
35 move zero to end-of-actions-flag.
36
37 process-actions.
38 evaluate true
39 when pushmain-action = load-file
40 move "filemgr" to ds-set-name
41 move ds-push-set to ds-control
42 move 1 to ds-control-param
43 initialize filemgr-data-block
Dialog System User’s Guide

324 Chapter 17 Sample Programs

dspubb.book Page 324 Monday, May 13, 2002 8:57 AM
44 move filemgr-data-block-version-no to
45 ds-data-block-version-no
46 move filemgr-version-no to ds-version-no
47 call "dsgrun" using ds-control-block,
48 filemgr-data-block
49 perform file-mgr-work
50
51 when pushmain-action = load-print
52 move "printmgr" to ds-set-name
53 move ds-push-set to ds-control
54 move 1 to ds-control-param
55 initialize printmgr-data-block
56 move printmgr-data-block-version-no to
57 ds-data-block-version-no
58 move printmgr-version-no to ds-version-no
59 call "dsgrun" using ds-control-block,
60 printmgr-data-block
61 perform print-mgr-work
62 when pushmain-action = exit-program
63 move 1 to end-of-actions-flag
64 end-evaluate.
65
66 file-mgr-work.
67 move ds-quit-set to ds-control
68 call "dsgrun" using ds-control-block,
69 filemgr-data-block
70
71 move ds-continue to ds-control
72 call "dsgrun" using ds-control-block,
73 pushmain-data-block.
74
75 print-mgr-work.
76 move ds-quit-set to ds-control
77 call "dsgrun" using ds-control-block,
78 printmgr-data-block
79 move ds-continue to ds-control
80 call "dsgrun" using ds-control-block,
81 pushmain-data-block.

The function of this code is detailed as follows:

Lines 1-7: 1 $SET ANS85 MF
2
3 working-storage section.
4 copy "ds-cntrl.mf ".
5 copy "pushmain.cpb ".
6 copy "filemgr.cpb ".
7 copy "printmgr.cpb ".
Dialog System User’s Guide

17.7 The Call Interface 325

dspubb.book Page 325 Monday, May 13, 2002 8:57 AM
The first section of the program copies the appropriate Control Block
copyfile, and the generated copyfiles for each screenset that will be
used.

Line 9: 9 01 new-screenset-name pic x(12).

Next, the picture string for new-screenset-name is defined.

Lines 11-16: 11 01 action pic 9.
12 78 load-file value 1.
13 78 load-print value 2.
14 78 exit-program value 3.
15 01 end-of-actions-flag pic 9.
16 88 end-of-actions value 1.

Then, the values for the actions that will cause a particular screenset to
be loaded are declared.

Lines 20-25: 20 main-process.
21 perform program-initialize
22 call "dsgrun" using ds-control-block,
23 pushmain-data-block
24 perform process-actions until end-of-actions
25 stop run.

The first procedure in the program is the main-process. This performs
the routine program-initialization, then calls Dsgrun using ds-
control-block and the Data Block for the pushmain screenset. It
performs process-actions until end-of-actions is received and
stop-run occurs.

Lines 27-35: 27 program-initialize.
28 initialize ds-control-block
29 initialize pushmain-data-block
30 move ds-new-set to ds-control
31 move pushmain-data-block-version-no to
32 ds-data-block-version-no
33 move pushmain-version-no to ds-version-no
34 move "pushmain" to ds-set-name
35 move zero to end-of-actions-flag.

The program-initialize procedure initializes the Control and Data
Blocks, and moves the appropriate values for the screenset pushmain.
Note that line 30 places the value N in ds-control. This is the value
Dialog System User’s Guide

326 Chapter 17 Sample Programs

dspubb.book Page 326 Monday, May 13, 2002 8:57 AM
you should use if Dsgrun has not yet been called and started a screenset.

Lines 37-39: 37 process-actions.
38 evaluate true
39 when pushmain-action = load-file

This section of the program performs evaluations to test whether a new
screenset should be loaded. The main screenset is now loaded and has
focus until the value of pushmain-action changes. If the value of
pushmain-action becomes load-file, the screenset for the file
manager will be loaded.

Lines 40-41: 40 move "filemgr" to ds-set-name
41 move ds-push-set to ds-control

When pushmain-action is equal to load-file:

• The screenset name, filemgr, is moved to ds-set-name

• The value ds-push-set is moved to ds-control.

Note: ds-push-set is a level-78 data item in ds-cntrl.mf, with a
defined value of S.

Lines 43-49: 43 initialize filemgr-data-block
44 move filemgr-data-block-version-no to
45 ds-data-block-version-no
46 move filemgr-version-no to ds-version-no
47 call "dsgrun" using ds-control-block,
48 filemgr-data-block
49 perform file-mgr-work

This section of the program performs initialization of the Control Block
and Data Block, and checks version information. It then calls Dsgrun
using the file manager screenset.

Lines 51-61: 51 when pushmain-action = load-print
52 move "printmgr" to ds-set-name
53 move ds-push-set to ds-control
54 move 1 to ds-control-param
55 initialize printmgr-data-block
56 move printmgr-data-block-version-no to
57 ds-data-block-version-no
58 move printmgr-version-no to ds-version-no
Dialog System User’s Guide

17.7 The Call Interface 327

dspubb.book Page 327 Monday, May 13, 2002 8:57 AM
59 call "dsgrun" using ds-control-block,
60 printmgr-data-block
61 perform print-mgr-work

This section performs the identical functions for the print manager
screenset if pushmain-action becomes 2.

Lines 62-63: 62 when pushmain-action = exit-program
63 move 1 to end-of-actions-flag

When pushmain-action is equal to exit-program, the value 1 is
moved to the end-of-actions-flag, which terminates the program.

Lines 66-69: 66 file-mgr-work.
67 move ds-quit-set to ds-control
68 call "dsgrun" using ds-control-block,
69 filemgr-data-block

File management functions are performed by Dialog System and not
the calling program. When they are completed, the active screenset is
closed and the new screenset is popped off the stack. This is performed
by moving ds-quit-set to ds-control. When Dsgrun is called it will
use ds-control-block but ignore filemgr-data-block.

Lines 71-73: 71 move ds-continue to ds-control
72 call "dsgrun" using ds-control-block,
73 pushmain-data-block.

The program then moves ds-continue to ds-control causing the
screenset pushmain to be popped from the screenset stack. Processing
is continued from where it left off.

Lines 75-81: 75 print-mgr-work.
76 move ds-quit-set to ds-control
77 call "dsgrun" using ds-control-block,
78 printmgr-data-block
79 move ds-continue to ds-control
80 call "dsgrun" using ds-control-block,
81 pushmain-data-block.

The same operation is repeated for the print management functions.
Dialog System User’s Guide

328 Chapter 17 Sample Programs

dspubb.book Page 328 Monday, May 13, 2002 8:57 AM
17.7.2.1 The Custom1 Sample Program

custom1.cbl demonstrates the use of multiple instances of the same
screenset. Because it is a long program, only those sections relevant to
the use of multiple instances are shown. The COBOL programs,
screensets, and associated files are included on your samples disk.

The program uses a main screenset called Custom1 and multiple
instances of a second screenset called Custom2, which is mapped onto
the items in a data group.

Lines 45-46: 45 78 main-ss-name value "custom1".
46 78 instance-ss-name value "custom2".

Sets up the picture strings for the main screenset name and the instance
screenset name in the Working-Storage Section of your program.

Lines 48-51: 48 copy "ds-cntrl.mf ".
49 copy "custom1.cpb ".
50 copy "custom2.cpb ".
51 copy "dssysinf.cpy ".

Copies the various copyfiles into the program working storage area.
Note that dssysinf.cpy is copied. This copyfile is always required if you
are using multiple instances.

Lines 53-54: 53 01 instance-table value all x"00".
54 03 group-record-no pic 9(2) comp-x occurs 32.
55 01 group-index pic 9(2) comp-x value 0.

Sets up an instance table to map the data group onto the screenset
fields.

Lines 57-61: 57 78 refresh-text-and-data-proc value "p255".
58 78 dialog-system value "dsgrun".
59
60 77 array-ind pic 9(4) comp.
61 77 display-error-no pic 9(4).

Declares various values. The dialog procedure p255 is used to refresh
the text and data.
Dialog System User’s Guide

17.7 The Call Interface 329

dspubb.book Page 329 Monday, May 13, 2002 8:57 AM
Lines 63-64: 63 01 main-screenset-id pic x(8).
64 01 instance-screenset-id pic x(8).

Defines picture strings for the main-screenset-id and instance-
screenset-id.

Line 66: 66 01 temp-word pic 9(4) comp-x.

The temp-word picture string is used to hold the value indicating the
active Data Block. In effect it is a function code. This is applied later in
the program where the value of temp-word can be evaluated and the
appropriate action performed.

Line 103: 103 move data-block-ptr(1:2) to temp-word(1:2)

A problem when multiple screensets are used is to know which
screenset Data Block is active. This code moves the first two bytes of
the Data Block into temp-word where it is used as a function code.

Lines 104-143: 104 evaluate temp-word
105
106 when 1
107 perform set-up-for-ss-change
108 move x"0000" to data-block-ptr(1:2)
109
110 when 2
111 perform poss-invoke-new-instance
112 move x"0000" to data-block-ptr(1:2)
113
114 when 3
115 perform close-instance
116 move x"0000" to data-block-ptr(1:2)
117
118 when 4
119 perform update-details
120 move x"0000" to data-block-ptr(1:2)
121
122 when 5
123 perform close-all-instances
124 move x"0000" to data-block-ptr(1:2)
...
141 end-evaluate
142 perform clear-flags
143 perform call-dialog-system.
Dialog System User’s Guide

330 Chapter 17 Sample Programs

dspubb.book Page 330 Monday, May 13, 2002 8:57 AM
Evaluates the value of temp-word and performs the appropriate action.
When the evaluation finishes, all flags are cleared and Dialog System is
called.

Lines 271-287: 271 call-dialog-system section.
272
273 call dialog-system using ds-control-block,
274 data-block-ptr
275 ds-event-block
276 if (ignore-error = 0)
277 if not ds-no-error
278 move ds-error-code to display-error-no
279 move ds-error-details-1 to display-error-details1
280 move ds-error-details-2 to display-error-details2
281 display "ds error no: display-error-no
282 ", " display-error-details1
283 ", " display-error-details2
284 "Screenset is " ds-set-name
285 end-if
286 end-if
287 .

Calls Dialog System using ds-control-block, data-block-ptr (the
pointer to the particular screenset instance Data Block), and ds-event-
block. If Dialog System cannot be called, it displays an error.

Lines 284-297: 294 set-up-for-ss-change section.
295 move ds-event-screenset-id to ds-set-name
296 move ds-use-instance-set to ds-control
297 move ds-event-screenset-instance-no to
298 ds-screenset-instance

Moves the parameters to Dsgrun to cause a change to a new screenset
as a result of an OTHER-SCREENSET event. You could check whether you
want to go to the first screenset then move ds-use-set instead of ds-
use-instance-set. The first screenset instance number is still
returned, even though there is only one on the stack.

Lines 319-329: 319 poss-invoke-new-instance section.
320
321 set not-found to true
322 move 0 to group-index
323 perform until found or group-index = 10
324
325 add 1 to group-index
326 if group-record-no(group-index) =
Dialog System User’s Guide

17.7 The Call Interface 331

dspubb.book Page 331 Monday, May 13, 2002 8:57 AM
327 customer-index-of-interest
328 set found to true
329 end-if

Checks to see if the required group-occurrence has already been
instantiated.

Lines 331-341: 331 if found
332 move ds-use-instance-set to ds-control
333 move instance-screenset-id to ds-set-name
334 move group-index to ds-screenset-instance
335 move group-record-no(ds-screenset-instance)
336 to group-index
337
338 move "show-yourself" to ds-procedure
339 move customer-group-001-item(group-index) to
340 redef-block
341 set address of data-block-ptr
 to address of data-block

If the group occurrence has been found, brings it into focus.

Lines 344-348: 344 move ds-push-set to ds-control
345 move instance-ss-name to ds-set-name
346 move data-block-version-no to ds-data-block-version-no
347 move version-no to ds-version-no
348 move ds-screen-noclear to ds-control-param

If the group occurrence is not found, creates a new screenset
occurrence.

Lines 353-361: 353 move 1 to ds-clear-dialog
354 move "init-proc" to s-procedure
355
356 move customer-index-of-interest to group-index
357 move customer-group-001-item(group-index) to
358 redef-block
359 set address of data-block-ptr
360 to address of data-block
361 perform call-dialog-system

Moves the procedure init-proc to ds-procedure to show the first
window. When control is returned, sets the address of the Data Block
pointer.
Dialog System User’s Guide

332 Chapter 17 Sample Programs

dspubb.book Page 332 Monday, May 13, 2002 8:57 AM
Lines 365-369: 365 move ds-screenset-id to instance-screenset-id
366 move group-index to
367 group-record-no(ds-screenset-instance)
368 end-if
369 .

Stores the screenset-id and the line of the group this screenset instance
is dealing with.

Lines 370-376: 370 close-instance section.
371
372 move ds-quit-set to ds-control
373 move 0 to group-record-no(ds-screenset-instance)
374 .

Closes a particular screenset instance.

Lines 377-389: 377 update-details section.
...
382 move group-record-no(ds-screenset-instance) to
383 group-index
384 move group-index to customer-index-of-interest
385 move redef-block
 to customer-group-001-item(group-index)
...
389 move 0 to group-record-no(ds-screenset-instance)

Copies the information from the screenset instance to the main
screenset and sets customer-index-of-interest to enable the
screenset to update the correct group occurrence. It then clears the
value of the instance table by moving 0 to the group-record-no.

Lines 394-401: 394 perform derivations
395 move ds-use-set to ds-control
396 move main-screenset-id to ds-set-name
397 move "refresh-proc" to ds-procedure
398
399 set address of data-block-ptr to
400 address of customer-data-block
401 .

Reinstates the main screenset and causes a refresh of the list box.
Dialog System User’s Guide

17.7 The Call Interface 333

dspubb.book Page 333 Monday, May 13, 2002 8:57 AM
Lines 408-422: 404 close-all-instances section.
...
408 move 0 to group-index
409 move 1 to ignore-error
410 perform 10 times
411
412 add 1 to group-index
413 if group-record-no(group-index) not = 0
414 move instance-screenset-id to ds-set-name
415 move group-index to ds-screenset-instance
416 move ds-use-instance-set to ds-control
417 move "terminate-proc" to ds-procedure
418 perform call-dialog-system
419 move 0 to group-record-no(group-index)
420 end-if
421
422 end-perform

Closes all active screenset instances.

Lines 427-428: 427 set address of data-block-ptr to
428 address of customer-data-block

After closing all active screenset instances, reinstates the main
screenset and sets the Data Block pointer.
Dialog System User’s Guide

334 Chapter 17 Sample Programs

dspubb.book Page 334 Monday, May 13, 2002 8:57 AM
Dialog System User’s Guide

335

dspubb.book Page 335 Monday, May 13, 2002 8:57 AM
18 Tutorial - Creating a Sample
Screenset

In this chapter you follow the steps for creating an application using
Dialog System as described in the chapter Introduction to Dialog
System.

In this tutorial, imagine you are a director of a road running race that
members of the public can enter by sending in entry forms published in
various newspapers and sporting magazines. You need to design an
interface for a system that will process the entries and allocate a
unique running number to each entrant. You also want to monitor the
effectiveness of your advertising by recording the response from each
advertisement.

The first screen of your interface needs to collect details such as name,
address, age, sex, running club, and advertisement code.

To create the screenset for the race entry system, first start Dialog
System in the usual way.

18.1 The Sample Data Definition
You do not need to create the data model for the sample screenset. A
data model has been created for you, and this section will guide you
through defining the data according to that model.

18.1.1 Defining the Data Block
You need to define the Data Block and create master fields for the
display fields you will set up as objects. Each entry field has an
associated master field in which to store the data entered.
Dialog System User’s Guide

336 Chapter 18 Tutorial - Creating a Sample Screenset

dspubb.book Page 336 Monday, May 13, 2002 8:57 AM
To define the Data Block:

1 Select Data Block on the Screenset menu.

Dialog System displays the Data Definition window.

2 Select Prompted mode on the Options menu.

The Data Type dialog box is shown.

3 Select Field and click OK.

Dialog System displays the Field Details dialog box.

4 Specify NAME, select Alphanumeric, and specify 15 in Int.

This defines the Name field and is the master field for the object
called D-NAME that you will define in the next step.

5 Click OK to create a blank line ready for the next entry.

Now repeat the above process to define the following fields:

This completes the Data Block for the sample program. The Data
Definition window should now look similar to the one shown in
Figure 18-1.

Field Name Field
Type and
Size

Field Usage

MALE 9(1) flag field used to hold the state of the radio
buttons.

ADDRESS X(100) master field for D-ADDRESS.

CLUB X(30) master field for D-CLUB.

AGE X(3) used in the age list box.

CODE X(3) master field for D-CODE.

FLAG-GROUP Group start with 1 repeat. Used to hold flags.

EXIT-FLG 9(1) flag used to indicate user has selected Exit.

SAVE-FLG 9(1) flag used to indicate user has pressed Save.

CLR-FLG 9(1) flag used to indicate user has pressed Clear.
Dialog System User’s Guide

18.1 The Sample Data Definition 337

dspubb.book Page 337 Monday, May 13, 2002 8:57 AM
Figure 18-1. Data Definition

18.1.2 Creating the Sample Window
Object
The sample screenset has a single window containing various control
objects, and a message box. You must define the window first, because
you do not have access to control objects until you have defined a
window on which to place them.

Before you start to define objects, set Auto properties to off, so that
you can label objects as you create them:

1 Select Include on the Options menu on the main menu bar.

2 Select Auto properties on the drop down menu.

To define the Primary window:

1 Select the primary window icon on the Objects toolbar or choose
Primary window on the Object menu.

2 Move the window box until the top left-hand corner is near the top
left of your desktop.

3 Click to fix the position.
Dialog System User’s Guide

338 Chapter 18 Tutorial - Creating a Sample Screenset

dspubb.book Page 338 Monday, May 13, 2002 8:57 AM
4 Enlarge the window by moving the mouse down and right.

Make the window larger than the Dialog System window.

5 Click to fix its size.

6 When the Properties dialog box appears, specify a name of MAIN
and a title of Redvale 5-Miler Entries.

7 Select the Options tab and deselect Menu.

8 Leave the rest of the dialog box unaltered to accept the default
property values.

The screen now looks like the one shown in Figure 18-2.

Figure 18-2. Defining the Main Window

18.1.3 Creating the Sample Control
Objects
Now define the controls in the following list by:

1 Selecting them on the Objects toolbar or the Object menu.
Dialog System User’s Guide

18.1 The Sample Data Definition 339

dspubb.book Page 339 Monday, May 13, 2002 8:57 AM
2 Placing them in the primary window, to look like Figure 18-3.

Figure 18-3. Adding Controls

3 Making the indicated changes to their properties in their property
dialog boxes.

Leave all the other properties as the default values.

Text Label for the competitor name field. Specify Name.

Entry field To contain the competitor’s name. Specify D-NAME
in Name, X(15) in Picture and NAME in Master.

Text Label for the competitor address field. Specify
Address.

Multiple line
entry field

To contain the competitor’s address. Specify D-
ADDRESS in Name, 120 in Length and ADDRESS in
Master.

Text Label for the competitor’s club field. Specify Club.

Entry field To contain the competitor’s running club. Specify
D-CLUB in Name, X(30) in Picture and CLUB in
Master.

Radio button To show the competitor’s sex. Specify M in Text and
set the Initial state to Enabled.
Dialog System User’s Guide

340 Chapter 18 Tutorial - Creating a Sample Screenset

dspubb.book Page 340 Monday, May 13, 2002 8:57 AM
Move and size the controls (and the primary window if necessary) to
tidy your window.

To make the radio buttons work correctly, you need to place them in a
control group. Similarly, the push buttons should be in a control group.

To define control groups:

1 Select Edit.

2 Select Define control group.

3 Position the top left corner of the box that appears.

4 Click and extend the box until it covers the required controls.

5 Click again.

Radio button To show competitor’s sex. Specify F in Text and set
the Initial state to Enabled.

Group box Position over the two radio buttons. Specify Sex in
Text.

Text Label for age class field. Specify Age class.

List box To show the competitor’s age class. Select Initial
Text Defined. Click on List text and specify the age
classes, one per line, as follows: 10-18, 19-35, 36-40,
41-45, 46-50, 51-55, 56-60, 60+. Deselect Horizontal
scroll bar check box.

Text Label for advertisement code field. Specify Code.

Entry field To contain an advertisement code. Specify D-CODE
in Name, X(3) in Picture and CODE in Master.

Push button Button to enter the data into the competitor data
base. Specify "Save" in Text, enable Default Button
and set the Initial State to Enabled.

Push button Button to clear the current entry. Specify Clear in
Text and set the Initial State to Enabled.

Push button Button to get help. Specify Help in Text and set the
Initial State to Enabled.
Dialog System User’s Guide

18.1 The Sample Data Definition 341

dspubb.book Page 341 Monday, May 13, 2002 8:57 AM
18.1.4 Creating a Message Box
Create a message box to present a help message when the user presses
Help:

1 Select a message box object on the Objects toolbar or the Object
menu.

The Properties dialog box is displayed immediately.

2 Specify HELP-MSG in Name.

3 Specify Help in Heading.

4 Specify some suitable help text about the window in Text.

5 Select Information on the Icon drop down list.

This completes the object definitions for the sample screenset.

18.1.5 Saving Your Screenset

It is a good idea to save a screenset whenever you have finished a stage
in the definition process. To save this sample screenset:

1 Select Save As because this is the first time you have saved it.

Dialog System displays a dialog box for you to enter the filename
and directory under which you want to save.

2 Specify entries.gs as the name.

After saving the sample screenset once, you can use Save whenever
you want to save the screenset. If you want to try out different versions
of the screenset, use Save As with a new name to create another
version.
Dialog System User’s Guide

342 Chapter 18 Tutorial - Creating a Sample Screenset

dspubb.book Page 342 Monday, May 13, 2002 8:57 AM
18.1.6 Testing
You can test your screenset even without dialog, to make sure that the
desktop layout looks good and that you have set up the fields correctly.
To test the sample screenset:

1 Select Debug on the File menu.

Dialog System displays the Screenset Animator window.

2 Now select Run on the Execute menu.

Your sample screenset should look similar to the one shown in
Figure 18-4.

Figure 18-4. Running the Screenset from the Screenset Animator

Try entering some data into the fields. If you try to enter more than
15 characters into the Name field, Dialog System just produces a
beep.

Notice that you can only select either M or F because the radio
buttons are grouped as a control group and you can select only one
age class from the list box.
Dialog System User’s Guide

18.1 The Sample Data Definition 343

dspubb.book Page 343 Monday, May 13, 2002 8:57 AM
3 Press Esc to return to the Screenset Animator window.

The "RETC has just been executed" dialog box is shown.

4 Click Interrupt.

5 Select Exit on the Execute menu to return to Dialog System’s main
window.

The Screenset Animator is more useful after you have defined the
dialog for the sample screenset.

18.1.7 Defining Dialog
The sample screenset would not be complete without dialog
definitions. The following sections explain how to define the object
and global dialog for the sample screenset.

18.1.7.1 The Sample Object Dialog Definitions

To define dialog for an object:

1 Select the Save push button object.

2 Select Object dialog on the Edit menu.

Dialog System displays the Dialog Definition window. The default
event BUTTON-SELECTED is already displayed in the Dialog
Definition window.

3 Select Prompted mode on the Options menu.

Dialog System then prompts you for dialog entries in a similar way
to when you define data.

4 Use the cursor key to move down one line.

Dialog System displays a dialog box for you to choose the type of
line you want to enter.

5 Select Comment and enter some text explaining what your dialog
does.

For example, "Dialog System passes control to a procedure that
handles creating or changing a record in the entry database".
Dialog System User’s Guide

344 Chapter 18 Tutorial - Creating a Sample Screenset

dspubb.book Page 344 Monday, May 13, 2002 8:57 AM
6 Specify Action when SAVE pressed.

7 Select Function.

8 Select SET-FLAG from the scrollable list.

A parameter dialog box appears.

9 Specify the name of the flag to be set against parameter 1.

The spaces for parameters 2 and 3 are disabled because they are not
required with this function.

10 Specify SAVE-FLG(1) against parameter 1, to set the Save flag when
the user presses Save.

11 Select Function.

12 Select RETC from the scrollable list.

RETC does not have any parameters. It returns control to the calling
program. The COBOL program that uses this screenset checks the
Save flag and saves the contents of the screen if the flag is set.

In a similar way you can attach dialog to the other objects in the sample
screenset.

Dialog System helps you by providing context menus. If you right-click
on any of the dialog lines, Dialog System displays a context-sensitive
menu of choices. For a more detailed explanation of context menus, see
the chapter Window Objects.

The dialog for the remaining objects is described below.

18.1.7.1.1 Clear Button

Dialog: BUTTON-SELECTED
 SET-FLAG CLR-FLG(1)
 RETC

Effect: When the user presses Clear, Dialog System sets the Clear flag and
returns control to the calling program. The calling program will clear
the entry fields (effectively cancelling the entry).
Dialog System User’s Guide

18.1 The Sample Data Definition 345

dspubb.book Page 345 Monday, May 13, 2002 8:57 AM
18.1.7.1.2 Help Button

Dialog: BUTTON-SELECTED
 INVOKE-MESSAGE-BOX HELP-MSG $NULL $EVENT-DATA

Effect: When the user presses Help, Dialog System displays the message box
you created. This provides appropriate help text.

18.1.7.1.3 M Radio Button

Dialog: BUTTON-SELECTED
 SET-FLAG MALE

Effect: When the user presses M, Dialog System sets the flag MALE to 1,
meaning M (for male competitor).

18.1.7.1.4 F Radio Button

Dialog: BUTTON-SELECTED
 CLEAR-FLAG MALE

Effect: When the user presses F, Dialog System sets the flag MALE to 0,
meaning F (for female competitor).

18.1.7.1.5 Age Class List Box

Dialog ITEM-SELECTED
 RETRIEVE-LIST-ITEM $CONTROL AGE $EVENT-DATA

Effect When the user selects an age class from the list, Dialog System puts the
value of the selected list item into the AGE field.
Dialog System User’s Guide

346 Chapter 18 Tutorial - Creating a Sample Screenset

dspubb.book Page 346 Monday, May 13, 2002 8:57 AM
18.1.7.2 The Sample Global Dialog Definition

Now define global dialog for the screenset, by selecting Global dialog
on the Screenset menu.

The default global dialog is as follows:

 ESC
 RETC
 CLOSED-WINDOW
 RETC

Add two lines to the dialog so it reads:

 ESC
 SET-FLAG EXIT-FLG(1)
 RETC
 CLOSED-WINDOW
 SET-FLAG EXIT-FLG(1)
 RETC

This dialog sets the exit flag and returns control to your application (the
calling) program if the user presses Esc or uses the system menu to close
the window.

Add the following dialog:

 REFRESH-DATA
 REFRESH-OBJECT MAIN

This dialog refreshes the main window whenever the calling program
directs Dialog System to do so. The chapter Using the Screenset
describes how your application program interfaces with the call
interface.

Add the following dialog:

 SCREENSET-INITIALIZED
 SET-FLAG MALE
 SET-BUTTON-STATE RB1 1

This sets the first radio button (Male) on as a default. Whenever you
enter a group of radio buttons, one of these has to be set on initially.

See the chapter Using Dialog for more information on how to use
dialog.
Dialog System User’s Guide

18.1 The Sample Data Definition 347

dspubb.book Page 347 Monday, May 13, 2002 8:57 AM
18.1.8 Testing the Screenset Again
Now save the screenset again, then try running the sample again. Enter
data into the fields and choose the appropriate radio button and list
item. This time, when you press Save after you have made these
changes, Dialog System displays the Screenset Animator window again.

18.1.9 Changing the Screenset
After you test the sample screenset again, you may want to make
changes to it (for example, to improve the screen layout). You can
repeat any of the steps described in this chapter until you are satisfied
with the screenset.

18.1.10 Summary
In this chapter, you have:

• Created a sample screenset.

• Defined data.

• Defined objects.

• Saved the screenset.

• Tested the screenset.

• Added dialog to the screenset.

• Tested it again.

• Made any changes by repeating steps as necessary.

Now you need to write the COBOL program that will use the user
interface contained in your sample screenset. The
DialogSystem\demo\entries directory contains a demonstration
version of the sample screenset, called entriesx.gs.
Dialog System User’s Guide

348 Chapter 18 Tutorial - Creating a Sample Screenset

dspubb.book Page 348 Monday, May 13, 2002 8:57 AM
18.2 Further Information
The next chapter, Tutorial - Using the Sample Screenset, gives advice on
writing the COBOL program for the sample screenset. The chapter
contains sample code to produce a very simple program that will read
the user inputs and store or clear them as indicated by the user.
Dialog System User’s Guide

349

dspubb.book Page 349 Monday, May 13, 2002 8:57 AM
19 Tutorial - Using the Sample
Screenset

The chapter Tutorial - Creating a Sample Screenset explained how to
create the Entries screenset containing the user interface for a sample
application. This chapter explains how to write an application program
to use the Entries screenset, and guides you through the following
steps:

1 Generating the COBOL copyfile from the screenset.

2 Writing the COBOL application program with the necessary calls to
the Dialog System run-time.

3 Debugging and animating the COBOL program.

4 Packaging your application.

19.1 Generating the Data Block Copyfile
The Data Block copyfile contains the definition of the Data Block
passed from the calling program to Dialog System at run time. You
must include the copyfile in your calling program. The copyfile also
contains version checking information.

Dialog System enables you to generate a copyfile from your screenset,
and set options determining how that copyfile is generated.

To create the copyfile for your sample screenset, first set the screenset
configuration options, then generate the copyfile:

1 Select Configuration on the Options menu.

2 Select Screenset on the popup menu.

3 Enter the name Entry in Screenset identifier.

4 Check that Fields prefixed by screenset ID check box is on.
Dialog System User’s Guide

350 Chapter 19 Tutorial - Using the Sample Screenset

dspubb.book Page 350 Monday, May 13, 2002 8:57 AM
This specifies that all the data names from the data block are
prefixed by the string "entry". The sample program uses these
prefixed data names.

5 Select Enter or OK to accept the other defaults from this dialog box.

6 Select Generate on the File menu.

7 Select Data block COPY-File from the drop down menu that appears.

8 Enter the name of the file to be used for the copyfile - entries.cpb.

9 Select Enter.

Dialog System generates the copyfile for the sample screenset using
the copyfile options you have just set.

19.1.1 Selecting Options and
Generating the Copyfile
You have already generated the sample copyfile.

19.2 Writing the COBOL Application Program
A COBOL program that uses the sample screenset you created in the
previous chapter is shown below. This program is provided with your
Dialog System software as a demonstration program. It is called
entries.cbl.

Your requirements and programming style may result in a different
program structure.

 1 $set ans85
 2 identification division.

 3 program-id. race-entries.

 4 environment division.

 5 input-output section.
 6 file-control.
Dialog System User’s Guide

19.2 Writing the COBOL Application Program 351

dspubb.book Page 351 Monday, May 13, 2002 8:57 AM
 7 select entry-file assign "entries.dat"
 8 access is sequential.

 9 data division.

10 file section.
11 fd entry-file.
12 01 entry-record.
13 03 file-name pic x(15).
14 03 file-male pic 9.
15 03 file-address pic x(100).
16 03 file-club pic x(30).
17 03 file-code pic x(3).

18 working-storage section.
19 copy "ds-cntrl.v1".
20 copy "entries.cpb".

21 78 refresh-text-and-data-proc value 255
22 77 display-error-no pic 9(4).

23 procedure division.

24 main-process section.
25 perform program-initialize
26 perform program-body until entry-exit-flg-true
27 perform program-terminate.

28 program-initialize section.
29 initialize entry-data-block
30 initialize ds-control-block
31 move entry-data-block-version-no
32 to ds-data-block-version-no
33 move entry-version-no to ds-version-no
34 open output entry-file
35 perform load-screenset.

36 program-body section.
37 * Process the returned user action (in the flags); clear
38 * those flags and call Dialog System again.

39 evaluate true
40 when entry-save-flg-true
41 perform save-record
42 when entry-clr-flg-true
43 perform clear-record
44 end-evaluate
45 perform clear-flags
Dialog System User’s Guide

352 Chapter 19 Tutorial - Using the Sample Screenset

dspubb.book Page 352 Monday, May 13, 2002 8:57 AM
46 perform call-dialog-system.

47 program-terminate section.
48 close entry-file
49 stop run.

50 save-record section.
51 * Save the current details in the file if all the text
52 * fields contain values.

53 if (entry-name < > spaces) and
54 (entry-address < > spaces) and
55 (entry-club < > spaces) and
56 (entry-code < > spaces)
57 move entry-name to file-name
58 move entry-male to file-male
59 move entry-address to file-address
60 move entry-club to file-club
61 move entry-code to file-code
62 write entry-record
63 end-if.

64 clear-record section.
65 * Clear the current details by initializng the data block

66 initialize entry-record
67 initialize entry-data-block
68 perform set-up-for-refresh-screen.

69 clear-flags section.
70 initialize entry-flag-group.

71 set-up-for-refresh-screen section.
72 * Force Dialog System to execute the procedure P225 (in
73 * global dialog) the next time it is called. This
74 * procedure simply refreshes the main window with the
75 * values from the data block.

76 move "refresh-data" to ds-procedure.

77 load-screenset section.
78 * Specify the screenset to be used and call Dialog System

79 move ds-new-set to ds-control
80 move "entries" to ds-set-name
81 perform call-dialog-system.
Dialog System User’s Guide

19.2 Writing the COBOL Application Program 353

dspubb.book Page 353 Monday, May 13, 2002 8:57 AM
82 call-dialog-system section.
83 call "dsgrun" using ds-control-block,
84 entry-data-block.
85 if not ds-no-error
86 move ds-error-code to display-error-no
87 display "ds error no: " display-error-no
88 perform program-terminate
89 end-if.

Lines 1 to 22: 1 $set ans85
2 identification division.

3 program-id. race-entries.

4 environment division.

5 input-output section.
6 file-control.
7 select entry-file assign "entries.dat"
8 access is sequential.

9 data division.

10 file section.
11 fd entry-file.
12 01 entry-record.
13 03 file-name pic x(15).
14 03 file-male pic 9.
15 03 file-address pic x(100).
16 03 file-club pic x(30).
17 03 file-code pic x(3).

18 working-storage section.
19 copy "ds-cntrl.v1".
20 copy "entries.cpb".

21 78 refresh-text-and-data-proc value 255
22 77 display-error-no pic 9(4).

These lines set up the records for storage of the entries input by the
user.
Dialog System User’s Guide

354 Chapter 19 Tutorial - Using the Sample Screenset

dspubb.book Page 354 Monday, May 13, 2002 8:57 AM
Lines 23 to 27: 23 procedure division.

24 main-process section.
25 perform program-initialize
26 perform program-body until entry-exit-flg-true
27 perform program-terminate.

These lines structure the whole program, making sure that it ends when
the user presses Esc or uses the System menu to close the window. These
actions set the Exit flag in the screenset. The flag setting is passed to the
program for action.

Lines 28 to 35: 28 program-initialize section.
29 initialize entry-data-block
30 initialize ds-control-block
31 move entry-data-block-version-no
32 to ds-data-block-version-no
33 move entry-version-no to ds-version-no
34 open output entry-file
35 perform load-screenset.

The Data Block copyfile contains not only the user data but some
version numbers that Dialog System checks against the screenset when
it is called. To do this, the calling program must copy them into data
items in the Control Block before it calls the Dialog System run-time.

When you write your calling program, you must copy the copyfile into
the program Working-Storage Section using the statement: copy "ds-
cntrl.mf". If you are using ANSI-85 conformant COBOL then you
should use the copyfile ds-cntrl.ans.

You also need to make sure that the Control Block contains the name of
the screenset and other information that controls Dialog System
behavior.

Lines 36 to 46: 36 program-body section.
37 * Process the returned user action (in the flags); clear
38 * those flags and call Dialog System again.

39 evaluate true
40 when entry-save-flg-true
41 perform save-record
42 when entry-clr-flg-true
43 perform clear-record
44 end-evaluate
Dialog System User’s Guide

19.2 Writing the COBOL Application Program 355

dspubb.book Page 355 Monday, May 13, 2002 8:57 AM
45 perform clear-flags
46 perform call-dialog-system.

Dialog System enables the user to decide which functions the program
is to perform rather than the program dictating the user’s actions. The
flags set in the Data Block returned from Dialog System contain values
resulting from the user’s action. These values tell the program what to
do next.

The program can respond in a variety of ways including:

• Modifying stored information.

Done in the save-record section.

• Retrieving additional information from a database.

Not done in this application.

• Displaying results or error messages.

Done in the call-dialog-system section, if an error occurs when
the program calls Dialog System.

• Providing assistance in the use of the application.

In this simple application, help is handled entirely by a message box
in Dialog System. An alternative way of handling help would be to
write a section of code in the program to provide help whenever a
Help flag was set.

• Validating the information entered by the user.

A minimal level of validation is done in the save-record section
to ensure that empty records are not saved. Obviously, more
complex validation can be done both by the program and by
Dialog System itself at the input stage.

• Requesting additional input from the user.

By returning to Dialog System after saving or clearing the record.

Lines 47 to 49: 47 program-terminate section.
48 close entry-file
49 stop run.

These lines end the program when an error occurs or when the user
presses Esc or uses the System menu to close the window.
Dialog System User’s Guide

356 Chapter 19 Tutorial - Using the Sample Screenset

dspubb.book Page 356 Monday, May 13, 2002 8:57 AM
Lines 50 to 63: 50 save-record section.
51 * Save the current details in the file if all the text
52 * fields contain values.

53 if (entry-name < > spaces) and
54 (entry-address < > spaces) and
55 (entry-club < > spaces) and
56 (entry-code < > spaces)
57 move entry-name to file-name
58 move entry-male to file-male
59 move entry-address to file-address
60 move entry-club to file-club
61 move entry-code to file-code
62 write entry-record
63 end-if.

These lines save the user’s input if the user has pressed Save. Pressing
this button sets the Save flag which the program tests in the program-
body section. The input is not saved if the record is empty.

Lines 64 to 68: 64 clear-record section.
65 * Clear the current details by initializing the data block.

66 initialize entry-record
67 initialize entry-data-block
68 perform set-up-for-refresh-screen.

These lines clear the current inputs from the screen and from the Data
Block when the user presses Clear. Pressing this button sets the Clear
flag which the program tests in the program-body section.

Lines 69 to 76: 69 clear-flags section.
70 initialize entry-flag-group.

71 set-up-for-refresh-screen section.

72 * Force Dialog System to execute the procedure P225 (in
73 * global dialog) the next time it is called. This
74 * procedure simply refreshes the main window with the
75 * values from the data block.

76 move "refresh-data" to ds-procedure.

These lines clear the flags and tell Dialog System to refresh the screen
ready for the next user inputs.
Dialog System User’s Guide

19.3 Debugging and Animating the COBOL Program 357

dspubb.book Page 357 Monday, May 13, 2002 8:57 AM
Lines 77 to 89: 77 load-screenset section.
78 * Specify the screenset to be used and call Dialog System

79 move ds-new-set to ds-control
80 move "entries" to ds-set-name
81 perform call-dialog-system.

82 call-dialog-system section.
83 call "dsgrun" using ds-control-block,
84 entry-data-block.
85 if not ds-no-error
86 move ds-error-code to display-error-no
87 display "ds error no: " display-error-no
88 perform program-terminate
89 end-if.

These lines load the correct screenset and call Dialog System. The
second section also checks for calling errors and ends the program if an
error occurs.

19.3 Debugging and Animating the COBOL
Program

Your COBOL system provides an editing, debugging and animating
environment.

When you are debugging an application, the source code of each
program is displayed in a separate window. When you animate the
code, each line of the source is highlighted in turn as each statement is
executed, showing the effect of each statement. You can control the
pace at which the program executes and can interrupt execution to
examine and change data items. See the topic Debugging in the Help
for more information.
Dialog System User’s Guide

358 Chapter 19 Tutorial - Using the Sample Screenset

dspubb.book Page 358 Monday, May 13, 2002 8:57 AM
19.4 Packaging Your Application
To create the finished application you must complete various subtasks.

You use the Project facility from within Net Express to build your Dialog
System application. See the topic Building Applications in your Help for
further details.

The topic Compiling in your Help explains what you must do next to
prepare your application for production.

When testing is completed, you are ready to assemble the finished
product. A finished product can be copied onto diskettes, sent to a
customer, and loaded onto another machine to run as an application.

Depending on the size of the application, the finished product consists
of one or more of the following:

• Executable modules. These are in the industry standard .exe and dll
file format.

• Run-time support files. These files perform functions such as file I/O
and memory management.
Dialog System User’s Guide

359

dspubb.book Page 359 Monday, May 13, 2002 8:57 AM
20 Tutorial - Adding and
Customizing a Status Bar

This tutorial takes you through adding the status bar control program
to the sample Customer screenset supplied with Dialog System. You use
the same steps to add a status bar to any window in any screenset. The
same principles apply to adding any other control program to a
screenset. You will find out how to:

• Add a status bar to the screenset.

• Run the screenset.

• Manipulate the status bar.

• Register Events for the Status Bar

Before starting this tutorial you should have:

• Read through the chapter Programming Your Own Controls.

The user control objects and control programs are also documented in:

• Objects and Properties in the Help.

The topic on user controls describes how to create a user control
and set its properties.

• Control programs in the Help.

The topics in this section give detailed information on the control
programs and the functions available.

• The COBOL source code itself.

A separate demonstration of using a status bar control program is
provided in the screenset sbards.gs, and is documented in the file
sbards.txt in your DialogSystem\demo\sbards subdirectory.
Dialog System User’s Guide

360 Chapter 20 Tutorial - Adding and Customizing a Status Bar

dspubb.book Page 360 Monday, May 13, 2002 8:57 AM
20.1 Setting Up
1 You will be using the Customer screenset, and making many

changes to it, so we advise you to make a backup of customer.gs
before starting.

2 Start Net Express.

3 Open customer.app in your DialogSystem\demo\customer
subdirectory.

4 Right-click on customer.gs in the left-hand pane, and select Edit
from the context menu.

Dialog System starts up and the Customer Details window is
displayed.

20.2 Adding a Status Bar to the Screenset
Before using any of the control programs, a common data area must be
defined in the screenset Data Block. This is used to pass information
between a screenset and the control programs at run time.

20.2.1 Defining the Data Items
Each status bar that you define in a screenset must have a Data Block
item (master field) associated with it. The data item must be defined as
OBJ-REF as it is used to hold the class library object reference of the
created control. The data item must be defined before you add the
status bar. If you do not have any object references defined in your
screenset, then Dialog System will not let you define a status bar.

Include the following data item in the Data Block of the screenset, to
hold the object reference of the status bar:

MAIN-WINDOW-SBAR-OBJREF OBJ-REF
Dialog System User’s Guide

20.2 Adding a Status Bar to the Screenset 361

dspubb.book Page 361 Monday, May 13, 2002 8:57 AM
Include the following data definition for FUNCTION-DATA in the
screenset Data Block:

FUNCTION-DATA 1
 WINDOW-HANDLE C5 4.0
 OBJECT-REFERENCE OBJ-REF
 CALL-FUNCTION X 30.0
 NUMERIC-VALUE C5 4.0
 NUMERIC-VALUE2 C5 4.0
 SIZE-WIDTH C5 4.0
 SIZE-HEIGHT C5 4.0
 POSITION-X C5 4.0
 POSITION-Y C5 4.0
 IO-TEXT-BUFFER X 256.0
 IO-TEXT-BUFFER2 X 256.0

The FUNCTION-DATA definition can also be imported from the file
funcdata.imp in the DialogSystem\source subdirectory. Select File,
Import, Screenset and click OK to acknowlege the currently loaded
screenset might be overwritten. Click the File button, double-click
funcdata.imp, click the Import button and then OK and Close.

Since FUNCTION-DATA is common to all the control programs, you need
define it only once in each screenset that uses the control programs.

20.2.2 Defining the Status Bar
When you have defined the required data, define the status bar:

1 Select the Customer Details window, MAIN-WINDOW, to which you
want to add the status bar.

2 Select Status Bar on the Programmed Controls toolbar.

3 Position and size the status bar.

The status bar is positioned at the bottom of the window, regardless
of where it was positioned when it was painted.

4 Complete the following items on the Status Bar Properties dialog
box:

a Choose an appropriate name for the status bar. Make this as
descriptive as possible, for example MAIN-WINDOW-STATUS-
BAR.
Dialog System User’s Guide

362 Chapter 20 Tutorial - Adding and Customizing a Status Bar

dspubb.book Page 362 Monday, May 13, 2002 8:57 AM
b Specify MAIN-WINDOW-SBAR-OBJREF as the master field name.

c Specify SBAR2 as the name of the status bar control program.

d Check Add program to current project.

e Click Generate to generate the status bar control program
sbar2.cbl.

A message box appears, reminding you that you need to include
the necessary entries in the Data Block for use by the generated
control program. You have done this in the earlier steps, so click
OK to continue.

You can see the generated program being added to your
Customer project in the background.

5 Click OK, save the screenset, and close it.

6 Return to Net Express, right-click on customer.gs, and select
Generate copyfile from the context menu.

7 Compile the generated control program using Rebuild All on the
Net Express Project menu to obtain an executable version of this
program.

20.3 Running Your Screenset
Once you have completed all these steps with your screenset, you can
run it to see the User Control working.

At this stage, the status bar will not do anything useful - the clock and
key states on the status bar will not update.

You need to add dialog for the status bar updating to work correctly.
Dialog System User’s Guide

20.4 Manipulating the Status Bar 363

dspubb.book Page 363 Monday, May 13, 2002 8:57 AM
20.4 Manipulating the Status Bar
Each user control can be manipulated using the predefined functions in
its control program. By setting FUNCTION-NAME and other parameters
in FUNCTION-DATA you can perform actions on the control such as
refreshing, deleting or updating data associated with it.

The following sections take you through implementing code that will
maintain the state of information displayed in the status bar, including:

• Clock time.

• Insert/Caps/NumLock Key state information.

• Window/Status Bar section resizing.

• Mouse-over hint text.

20.4.1 Clock Time and Key State
Maintenance
In order to maintain the accuracy of the clock and key state
information, the status bar needs to be refreshed regularly. To do this,
you need to use the timeout facility of Dialog System.

20.4.1.1 Using the Timeout Facility

To set the timeout, you need to add the WINDOW-CREATED event to
the window containing the status bar (in this case MAIN-WINDOW).

1 Select the Customer Details window and go to Object Dialog.

2 Click the Event toolbar button and select WINDOW-CREATED.

3 Add the following line of dialog:

TIMEOUT 25 REFRESH-STATUS-BAR

This dialog causes the REFRESH-STATUS-BAR procedure (which will
be defined later) to be executed once every quarter of a second.
Dialog System User’s Guide

364 Chapter 20 Tutorial - Adding and Customizing a Status Bar

dspubb.book Page 364 Monday, May 13, 2002 8:57 AM
Note: If you try to debug the application using Screenset Animator,
Screenset Animator will appear to execute the REFRESH-STATUS-BAR
procedure in a loop. This is because it is difficult to interact with the
application in the time between the last line of the REFRESH-STATUS-
BAR being executed, and the time when the next timeout event is
triggered (one quarter of a second later). For this reason, you may wish
to adjust the timeout value, or remove this line altogether when
debugging with Screenset Animator.

4 Next, you need to add the dialog to process the timeout event. In

general, the procedure which is triggered when a timeout event
occurs should be placed in global dialog. If you place the dialog on
an object, and that object loses focus, the Dialog System run-time
might no longer be able to find the timeout procedure (which will
cause run-time error 8 to be generated).

The following dialog causes the status bar to be updated when the
timeout event occurs (using the REFRESH-OBJECT function of the
status bar control program). You must place this dialog in global
dialog for it to work correctly.

 REFRESH-STATUS-BAR
 MOVE "REFRESH-OBJECT" CALL-FUNCTION(1)
 SET OBJECT-REFERENCE(1) MAIN-WINDOW-SBAR-OBJREF
 CALLOUT "SBAR2" 0 $NULL

20.4.2 Window/Status Bar Section
Resizing
Next, you need to add dialog to resize the status bar correctly when the
window is resized. The status bar control program has a RESIZE function
which you need to call when the window is resized, maximized, or
restored.

You do not need to call the function when the window is minimized,
because the status bar is not visible when the window is minimized.

Note: In order to resize the window, it must have the Size Border
property set.

Dialog System User’s Guide

20.4 Manipulating the Status Bar 365

dspubb.book Page 365 Monday, May 13, 2002 8:57 AM
Go to Object Dialog on the toolbar and add the following dialog to the
window containing the status bar, to cause the status bar to resize when
the window resizes:

 WINDOW-SIZED
 BRANCH-TO-PROCEDURE RESIZE-PROCEDURE

 WINDOW-RESTORED
 BRANCH-TO-PROCEDURE RESIZE-PROCEDURE

 WINDOW-MAXIMIZED
 BRANCH-TO-PROCEDURE RESIZE-PROCEDURE

 RESIZE-PROCEDURE
 MOVE "RESIZE" CALL-FUNCTION(1)
 SET OBJECT-REFERENCE(1) MAIN-WINDOW-SBAR-OBJREF
 CALLOUT "SBAR2" 0 $NULL

20.4.3 Adding Mouse-over Hint Text
To have a fully functioning status bar, you need to update the text that
appears in the status bar whenever the mouse moves over objects on
the window. To do this you need to:

1 Enable MOUSE-OVER events for the window containing the status
bar (using the SET-PROPERTY dialog function).

Add the following line of dialog to the WINDOW-CREATED event:

 SET-PROPERTY MAIN-WINDOW "MOUSE-OVER" 1

You will also need to add this dialog to any other window on which
you require MOUSE-OVER events.

2 Respond to the MOUSE-OVER events (when they are generated) by
adding dialog to set the text on the status bar. The MOUSE-OVER
text usually goes in the leftmost section (section number one) on
the status bar.

Add the following dialog procedure to the global dialog:

 DISPLAY-HINT-TEXT
 MOVE "UPDATE-SECTION-TEXT" CALL-FUNCTION(1)
 MOVE 1 NUMERIC-VALUE(1)
 SET OBJECT-REFERENCE(1) MAIN-WINDOW-SBAR-OBJREF
 CALLOUT "SBAR2" 0 $NULL
Dialog System User’s Guide

366 Chapter 20 Tutorial - Adding and Customizing a Status Bar

dspubb.book Page 366 Monday, May 13, 2002 8:57 AM
3 Update the status line whenever a MOUSE-OVER event occurs on an
object by adding dialog similar to the following for each object on
the window which needs to update the status text:

 MOUSE-OVER
 MOVE "Status text" IO-TEXT-BUFFER(1)
 BRANCH-TO-PROCEDURE DISPLAY-HINT-TEXT

Replace the words Status text with the text you want to appear on
the status bar.

For example, replace Status Text with Load Record for the LOAD
push button on MAIN-WINDOW of the CUSTOMER screenset.

If you now run the screenset, you will see that the CUSTOMER screenset
has a status bar which:

• Displays MOUSE-OVER text in section 1 of the status bar.

• Displays the key states of the INSERT, CAPS LOCK and NUM LOCK
keys in sections 2, 3 and 4 of the status bar.

• Displays the current time in section 5 of the status bar.

Click Abort when you have finished looking at the screenset, save it and
close Dialog System.

The next section shows you how to register events for the status bar.

20.5 Registering Events for the Status Bar
The status bar control program has code to handle the event generated
when the user clicks the mouse over one of the sections on the status
bar. The section Customizing the Status Bar Control Program shows how
to customize the status bar control program to add another event.

The class library sends events to your application by means of a callback.
For example, the status bar control program registers its entry point
SBar2Button1Down with the class library so that whenever the user
clicks the left mouse button over the status bar, the code in the entry
point Sbar2Button1Down is executed.
Dialog System User’s Guide

20.6 20.6 Customizing the Status Bar Control Program 367

dspubb.book Page 367 Monday, May 13, 2002 8:57 AM
Callback registration is performed after full creation of the control in
the Create Entrypoint of the generated program. You should register a
callback in the "Register-callbacks" section for all events for which you
need to provide code.

When an event is generated, the callback code associated with the
event can update the data in your Data Block to pass back to the Dialog
System screenset. See the topic Control programs in the Help for
information on how to pass data between the control programs and the
Dialog System screenset.

This completes the steps required to add a status bar control program to
any Dialog System screenset.

You can use similar steps to these to add any control program to any
screenset, tailoring the dialog to your requirements.

20.6 20.6 Customizing the Status Bar Control
Program

This part of the tutorial describes how to add functionality to a status
bar so that when a user double-clicks on the clock section, you can
receive a callback to process the event as required.

The status bar control program which you generated at definition time
may be used ’as is’ and is coded in such a way as to allow the creation
and maintenance of many controls on as many windows as you require.
You can however, add your own features.

Note: Each screenset that contains a status bar must use its own
generated status bar control program. This is because each generated
status bar control program contains code specific to the screenset for
which it was generated.

For example, you might want to add an extra section to the status bar.
As an example, this section shows you how to tailor the status bar
control program to add an extra event.
Dialog System User’s Guide

368 Chapter 20 Tutorial - Adding and Customizing a Status Bar

dspubb.book Page 368 Monday, May 13, 2002 8:57 AM
For the purpose of this example, it is assumed you have generated a
control program called sbar2.cbl, which you will now customize.

In all cases, you will need to ensure your tailored program is available
on $COBDIR at run time.

20.6.1 Registering a Callback for the
New Event
To add the left-mouse-button-double-click event to the status bar, you
need to do two things:

• Add code to the Register-Callbacks section to register the new
event.

• Add code to the control program to process the new event.

Registering a callback for the new event is very similar to the code for
registering the callback for the left-mouse-button-down event. Before
adding the callback registration code for the new event, it is worth
explaining how the code for the new event works:

MOVE ProgramID & "Button1Down " TO MessageName

Note: The Program ID constant is used in the naming of the entry
points in this program. This prevents different control programs
loading duplicate names.

Stores the name of the entry point that is to receive the callback (in
this case, Button1Down) in MessageName.

INVOKE EntryCallback "new" USING MessageName
 RETURNING aCallback

Creates a new callback object, using the entry point name specified
above.

MOVE p2ce-Button1Down TO i

Stores the event number (p2ce-Button1Down) in the variable I. All
of the available event numbers are listed in the file
source\guicl\p2cevent.cpy in your Net Express system.
Dialog System User’s Guide

20.6 20.6 Customizing the Status Bar Control Program 369

dspubb.book Page 369 Monday, May 13, 2002 8:57 AM
INVOKE aStatusBar "setEvent" USING i aCallback

Sets the event (p2ce-Button1Down) to cause a callback to the entry
point (ProgramID & "Button1Down").

INVOKE aCallback "finalize" RETURNING aCallback

The callback object is no longer required, so it can be deleted
(finalized).

You can now add the code to register the callback for the new event.
This is done by adding code to the Register-Callbacks section of the
control program.

To add your left-mouse-button-double-click registration code:

1 Click on Net Express.

2 Right-click on sbar2.cbl and select Edit from the context menu.

3 Insert the code below immediately after the registration code for
the left-mouse-button-down event, before the comments.

MOVE ProgramID & "DblClk1 " TO MessageName
INVOKE EntryCallback "new" USING MessageName
 RETURNING aCallback
MOVE p2ce-Button1DblClk TO i
INVOKE aStatusBar "setEvent" USING i aCallback
INVOKE aCallback "finalize" RETURNING aCallback

20.6.2 Adding a Left-mouse-button-
double-click Event
Since the left-mouse-button-double-click event is very similar to the left-
mouse-button-down event, you can copy the existing code in the left-
mouse-button-down section to add a new section which will process the
event. The only code which is different between the events is the
section and entry point names, and the user event number.
Dialog System User’s Guide

370 Chapter 20 Tutorial - Adding and Customizing a Status Bar

dspubb.book Page 370 Monday, May 13, 2002 8:57 AM
20.6.2.1 Adding the Code

To add the code to process the new event, open sbar2.cbl for editing as
above, and:

1 Duplicate all of the code in the section left-mouse-button-down.
Call the new section LEFT-MOUSE-BUTTON-DBLCLK.

2 Change the name of the entry point in the LEFT-MOUSE-BUTTON-
DBLCLK section from Button1Down to DblClk1.

3 Change the user event number in the LEFT-MOUSE-BUTTON-DBLCLK
section from 34590 to 34591.

4 Save sbar2.cbl.

5 Rebuild the project.

Note: Please keep a note of the user events used and generated by the
control programs used in your applications, so that duplication does not
occur. Although you are not prevented from using duplicate user
events, if you use the same user event for two different purposes on the
same window, your program might not work as expected.

20.6.2.2 Adding Additional Dialog

Once you have done this, you can add some additional dialog to make
use of the new event that you have added to your customized status bar
control program.

1 As an example, right-click customer.gs in Net Express, and select Edit
from the context menu.

2 Right-click in the Customer Details window and select Dialog from
the context menu.

3 To add the new event and make your machine beep when you
double-click in the status bar, enter the following code:

USER-EVENT
 XIF= $EVENT-DATA 34591 SBAR2-DOUBLE-CLICK
 SBAR2-DOUBLE-CLICK
 BEEP
Dialog System User’s Guide

20.6 20.6 Customizing the Status Bar Control Program 371

dspubb.book Page 371 Monday, May 13, 2002 8:57 AM
4 Save the screenset and run it.

5 Double-click in the status bar to test the beep.

The next chapter explains how to add and customize a menu bar and
toolbar.
Dialog System User’s Guide

372 Chapter 20 Tutorial - Adding and Customizing a Status Bar

dspubb.book Page 372 Monday, May 13, 2002 8:57 AM
Dialog System User’s Guide

373

dspubb.book Page 373 Monday, May 13, 2002 8:57 AM
21 Tutorial - Adding and
Customizing a Menu Bar and
Toolbar

This tutorial takes you through adding the menu bar and toolbar
control program to the sample Customer screenset supplied with
Dialog System. You will notice that many of the steps for adding the
menu bar are almost exactly the same as those for adding a status bar,
as described in the previous tutorial.

You use the same steps to add a menu bar and toolbar to any window
in any screenset. The same principles apply to adding any other control
program to a screenset. You will find out how to:

• Add a menu bar and toolbar to the screenset.

• Run the screenset.

• Define a menu structure.

• Define a toolbar structure.

• Customize the toolbar.

Before starting this tutorial you should have:

• Read through the chapter Programming Your Own Controls.

The user control objects and control programs are also documented in:

• Objects and Properties in the Help.

The topic on user controls describes how to create a user control
and set its properties.

• Control programs in the Help.

The topics in this section give detailed information on the control
programs and the functions available.

• The COBOL source code itself.
Dialog System User’s Guide

374 Chapter 21 Tutorial - Adding and Customizing a Menu Bar and Toolbar

dspubb.book Page 374 Monday, May 13, 2002 8:57 AM
A separate demonstration of using a toolbar control program is
provided in the screenset tbards.gs, and is documented in the file
tbards.txt in your DialogSystem\demo\tbards subdirectory.

21.1 Setting Up
1 You will be using the Customer screenset, and making many

changes to it, so we advise you to make a backup of customer.gs
before starting.

2 Start Net Express.

3 Open customer.app in your DialogSystem\demo\customer
subdirectory.

4 Right-click on customer.gs in the left-hand pane, and select Edit
from the context menu.

Dialog System starts up and the Customer Details window is
displayed.

21.2 Adding a Menu Bar and Toolbar to the
Screenset

One of the most important features to note when using class library
menus and toolbars is that each toolbar button has an associated menu
item. When a toolbar button is selected, a menu event is generated by
the class library for its associated menu item. Similarly, when a menu
item is enabled, disabled, checked or unchecked, its associated toolbar
button is also.

Before using any of the control programs, a common data area must be
defined in the screenset Data Block. This is used to pass information
between a screenset and the control programs at run time.
Dialog System User’s Guide

21.2 Adding a Menu Bar and Toolbar to the Screenset 375

dspubb.book Page 375 Monday, May 13, 2002 8:57 AM
21.2.1 Defining the Data Items

Each user control that you define in a screenset must have a Data Block
item (master field) associated with it. The data item must be defined as
OBJ-REF as it is used to hold the class library object reference of the
created control. The data item must be defined before you add the user
control. If you do not have any object references defined in your
screenset, then Dialog System will not let you define a user control.

Include the following data item in the Data Block of the screenset, to
hold the object reference of the menu bar and toolbar:

MYTOOLBAR OBJ-REF

If you have completed the previous chapter, Tutorial - Adding and
Customizing a Status Bar, you will not need to include the following
data definition for FUNCTION-DATA in the screenset Data Block:

FUNCTION-DATA 1
 WINDOW-HANDLE C5 4.0
 OBJECT-REFERENCE OBJ-REF
 CALL-FUNCTION X 30.0
 NUMERIC-VALUE C5 4.0
 NUMERIC-VALUE2 C5 4.0
 SIZE-WIDTH C5 4.0
 SIZE-HEIGHT C5 4.0
 POSITION-X C5 4.0
 POSITION-Y C5 4.0
 IO-TEXT-BUFFER X 256.0
 IO-TEXT-BUFFER2 X 256.0

because FUNCTION-DATA is common to all the control programs, so you
need define it only once in each screenset that uses the control
programs.

If you do need to include the FUNCTION-DATA definition, you can
import it from the file funcdata.imp in the DialogSystem\source
subdirectory. Select File, Import, Screenset and click OK to acknowledge
the currently loaded screenset might be overwritten. Click the File
button, double-click funcdata.imp, click the Import button and then OK
and Close.
Dialog System User’s Guide

376 Chapter 21 Tutorial - Adding and Customizing a Menu Bar and Toolbar

dspubb.book Page 376 Monday, May 13, 2002 8:57 AM
Next you need to import the following:

TBAR-PARMS 1
 MENU-INDEX 9 2.0
 CALLBACK-ENTRY-NAME X 32.0
 ACCEL-FLAGS 9 3.0
 ACCEL-KEY 9 3.0
 MENU-TEXT X 256.0
 MENU-HINT-TEXT X 256.0
 RESOURCE-FILE X 256.0
 RESOURCE-ID 9 5.0
 TOOL-TIP-TEXT X 256.0
 INSERT-BUTTON-BEFORE 9 2.0
 MSG-BOX-TEXT X 256.0

from the file tbardata.imp in the DialogSystem\source subdirectory in
the same way as described above.

To enable the class library, define CONFIG-FLAG and CONFIG-VALUE as
C5 4.0 items in your Data Block, and then add the following dialog to
the beginning of the SCREENSET-INITIALIZED event in the global dialog
of the screenset:

 CLEAR-CALLOUT-PARAMETERS $NULL
 CALLOUT-PARAMETER 1 CONFIG-FLAG $NULL
 CALLOUT-PARAMETER 2 CONFIG-VALUE $NULL
 MOVE 15 CONFIG-FLAG
 MOVE 1 CONFIG-VALUE
 CALLOUT "dsrtcfg" 3 $PARMLIST

This dialog must be placed before any other dialog in the SCREENSET-
INITIALIZED event.

MYTOOLBAR will be used to store the object reference of the
created toolbar. This data item will be the
masterfield for the toolbar user control defined in
the steps below.

TBAR-PARMS is a general purpose group used to pass information
about menu items and toolbar buttons to the
control program when using the toolbar functions.
Dialog System User’s Guide

21.2 Adding a Menu Bar and Toolbar to the Screenset 377

dspubb.book Page 377 Monday, May 13, 2002 8:57 AM
21.2.2 Defining the Menu Bar and
Toolbar
When you have defined the required data, define the user control:

1 Select the Customer Details window, MAIN-WINDOW, to which you
want to add the menu bar and toolbar.

2 Select Toolbar on the Programmed Controls toolbar.

3 Position and size the toolbar along the top of the window, where
you would expect to see the menu and toolbar.

4 Complete the following items on the Toolbar Properties dialog box:

a Choose an appropriate name for the toolbar. We will use MAIN-
WINDOW-TOOLBAR.

b Specify the master field name. It must match the Data Block
name you defined earlier, so MYTOOLBAR.

c Specify TBAR2 as the name of the toolbar control program.

d Check Add program to current project.

e Click Generate to generate the toolbar control program
tbar2.cbl.

A message box appears, asking you if you want to generate a
class library menu structure. Click Yes.

A message box appears, reminding you that you need to include
the necessary entries in the Data Block for use by the generated
control program. You have done this in the earlier steps, so click
OK to continue.

You can see the generated program being added to your
Customer project in the background.

5 Click OK and save the screenset.

6 Select the Generate copyfile button on the toolbar, and confirm you
want to overwrite customer.cpb.

7 Compile the generated control program using Rebuild All on the
Net Express Project menu to obtain an executable version of this
program.
Dialog System User’s Guide

378 Chapter 21 Tutorial - Adding and Customizing a Menu Bar and Toolbar

dspubb.book Page 378 Monday, May 13, 2002 8:57 AM
21.3 Running Your Screenset
Once you have completed all these steps with your screenset, you can
run it to see the User Control working.

At this stage, the menu bar and toolbar will not do anything useful.

You need to add dialog for the menu bar and toolbar to work correctly.

TBAR2 is the name of our customized version of the toolbar control
program. This will be our controlling program for our menu.

To enable the customized version of the toolbar control to be called,
add the following dialog at the end of the screenset’s global dialog:

 CALLOUT-TBAR
 CALLOUT "TBAR2" 0 $NULL

If you have not completed the previous chapter, you will need to add a
WINDOW-CREATED event in Object Dialog. If you have completed the
previous chapter, add the following dialog to the WINDOW-CREATED
event:

 INVOKE MYTOOLBAR "show" $NULL

Save the screenset.

21.4 Defining a Menu Structure
Select Edit, Menu Bar or the Edit menu bar icon from the toolbar. The
Menu Bar Definition dialog box appears.

Because we are going to to use the menu created by the control
program, and not the one created by DSGRUN, select Options, and
check Use Class Library. This ensures that DSGRUN does not itself create
the menu.
Dialog System User’s Guide

21.4 Defining a Menu Structure 379

dspubb.book Page 379 Monday, May 13, 2002 8:57 AM
21.4.1 Adding New Menu Options

As an example, we will add two new menu options, Edit and Options,
either side of the existing Orders menu option. Edit will have one menu
item, Select all. Options will have a menu item, Customize, which will
open a submenu containing Fonts.

1 Click on Orders, and select Edit, Insert before.

2 In the Menu Bar Choice Details dialog box, enter EDIT in the Choice
name field, and Edit in the Choice text field. Leave all the other
fields as they are, and click OK.

You can see that a new menu item, Edit, has been added, with a
submenu choice of Edit.

3 Click on the Edit submenu choice, and select Edit, Change.

4 In the Pulldown Choice Details dialog box, change the Choice text
field to be Select all, and enter "select all" in the Class Library hint
text field. Choose F6 from the Shortcut key pulldown. Click OK.

5 Click on Orders again, as in step 1, and this time, select Edit, Insert
after.

6 In the Menu Bar Choice Details dialog box, enter OPTIONS in the
Choice name field, and Options in the Choice text field. Click OK.

You can see that a new menu item, Options, has been added, with a
submenu choice of Options.

7 Click on the Options submenu choice, and select Edit, Change.

8 In the Pulldown Choice Details dialog box, change the Choice text
field to be Customize, and enter "customize" in the Class Library
hint text field. Click OK.

9 Click on Customize, and select Edit, Subpulldown.

You can see that Customize now has a submenu choice of
Customize.

10 Click on this submenu choice, and select Edit, Change.

11 In the Pulldown Choice Details dialog box, change the Choice text
field to be Fonts, and enter "fonts" in the Class Library hint text
field. Choose F9 from the Shortcut key pulldown. Click OK.
Dialog System User’s Guide

380 Chapter 21 Tutorial - Adding and Customizing a Menu Bar and Toolbar

dspubb.book Page 380 Monday, May 13, 2002 8:57 AM
12 Close the Menu Bar Definition dialog box, and save the screenset.

13 Double-click on the toolbar to open the User Control Properties
dialog box. Select Toolbar from the Control type pulldown, and click
Generate.

A message box appears, asking you if you want to generate a class
library menu structure. Click Yes.

A second message box appears, asking you if you want to overwrite
the entire toolbar program. Click No so that only the menu
definitions are generated, leaving any toolbar changes intact.

A message box appears, reminding you that you need to include the
necessary entries in the Data Block for use by the generated control
program. You have done this in the earlier steps, so click OK to
continue.

You can see the generated program being added to your Customer
project in the background.

14 Click Cancel.

15 Select Rebuild All on the Project menu.

16 Run the application using the Net Express Animate, Run menu
choice.

At this stage, you can see the menu options you have added, but
they will not do anything if you select them.

21.5 Defining a Toolbar Structure
Look at the data structure defined in tbar2.cbl as an example of how to
create your own toolbar. To do this, from within tbar2.cbl, select the Net
Express Search, Locate Definition menu choice to locate the data item
"bData".
Dialog System User’s Guide

21.5 Defining a Toolbar Structure 381

dspubb.book Page 381 Monday, May 13, 2002 8:57 AM
21.5.1 The Existing Toolbar Structure

The bData table structure defines an ordered list of buttons to be added
to the toolbar. Buttons are added to the toolbar in the order in which
they appear in the list.

An example of a single button record is shown below:

*>--
* Button object reference.
 03 object reference.

* Menu item index to associate button with or zero if this
* button is to be a separator. This index refers to an index
* within the mData table.
 03 pic x comp-5 value 2. *> "Exit" menu item

* Resource ID of button bitmap.
 03 pic x(4) comp-5 value IDB-EXIT.

* Tool tip to be displayed when mouse is over button.
 03 pic x(bStringSize) value z"Quit this application".
*>--

Each element of the table defines a button on the toolbar and is made
up of four parts:

1 Object reference of the created toolbar button.

2 The index (within mData table) of the menu item to associate the
button with (or zero for a separator).

3 Resource ID of a bitmap within a resource file to use for the button.

4 Tool tip to be displayed when mouse is over the button.

The default toolbar structure that has been generated contains a
separator and a button associated with menu index 2. However, as we
have generated a menu structure from the existing Dialog System
menu, the index of the File, Exit menu item is in fact 7. Therefore, to
associate the second button with the correct menu index, change it
from 2 to 7.
Dialog System User’s Guide

382 Chapter 21 Tutorial - Adding and Customizing a Menu Bar and Toolbar

dspubb.book Page 382 Monday, May 13, 2002 8:57 AM
21.5.2 Adding New Toolbar Buttons

As an example, we will add two new toolbar buttons for Select All and
Fonts.

To change the toolbar defined in tbar2.cbl, use the existing button
records as an example to change the button structure.

1 Duplicate the second element of the bData table structure that
represents the Exit button, immediately below the existing one. We
will now edit the new, duplicated, code.

2 Change the index of the menu item from 7 to 9. Change the
comment as appropriate.

3 Change the resource ID of the button bitmap from IDB-EXIT to IDB-
BLUE.

4 Change the tool tip from "Quit" to "Select all".

5 Duplicate the lines of code used for the second toolbar button,
immediately below that one.

6 Change the index of the menu item from 9 to 14. Change the
comment as appropriate.

7 Change the resource ID of the button bitmap from IDB-BLUE to IDB-
RED.

8 Change the tool tip from "Select all" to "Fonts".

9 Select Rebuild All on the Project menu.

10 Run the screenset.

You can now see the two buttons you have just created displayed
below the menu items in the toolbar.

Again, the toolbar buttons will not do anything if you select them.

21.6 Customizing theToolbar
In the previous section we added an existing bitmap button from the
file tbresid.cpy. In this section, we will create a new button bitmap.
Dialog System User’s Guide

21.6 Customizing theToolbar 383

dspubb.book Page 383 Monday, May 13, 2002 8:57 AM
21.6.1 Setting up Resource Files

Add a new resource file to the project and create bitmap resources the
toolbar will use.

1 From a Net Express command prompt, copy the bitmaps (*.bmp
files) and the file mfres.h from your
DialogSystem\demo\CommonControls\Toolbar subdirectory to your
DialogSystem\demo\customer subdirectory. Copy tbar.rc and
rename it to tbres.rc.

2 Right-click in the project window within Net Express and select Add
file to source pool.

3 Select tbres.rc.

4 Right-click on tbres.rc and select Package selected files, Dynamic
Link Library (DLL), and click Create to add it to the left-hand pane.

5 Right-click on tbres.rc in the left-hand pane and select Compile and
then Edit.

6 Right-click on "Bitmap" in the tree structure and select New from
the context menu.

7 Enter "IDB_BUTTON1" in the Resource Identifier field.

8 Enter "selectall.bmp" in the Resource Filename field.

9 Enter 220 in the ID Value field and click OK.

10 Select File, New, Bitmap from the Image Editor menu, and click OK.

11 Enter 16 for the width and height of the bitmap, and click OK.

12 Draw the bitmap to be displayed when the toolbar button is
enabled.

13 Save the image as selectall.bmp and close Image Editor.

14 Repeat this process with "IDB_BUTTON2", ID value 221 and
custfont.bmp so that both required bitmap resources (and their
IDB_ identifiers) are defined in the resource file.Ip

15 Select File, Save As, and save this resource script as tbres.rc.

16 Close tbres.rc.

17 Right-click on tbar2.cbl and select Edit from the context menu.
Dialog System User’s Guide

384 Chapter 21 Tutorial - Adding and Customizing a Menu Bar and Toolbar

dspubb.book Page 384 Monday, May 13, 2002 8:57 AM
18 Change the resourceDllName to be tbres.dll.

19 Below the line:

copy "tbresid.cpy"

add in the new bitmaps you have created by entering:

78 IDB-Button1 value 220.
78 IDB-Button2 value 221.

20 Save tbar2.cbl and close it.

21 Select Update All Dependencies from the Project menu.

22 Rebuild the project. This will create mfres.cpy which contains your
resource identifier constants needed in tbar2.cbl. For now just
ignore any errors that you might receive on Rebuild.

21.6.2 Setting up Copyfiles
Make copyfile changes to define the toolbar structure.

We are going to review the toolbar structure in tbar2.cbl which
provides a menu item and associated toolbar button. This file contains
data structures that define how the toolbar will look and respond to
events.

We will look at how to define the toolbar.

1 Right-click tbar2.cbl in the left-hand pane and select Edit.

2 Select the Net Express Search, Locate Definition menu choice to
locate the data item "bData.".

3 Note the bData group structure which defines each toolbar item as
described in the section Defining a Toolbar Structure earlier in this
chapter.

Ensure that the button definition data record contains a reference to an
IDB_ resource identifier you defined in the resource file earlier. That is,
IDB-Button1 and IDB-Button2.

Save tbar2.cbl and close it.
Dialog System User’s Guide

21.6 Customizing theToolbar 385

dspubb.book Page 385 Monday, May 13, 2002 8:57 AM
21.6.3 Adding Dialog to the Screenset

Add dialog to the screenset to respond to a menu selection as follows.

If you are adding a toolbar to an existing application (which in this
instance we are):

1 Add the following dialog to the toolbar’s parent window:

USER-EVENT
 XIF= $EVENT-DATA 37000 @EXISTING-DIALOG-MENU-PROCEDURE

2 Replace the executed procedure with your own menu dialog table.
In this example, we will use TEST-MENU-CHOICE, so enter:

USER-EVENT
 XIF= $EVENT-DATA 37000 TEST-MENU-CHOICE

3 Add the following dialog immediately below the above lines:

TEST-MENU-CHOICE
 IF= NUMERIC-VALUE(1) 7 @EXIT
 IF= NUMERIC-VALUE(1) 9 SELECT-ALL
 IF= NUMERIC-VALUE(1) 14 FONTS

4 At the end of the dialog, add the following lines:

SELECT-ALL
 BEEP
FONTS
 BEEP
 BEEP

If you are adding class library menu items to replace existing menu
items, you can simply branch to the procedure name (prefixed with
the @ symbol) that was previously used to handle the menu event.
Alternatively, you could make a COBOL CALL to a subprogram from
your toolbar callback code following the class library menu event.

If you are developing a new application:

1 Add the following dialog to the USER-EVENT dialog for the
toolbar’s parent window:

USER-EVENT
 XIF= $EVENT-DATA 37000 DIALOG-PROCEDURE

DIALOG-PROCEDURE
Dialog System User’s Guide

386 Chapter 21 Tutorial - Adding and Customizing a Menu Bar and Toolbar

dspubb.book Page 386 Monday, May 13, 2002 8:57 AM
* Dialog function processing - perhaps show a message box

As an alternative to the use of dialog functions to handle the class
library menu event, your toolbar callback code could simply make a
COBOL CALL to an existing program to perform that menu function.

Save the screenset, switch to the Net Express IDE and rebuild the
project.

You can now select Animate, Run, to test your screenset. When you
select either Select All from the Edit menu, or the toolbar button, the
dialog procedure that you coded will be executed. Try this for Fonts,
from the Options, Customize menu too.
Dialog System User’s Guide

387

dspubb.book Page 387 Monday, May 13, 2002 8:57 AM
22 Tutorial - Adding an ActiveX
Control

This chapter describes how to add an ActiveX Control to your screenset.
You need to have read the chapter Programming Your Own Controls
and the previous tutorials before looking at this one.

The following sections take you step by step through changing a
screenset to use the supplied clock ActiveX control.

22.1 Screenset Alterations
The aim of this tutorial is to display the supplied ActiveX clock control
when you double-click on the time on the status bar. You will be shown
how to use an ActiveX control later, but for now we will open
customer.gs in Net Express and define the following objects in the
screenset:

• A dialog box to hold the ActiveX clock.

• A dialog box that will allow the alarm time to be set.

• A message box to display a message when the alarm goes off.

1 Make the dialog box to hold the ActiveX clock about a third of the
size of the customer screenset, and place it anywhere.

2 Name this object CLOCK-DIALOG.

3 Leave all its properties as default.

4 Define the parent as being $WINDOW.

5 Create a message box to display a message when the alarm goes
off.

6 Name this object ALARM-GONE-OFF-MBOX.
Dialog System User’s Guide

388 Chapter 22 Tutorial - Adding an ActiveX Control

dspubb.book Page 388 Monday, May 13, 2002 8:57 AM
7 Leave all its properties as default.

8 Define the parent as being $WINDOW.

9 Add two PIC 9(2) data items, ALARM-HOURS and ALARM-MINUTES,
to the Data Block for this screenset.

10 Make the dialog box that will allow the alarm time to be set about a
third of the size of the customer screenset, and place it anywhere.

11 Name this object SET-ALARM-DIALOG.

12 Leave all its properties as default.

13 Define the parent as being $WINDOW.

14 On the CLOCK-DIALOG dialog box:

a Create a push button with its text set to "Set Alarm".

b Add the following dialog to the Set Alarm button:

 BUTTON-SELECTED
 MOVE " " IO-TEXT-BUFFER2(1)
 SET-FOCUS SET-ALARM-DIALOG

c Create a push button with its text set to "Close".

d Add the following dialog to the Close button so that it unshows
the CLOCK-DIALOG dialog box when it is clicked.

 BUTTON-SELECTED
 UNSHOW-WINDOW CLOCK-DIALOG $NULL

Do not delete the CLOCK-DIALOG dialog box, as this will cause
the alarm not to function.

15 On the SET-ALARM-DIALOG:

a Create an entry field to hold the hour of the alarm time.

Link this to the ALARM-HOURS master field.

b Create an entry field to hold the minutes of the alarm time.

Link this to the ALARM-MINUTES master field.

c Create an entry field to hold the message to be displayed when
the alarm is triggered.

The master field for this entry field should be IO-TEXT-BUFFER2.
Dialog System User’s Guide

22.1 Screenset Alterations 389

dspubb.book Page 389 Monday, May 13, 2002 8:57 AM
d Create a push button with its text set to "OK". The OK button
should have the following dialog:

 BUTTON-SELECTED
 BRANCH-TO-PROCEDURE SET-ALARM

e Create a push button with its text set to "Cancel". The Cancel
button should have the following dialog to enable the SET-
ALARM-DIALOG dialog box to be deleted when the user clicks
Cancel:

 BUTTON-SELECTED
 DELETE-WINDOW SET-ALARM-DIALOG $NULL

f Add the following dialog to the SET-ALARM-DIALOG dialog box
itself:

 CR
 BRANCH-TO-PROCEDURE SET-ALARM

 ESC
 DELETE-WINDOW SET-ALARM-DIALOG $NULL

 SET-ALARM
* Dialog will be added here later.

Having completed these steps, you can add the dialog to use the left-
mouse-button-double-click event that you added in the earlier tutorial
to display the CLOCK-DIALOG dialog box. See the section Customizing
the Status Bar Control Program in the chapter Tutorial - Adding and
Customizing a Status Bar.

In the left-mouse-button-double-click event callback, you added code to
send user event 34591 when the callback was triggered. The code you
added also places the section number of the status bar on which the
double-click event happened into the NUMERIC-VALUE(1) data item.

With this information, you can add the following to the MAIN-
WINDOW dialog table to process the double-click user event:

 USER-EVENT
 XIF= $EVENT-DATA 34591 DOUBLE-CLICK-EVENT

 DOUBLE-CLICK-EVENT
 IF= NUMERIC-VALUE(1) 5 DOUBLE-CLICK-ON-CLOCK

 DOUBLE-CLICK-ON-CLOCK
 SET-FOCUS CLOCK-DIALOG
Dialog System User’s Guide

390 Chapter 22 Tutorial - Adding an ActiveX Control

dspubb.book Page 390 Monday, May 13, 2002 8:57 AM
This dialog causes the CLOCK-DIALOG dialog box to be shown if the
MAIN-WINDOW window receives user event number 34591, and
NUMERIC-VALUE(1) is set to 5 (the 5th section of the status bar contains
the clock).

22.2 Using the Dialog System Clock ActiveX
Control

A separate demonstration of applying this functionality is provided in
the clock.gs screenset and documented in the file clockds.txt

If you have followed the tutorial, you will have created a CLOCK-
DIALOG dialog box in your screenset. You can now add the supplied
Dialog System clock ActiveX control to this dialog box.

Add the following data definitions to your screenset:

CLOCK-DIALOG-ACTIVEX-OBJREF OBJ-REF
ACTIVEX-PARAMETERS 1
 PARM-NAME X 30.0
 P1 C5 4.0
 P2 C5 4.0
 P3 OBJ-REF

You must make sure that the last four items are indented, to show they
are group items.

The first data item listed is used to store the object reference of the
ActiveX . The master field group specified is used as the second
parameter when calling the ActiveX control program.

The next step is to position the ActiveX control on the CLOCK-DIALOG
dialog box:

1 Select File, Import, ActiveX control....

2 Select Dialog System Clock.

The control is added to the ActiveX toolbar, from where you can
select it and place it on the status bar of the customer screenset.
Dialog System User’s Guide

22.2 Using the Dialog System Clock ActiveX Control 391

dspubb.book Page 391 Monday, May 13, 2002 8:57 AM
The ActiveX Control Properties dialog box opens when you position
the ActiveX control.

3 Specify a name for the ActiveX control, set the master field to be
CLOCK-DIALOG-ACTIVEX-OBJREF, and set the program name to be
CLOCKCTRL.

4 Click Generate to generate the ActiveX control program.

Click OK.

5 You now need to set the properties for the ActiveX control. Each
ActiveX control has tailorable properties which determine the run-
time behavior of that control.

When the control has been painted, a Property List dialog box is
displayed. This shows some (not always all) of the configurable
properties that the control provides. You can change the values in
either this list or use the Controls context menu to view the full list
of properties via the ActiveX property page context menu choice.

In the case of the Dialog System clock ActiveX, the available
properties are the background bitmap, and whether the clock
displays as analog or digital.

You need to add the dialog to handle the user event that indicates that
the alarm time has been reached. Add the following to the CLOCK-
DIALOG dialog box:

 USER-EVENT
 IF= $EVENT-DATA 34570 ALARMGONEOFF

 ALARMGONEOFF
 INVOKE-MESSAGE-BOX ALARM-GONE-OFF-MBOX
 IO-TEXT-BUFFER2(1) $REGISTER

Finally, you need to complete the SET-ALARM procedure that you added
to the dialog for the SET-ALARM-DIALOG dialog box earlier. This
procedure invokes the SetAlarm method in the ActiveX control to set
the alarm. Add the following dialog below SET-ALARM:

 SET-MOUSE-SHAPE SET-ALARM-DIALOG "SYS-WAIT"
 MOVE ALARM-HOURS P1(1)
 MOVE ALARM-MINUTES P2(1)

 NULL-TERMINATE IO-TEXT-BUFFER2(1)
 CLEAR-CALLOUT-PARAMETERS $NULL
 CALLOUT-PARAMETER 1 IO-TEXT-BUFFER2(1) $null
Dialog System User’s Guide

392 Chapter 22 Tutorial - Adding an ActiveX Control

dspubb.book Page 392 Monday, May 13, 2002 8:57 AM
 CALLOUT-PARAMETER 8 P3(1) $NULL
 INVOKE "chararry" "withValue" $PARMLIST

This dialog demonstrates the passing of the Message text (in IO-TEXT-
BUFFER2(1)) as an object reference to a CharacterArray instance. Note
the use of the functions NULL-TERMINATE and INVOKE for the P3(1)
variable. These functions are described in detail in the Help. Add the
following dialog:

 MOVE "INVOKE-ActiveX-METHOD" CALL-FUNCTION(1)
 SET OBJECT-REFERENCE(1) CLOCK-DIALOG-ActiveX-OBJREF
 MOVE "SetAlarm" PARM-NAME(1)

 CLEAR-CALLOUT-PARAMETERS $NULL
 CALLOUT-PARAMETER 1 FUNCTION-DATA $NULL
 CALLOUT-PARAMETER 2 ActiveX-PARAMETERS $NULL
 CALLOUT "ocxctrl" 0 $PARMLIST

 CLEAR-CALLOUT-PARAMETERS $NULL
 CALLOUT-PARAMETER 8 P3(1) $NULL
 INVOKE P3(1) "finalize" $PARMLIST

 DELETE-WINDOW SET-ALARM-DIALOG $NULL

You have now completed adding the Dialog System clock ActiveX
control to your screenset. Save your screenset and run it to try out the
changes you have made.
Dialog System User’s Guide

393

dspubb.book Page 393 Monday, May 13, 2002 8:57 AM
23 Tutorial - Using Bitmaps to
Change the Mouse Pointer

The chapters Window Objects and Control Objects described how to
choose bitmap graphics. This chapter shows you how to:

• Change the mouse pointer.

• Provide functionality for your bitmaps.

23.1 Changing the Mouse Pointer
To change the shape of the mouse pointer, use the SET-MOUSE-SHAPE
function. For example, you might want to change the mouse pointer to
an hour glass or a clock to inform your user to wait until an operation
is complete.

See the topic Dialog Statements: Functions in the Help for more
information on the SET-MOUSE-SHAPE function.

23.1.1 The Moudemo Sample Screenset
The sample program Moudemo (available on your samples disk)
changes the mouse pointer as it passes over different objects.

• When the static pointer radio button is selected, movement of the
mouse over the three objects (entry field, list and bitmap) has no
effect.

• When the dynamic pointer radio button is selected, the mouse
pointer changes shape as it passes over different objects.

There is also an entry field used for text entry where the cursor shape
changes to a text bar and a list box where each line can be selected and
highlighted.
Dialog System User’s Guide

394 Chapter 23 Tutorial - Using Bitmaps to Change the Mouse Pointer

dspubb.book Page 394 Monday, May 13, 2002 8:57 AM
To test the Moudemo screenset you can:

1 Start Dialog System.

2 Load the screenset moudemo.gs.

3 Select Run on the File menu to invoke the Screenset Animator.

4 Accept the default Screenset Animator values.

5 Press Enter.

You see the screen shown in Figure 23-1.

Figure 23-1. The Moudemo Screen

Global dialog is used to return control to the calling program if the
escape key is pressed or the main window is closed:

ESC
 RETC
CLOSED-WINDOW
 RETC

When the screenset is initialized the static radio button is set on, and a
text string is placed into the entry field. The default mouse pointer
shape is set to SYS-Arrow :

SCREENSET-INITIALIZED
 SET-BUTTON-STATE DEFAULT-RB 1
 MOVE "You can change this test text!" TEST-TEXT-DATA
 REFRESH-OBJECT TESTTEXT-EFLD
Dialog System User’s Guide

23.1 Changing the Mouse Pointer 395

dspubb.book Page 395 Monday, May 13, 2002 8:57 AM
 SET-MOUSE-SHAPE MOUSEDEMO-WIN "SYS-Arrow"

If the Exit button is selected, the Exit message box is displayed and the
value of $REGISTER is checked. A value of 1 in $REGISTER indicates OK
was selected, meaning the user wants to exit:

BUTTON-SELECTED
 INVOKE-MESSAGE-BOX EXIT-MSG $NULL $REGISTER
 IF= $REGISTER 1 EXITAPP
 EXITAPP
 RETC

Additional dialog is attached to each object as required. When the
static radio button is selected (default at screenset initialization), the
SYS-Arrow shape is used over the whole of the main window:

BUTTON-SELECTED
 SET-MOUSE-SHAPE MOUSEDEMO-WIN "SYS-Arrow"

When the dynamic radio button is selected, the shape of the mouse
pointer depends on the object it is positioned over. SYS-Move are
provided by the operating environment and pencil-ptr has been
created especially for this screenset:

BUTTON-SELECTED
 SET-MOUSE-SHAPE TESTTEXT-EFLD "SYS-Move"
 SET-MOUSE-SHAPE TESTMAP-BMP "pencil-ptr"

If the Help button is selected, the help dialog is displayed:

BUTTON-SELECTED
 SET-FOCUS HELP-DIAG

Clicking OK in the Help window removes the window from the display
and returns control to the main window:

BUTTON-SELECTED
 DELETE-WINDOW HELP-DIAG MOUSEDEMO-WIN

There is no dialog attached to the list box or entry field.

23.1.1.1 Changing the Side File

If you installed the samples, a resource side file was loaded for the
moudemo sample (moudemo.icn). Therefore you do not need to edit
the ds.icn file to add the mouse pointer.
Dialog System User’s Guide

396 Chapter 23 Tutorial - Using Bitmaps to Change the Mouse Pointer

dspubb.book Page 396 Monday, May 13, 2002 8:57 AM
However, this section describes how to add the mouse pointer and
bitmap to the standard ds.icn file.

The mouse pointer pencil-ptr has been created for use in this
screenset and placed in a DLL file. Therefore, you must make an entry in
the ds.icn file under the appropriate section heading:

pencil-ptr : dssamw32.dll 002

Mouse pointers must be placed in a DLL file. The procedure for doing
this is described in the topic Bitmaps, Icons and Mouse Pointers in the
Help.

You must also add an entry for the new bitmap stating the name of the
bitmap and its location. It does not have to be in the same directory as
the screenset. In the Moudemo sample screenset this bitmap is called
colorful.bmp. The corresponding entry in ds.icn (under the appropriate
section heading) would be:

colorful : dssamw32.dll 003

23.2 Programming Bitmaps
In Dialog System, a bitmap is a control that you can select. In this
respect, a bitmap is like a radio button. What happens after the bitmap
is selected depends on how you code the dialog.

Because a bitmap is represented by a graphic image, it can be more
meaningful to users. Figure 23-2 shows a window with several bitmaps
attached to it.
Dialog System User’s Guide

23.2 Programming Bitmaps 397

dspubb.book Page 397 Monday, May 13, 2002 8:57 AM
Figure 23-2. Window with Bitmaps Attached

To help you understand bitmaps, the following example contains five
bitmaps representing different functions the user can perform. When
the user selects a bitmap, return to the calling program and invoke the
function represented by the bitmap.

These bitmap controls are named WBBMP, ANIMBMP, HELPBMP,
SCREENBMP and EDITBMP. Each bitmap has a handle, that is, an
internal identifier. The handle that is assigned to an object must be
defined in the Data Block.

Handles for this example (and in fact all handles) are defined as:

WB-HANDLE C 4.00
ANIM-HANDLE C 4.00
HELP-HANDLE C 4.00
SCREEN-HANDLE C 4.00
EDIT-HANDLE C 4.00

The first thing you must do is save the handles of the bitmaps. The best
way to do this is in global dialog using the SCREENSET-INITIALIZED
function.

SCREENSET-INITIALIZED
 MOVE-OBJECT-HANDLE ANIMBMP ANIM-HANDLE
 MOVE-OBJECT-HANDLE EDITBMP EDIT-HANDLE
 MOVE-OBJECT-HANDLE WBBMP WB-HANDLE
 MOVE-OBJECT-HANDLE HELPBMP HELP-HANDLE
 MOVE-OBJECT-HANDLE SCREENBMP SCREEN-HANDLE

The MOVE-OBJECT-HANDLE function moves the handle for the bitmap
(ANIMBMP) to a numeric field (ANIM-HANDLE).
Dialog System User’s Guide

398 Chapter 23 Tutorial - Using Bitmaps to Change the Mouse Pointer

dspubb.book Page 398 Monday, May 13, 2002 8:57 AM
BITMAP-EVENT is the only event associated with a bitmap. When the
user clicks on a bitmap, the event is triggered and the handle of the
bitmap is stored in $EVENT-DATA.

This dialog is attached to the window on which the bitmaps appear:

BITMAP-EVENT
 IF= $EVENT-DATA ANIM-HANDLE SET-ANIM
 IF= $EVENT-DATA EDIT-HANDLE SET-EDIT
 IF= $EVENT-DATA WB-HANDLE SET-WB
 IF= $EVENT-DATA HELP-HANDLE SET-HELP
 IF= $EVENT-DATA SCREEN-HANDLE SET-SCREEN
 SET-ANIM
 MOVE 1 FUNCTION
 RETC
 SET-EDIT
 MOVE 2 FUNCTION
 RETC
 SET-WB
 MOVE 3 FUNCTION
 RETC
 SET-HELP
 MOVE 4 FUNCTION
 RETC
 SET-SCREEN
 MOVE 5 FUNCTION
 RETC

Thus, when the user clicks on a bitmap:

• The bitmap event is triggered and the handle of the bitmap is
stored in $EVENT-DATA.

• $EVENT-DATA is compared to the handles of the bitmaps that were
stored earlier.

• A procedure is performed that sets a value in FUNCTION.

• Control is returned to the program .

Now your program executes the appropriate function based on the
value in FUNCTION.

For more information on adding bitmaps to your Dialog System
interface, see the topic Bitmaps, Icons and Mouse Pointers in the Help.
Dialog System User’s Guide

399

dspubb.book Page 399 Monday, May 13, 2002 8:57 AM
A Fonts and Colors

This appendix looks at how you can use different fonts and colors. You
might want to change the appearance of your interface to:

• Conform to your organization’s standards. For example, your
organization might have a particular color scheme that it uses for
all applications.

• Suit your own personal preference.

• Draw the user’s attention to a particular component. For example,
you can:

• Highlight a default value with a different font.

• Change the background color of a field that has caused a
validation error.

• Use a bold typeface to emphasize a Delete push button.

Using different fonts and colors can greatly enhance your interface.
However, using too many different fonts can make a screen look messy
and it is advisable to use no more than three colors on any screen.

A.1 Setting Fonts
A font is a set of characters having common visual characteristics. You
can use a different font to give the interface a more distinctive look.
For example, you can use a monospaced font to ensure that parts of
the interface line up neatly.

You can also use a different font to draw the user’s attention to a
specific part of the interface. For example, you can highlight a
parameter in a text string by making the parameter a different font
from the surrounding text. The following text illustrates this feature:

In the dialog fragment, large-entry-field is the data item
associated with the MLE.
Dialog System User’s Guide

400 Appendix A Fonts and Colors

dspubb.book Page 400 Monday, May 13, 2002 8:57 AM
The size of the text (its pointsize) is another way to highlight a specific
component of the interface. In the preceding example, you could make
the type used for the filename a larger pointsize, for example 12 point
instead of 10 point. This would also draw the user’s attention to the
filename.

You can set fonts at definition time only. No Dialog System functions are
available to change any of the font definitions. However, you can
dynamically change fonts using Panels V2. The chapter Using Panels V2
describes how to call Panels V2 from your Dialog System program.

See the topic Dialog System Overview in the Help for a description of
setting fonts.

A.2 Setting Colors
You can change the foreground and background colors of objects either
at definition time, using the Color menu choice on the Edit menu or
clicking on the edit color toolbar icon, or dynamically, using the SET-
COLOR function.

For example, the following dialog fragment changes the color of a field
with validation errors to ’WHITE’ (foreground color) on ’RED’
(background color). Remember that when Dialog System detects a
validation error, the identifier of the field in error is placed in $EVENT-
DATA.

VAL-ERROR
 SET-COLOR $EVENT-DATA ’WHITE’ ’RED’
 SET-FOCUS $EVENT-DATA

Generic colors are available for all environments. Also, each
environment has a list of additional colors that you can select. If you are
developing cross-platform applications, check to make sure the colors
you are using are supported on all environments.

To set the color of an object back to its default values, use the value of
$NULL for the foreground and background colors:

SET-COLOR DELETE-PB $NULL $NULL

For further information on the SET-COLOR function and lists of available
colors, see the topic Dialog Statements: Functions in the Help.
Dialog System User’s Guide

401

Index

dspubb.book Page 401 Monday, May 13, 2002 8:57 AM
A

ActiveX Controls 170
customizing 173
define properties 172
Dialog System properties 170
entry point 178
event handler 178
event handling code 178
event registration 178
events 173, 177
general properties 170
GET 173
methods 173
methods and properties 175
Programming Assistant 173
properties 173
property pages 170
selecting 171
SET 173
starting the Programming Assistant 174
sub-objects 176

Add
menu choice 281, 282

ADD-MORE-SALES-INFO 317
Alignment 99, 214
Alignment toolbar 99
ANY-OTHER-EVENT 109
Application

creating 44
steps to create 44

Asterisk character 48
Auto properties 337
Auto-insert property 295

B

Bitmap 393, 396
256-color 296
for push buttons 86
handle 397

BITMAP-EVENT 398
Bitmaps

defining 101
using 101

Border 61
BRANCH-TO-PROCEDURE 111, 124, 304
BUTTON-SELECTED 119, 300, 303, 306

C
Call Interface

basic call to Dialog System 131
sample programs 318

Call interface
structure 131

Calling program 25
Change

menu choice 281, 283
Check box

attaching to data item 88
selection 32

Class library
features 149

Client area 61
Client/Server Binder

controlling the number of clients 249
Dialog System User’s Guide

402

dspubb.book Page 402 Monday, May 13, 2002 8:57 AM
Client/Server Binding 231
audit trail 257
authorization passwords 254
communications link 238
configuration file 240
enabling server override 255
limitations 265
maximum number of clients 255

Client/Server binding
animating 253
configuration file entries 241
configuration file locating 246
configuration file minimum entries 245
connecting to mfclient 247
file management 264
in-line configuration facility 259
managing the server 254
mfclient 235
mfclisrv.cpy 240
running an application 251

Client/server binding
process 232

Clients
re-routing to another server 258

Clipboard 85
Clipping 63
CLOSED-WINDOW 119
Color

setting 400
Comments 106
Compatibility

chart 216, 218
Computational 51
Configuration file

overriding entries 257
Connecting to generic modules 235
Context menus 73
$CONTROL 112, 303
Control Block 131, 135, 223, 354

copyfile 131
Control group

defining 340
Control object

using 96

Control programs 96, 359, 373
Registering events 366

Controlled loop 295
Controls 31, 77, 338

alignment 99
dialog 107
grouping 98
tabbing order 296

COPY-file 25
Copyfile

Control Block 131
Data Block 131

copyfile 25
COPY-PAGE 316
CREATE-WINDOW 114
Customizing status bar control program 367

D
Data

definition 48, 335, 336
groups 53
items 51
model 47
types 51
validation 54

Data Access 157
Data access

defining query 150
Data Block 131, 135, 223, 336, 354

copyfile 131
generating 129, 349

Data block 43
helpdemo 285

Data definition
creating 48

Data entry 80
Data items

occurrences 53
Data transfer facility

reduced 261
Dialog System User’s Guide

403

dspubb.book Page 403 Monday, May 13, 2002 8:57 AM
Database access
screenset 149

Date
validation 55

DBCS 51, 52
Debugging 137, 357
Default

property values 338
Define

data 25, 48, 335
dialog 343

Defining data items
in control programs 360, 375

Defining menu bar and toolbar
in control programs 377

Defining status bar
in control programs 361

Delete
menu choice 283

DELETE-LIST-ITEM 312
DELETE-OCCURRENCE 311
DELETE-PAGE 316
DELETE-WINDOW 117, 144
Dependencies 53
Design

goals 37
Desktop 62

mode 212
desktop 27, 62
Developing large applications 196
Dialog 36

comments 106
controls 107
defining 140
definition 343
dialog boxes 67
disabling choices 121
enabling choices 121
global 108
helpdemo 285
menu bar 120
modifying menus 281
moving text 302
object 343

optimal searching 143
order of search 109, 140, 143
push buttons 303
regaining control 125
return to calling program 124
table 107
using procedures 123
window 107, 114

Dialog box 28, 30, 66, 72
application modal 68
dialog 67
modal 290
modeless 68
number of objects 67
parent modal 68
vs windows 69

Dialog System
applications 146, 358
starting 44
with Panels V2 221

Dialog System extension 142
Dsdir 278

Disable
menu choice 283
objects 303

DISABLE-OBJECT 113, 303
Display only entry fields 82
ds.icn 74
ds-ancestor 225
ds-descendant 225
Dsdir 278
DSFNTENV environment variable 271
ds-no-name-info 145
Dsonline 142
Dsrunner 185, 318

applications 186
architecture 186, 193
calling from a program 193
Data Block fields 188
Data Block header 188
error handling code 322
function code 189
function performing 191
functions 191
Dialog System User’s Guide

404

dspubb.book Page 404 Monday, May 13, 2002 8:57 AM
global dialog 190
launching an application 193
operation 186
programs 191
reserving Data Block fields 189
return code 189
screenset requirements 189
screensets 188
signature 189
signature set up 190
starting from a command line 192
starting in Net Express IDE 192
termination processing 190
using functions 191

ds-session-id 226
dssysinf.cpy 224
Duplicated items in dropdown list 295
Dynamic menu handling 281

E
Emulation 214
Enable

objects 303
ENABLE-OBJECT 113, 303
Entry field 80

defining 339
definition 336
display only 82
refreshing 80
validating 300
with other controls 81

Environment 211
Error

Checker 289
message definition 56

Error Message File
alternative 275
direct access 272

Event 105, 108
ANY-OTHER-EVENT 109
BITMAP-EVENT 398

BUTTON-SELECTED 300, 303, 306
CLOSED-WINDOW 119
ITEM-SELECTED 309
LOST-FOCUS 300, 301
OTHER-SCREENSET 206
SCREENSET-INITIALIZED 397
Sequence 207
SLIDER-MOVING 315
SLIDER-RELEASED 315
trapped by Window Managers 126
VAL-ERROR 301

Event Block 224
$EVENT-DATA 112, 301, 315
Executable files 141, 358
EXECUTE-PROCEDURE 111, 124

F
File selection facility 278
Font

setting 399
system proportional 214

Fonts
multiple resolutions 269

Function 105, 110
BRANCH-TO-PROCEDURE 111, 124, 304
BUTTON-SELECTED 119
COPY-PAGE 316
CREATE-WINDOW 114
DELETE-LIST-ITEM 312
DELETE-OCCURRENCE 311
DELETE-PAGE 316
DELETE-WINDOW 117, 144
DISABLE-OBJECT 113, 303
ENABLE-OBJECT 113, 303
EXECUTE-PROCEDURE 111, 124
IF= 124, 307
INCREMENT 307, 310
INSERT-LIST-ITEM 312
INSERT-MANY-LIST-ITEMS 313
INSERT-OCCURRENCE 310
INVOKE-MESSAGE-BOX 275, 301
Dialog System User’s Guide

405

dspubb.book Page 405 Monday, May 13, 2002 8:57 AM
limit 110
MOVE 307, 315
MOVE-OBJECT-HANDLE 226, 397
MOVE-WINDOW 118
REFRESH-OBJECT 125, 310, 315
REPEAT-EVENT 206
RETC 124, 206, 398
SCREENSET-INITIALIZED 113
SET-BUTTON-STATE 113
SET-DATA-GROUP-SIZE 113, 309
SET-DESKTOP-WINDOW 116
SET-FIRST-WINDOW 115
SET-FOCUS 115, 118, 301, 304
SET-LIST-ITEM-STATE 310
SET-OBJECT-LABEL 118, 304
SHOW-WINDOW 115
UNSHOW-WINDOW 115, 144
UPDATE-LIST-ITEM 312
VAL-ERROR 123
VALIDATE 123, 300
XIF= 124

G
Generate

options 130, 350
Generate programs

Windows GUI Application Wizard 152
GET-BUTTON-STATE 120
Global

dialog 108
Graphical user interface

using 25
Group box

defining 340
Grouping controls 98

H
Handle 397

object 225
parent window 225

Help
adding to Dialog System application 142,

284
context-sensitive 284

I
Icon 29, 393

attaching 74
IF= 124, 307
INCREMENT 307, 310
INSERT-LIST-ITEM 312
INSERT-MANY-LIST-ITEMS 313
INSERT-OCCURRENCE 310
INSTANCE 112
Instance number 330

finding 320
Interface type

Windows GUI Application Wizard 148
INVOKE-MESSAGE-BOX 275, 301
ITEM-SELECTED 309

L
Linking 141, 358
List Box

adding items at definition 89
adding items using delimited strings 313
adding items using dialog 312
adding items using group item 89
single selection vs multiple selection 88

List box
defining 340
selection 32
Dialog System User’s Guide

406

dspubb.book Page 406 Monday, May 13, 2002 8:57 AM
List boxes
sample dialog 308

LOST-FOCUS 300, 301

M
Maintenance 25
Manipulating controls 167, 363
Master Field 53
Master field 43, 48

bitmap 102
Maximize 61
Memory

screenset 294
Menu

pulldown 72
selection 32

Menu bar 61, 71, 215
dialog 120
main 27

Menu handling
dynamic 281

Menus
context 73
selecting choices 122

Message box 31, 69
movable 215
push buttons 70
types 70

Microsoft Windows 23
Migrating

containers 217
notebooks 216

Minimize 61
MLE 83

editing 84
loading text via Clipboard 85
refreshing 85

Modal 68
Modal dialog box 290
Modeless 68

Modify
menu 281

Modular design 196
Mouse

behavior 212
Mouse Pointer 393
Mouse pointer 26

changing 393
dynamic 393
I-beam 26
static 393

MOVE 307, 315
MOVE-OBJECT-HANDLE 226, 397
MOVE-WINDOW 118
Moving text

using an application program 302
Multiple

environments, developing for 213
instances of screensets 134, 199
programs 196

Multiple Line Entry Field 83
Multiple line entry field

defining 339
read-only 215

Multiple line entry fields
editing 302

Multiple programs
using 196

Multiple resolutions 97, 267
enabling 268
font mapping 269

Multiple screensets
controlled loop 295

N
$NULL 111
Null

validation 56
Dialog System User’s Guide

407

dspubb.book Page 407 Monday, May 13, 2002 8:57 AM
O
Object 58, 59

bitmaps 396
definition 58, 59, 337
entry fields 80
handle 225
MLE’s 83
naming 144
scroll bars 81, 93
selection 31
text 79
user control 96

OLE2
availability 212

Optimization
ds-no-name-info 145
minimize object naming 144
run-time files 145
UNSHOW-WINDOW vs DELETE-WINDOW

144
using Path 143

optimizing a gui application 142
OTHER-SCREENSET 197, 206

P
pan2link.cpy 223
Panels V2 221

call interface 221
copyfile 223
functions 227

Panels2
processing event information 318

Parent
window 215

Path
optimizing 143

Platform 211
Platform resolution

finding 271

Portability
guidelines 213
warnings 211, 215

Primary window 62
relationship to secondary window 63

Procedure 105, 111, 275
Program

calling Dsrunner 193
structure 135, 350
writing 135, 350

Properties 40
window 65

Prototyping 25, 137, 342
Pulldown

menu 28, 72
Push Button

assigning bitmaps dynamically 86
in message box 70

Push button
bitmapped 103
border 215
default border 214
defining 340
selection 32

Push buttons
changing bitmaps dynamically 304

R
Radio button 340

defining 339
grouping 87
selection 32

Range/Table validation 55
REFRESH-OBJECT 125, 310, 315
$REGISTER 111, 307
Registering events

for control programs 366
Registers

$CONTROL 112
$INSTANCE 112
$WINDOW 112
Dialog System User’s Guide

408

dspubb.book Page 408 Monday, May 13, 2002 8:57 AM
$CONTROL 303
$EVENT-DATA 112, 301, 315
$NULL 111
$REGISTER 111, 307

REPEAT-EVENT 206
Resolution

portability 213
RETC 124, 206, 398
Router 198

active screenset 197
inactive screenset 197
other screenset 197

Run
screenset 137, 342

Run-time files 145

S
SALES-INFO-PAGE 317
Sample

Data Block 336
data definition 335

Sample dialog
entry fields 299
validating entry fields 300

Save
screenset 44, 341

Screen
layout 59

Screenset 25, 43
controlling the use of 132, 195
creating 47, 335
Database access 149
definition order 45
Dsrunner 186
memory 294
pushing and popping 133, 196
running 137, 342
sample 47, 335
save 44, 341
SQL 151
steps to create 47, 335

Switching 206
using multiple 133, 196
using multiple instances 134, 199

Screenset alterations 387
Screenset Animator 137, 289, 342

window 140, 347
Screenset Animator window 138
Screenset Name

Windows GUI Application Wizard 148
SCREENSET-INITIALIZED 113, 397
Screensets

controlling multiple 190
Scroll Bar 61
Scroll bar 32, 81, 93

changing properties 94, 315
events 314

Scroll bars 314
Secondary window 62

relationship to primary window 63
Select 31
Selection box

drop-down 91
drop-down list 91
selection 32
simple 91

Server program
connecting to mfserver 236, 250

SET-BUTTON-STATE 113, 120
SET-DATA-GROUP-SIZE 113, 309
SET-DESKTOP-WINDOW 116
SET-FIRST-WINDOW 115
SET-FOCUS 115, 118, 301, 304
SET-LIST-ITEM-STATE 310
SET-MOUSE-SHAPE 393
SET-OBJECT-LABEL 118, 304
SHOW-WINDOW 115
Side file

changing 395
converting to binary format 270

SLIDER-MOVING 315
SLIDER-RELEASED 315
Status bar

customizing 367
Submenus 28
Dialog System User’s Guide

409

dspubb.book Page 409 Monday, May 13, 2002 8:57 AM
Subroutine
procedures 105

System menu 61

T
Tab control 95
Tab controls 316

inserting pages 316
Tabbing order 296
Table join 150
Terminology 24
Testing 25, 137, 342, 357

screenset 137, 342
Text 79

defining 339
fit 214

Text field
adding color 294

Title 61
bar 215

trace dialog execution 138

U
UNSHOW-WINDOW 115, 144
Update

menu choice 283
UPDATE-LIST-ITEM 312
User control 96

benefits 96
User Controls

properties 180
User interface

defining 38, 59
design goals 37
life cycle 25

User validation 56
Using CCI 231
Using control programs 359, 373

Using Dialog System clock ActiveX 390
Using the ActiveX control program 387

V
VAL-ERROR 123, 301
VALIDATE 123, 300
Validation 47

criteria 55
date 55
entry fields 300
null 56
range/table 55
user 56

Validation errors
cancelling 291

W
$WINDOW 112
Window 59

border 61
changing parent 116
changing title 118
client area 61
clipped 212, 215
clipping 63
closing 30
components 60
creating 66, 114
current 30
deleting 117
dialog 107, 114
handle 225
menu bar 61
minimize/maximize icons 61
minimizing 29
moving 29, 118
moving to another 30
non-clipped 215
Dialog System User’s Guide

410

dspubb.book Page 410 Monday, May 13, 2002 8:57 AM
primary 62, 337
properties 65
restoring 29
scroll bar 61
secondary 28, 62, 72
setting focus 118
showing 115
sizing 29
system menu 61
title bar 61, 215
unshowing 115
vs dialog boxes 69

Windows GUI Application Wizard 147
interface type 148
output 154
starting 148

Writing
program 135, 350

X
XIF= 124
Dialog System User’s Guide

	Dialog System User's Guide
	Table of Contents
	Preface
	Audience
	Related Publications
	Notations and Conventions

	Part 1: Introduction
	1 The Graphical User Interface
	Terminology
	1.1 Why Use a GUI for Your Application?
	1.2 How Dialog System Helps
	1.3 Using a GUI System
	1.3.1 Mouse Actions
	1.3.2 Windows and Menus
	1.3.2.1 Manipulating Windows

	1.3.3 Dialog Boxes
	1.3.4 Message Boxes
	1.3.5 Controls
	1.3.6 Selecting Objects
	1.3.7 Scrolling

	1.4 Further Information

	2 Introduction to Dialog System
	2.1 Benefits of Using Dialog System
	2.2 Overview of Dialog System's Capabilities
	2.2.1 Designing Your Interface
	2.2.1.1 Window Objects
	2.2.1.2 Control Objects
	2.2.1.3 Object Properties
	2.2.1.4 Working with Objects
	2.2.1.5 Naming Objects

	2.2.2 Using Dialog
	2.2.2.1 Events
	2.2.2.2 Functions
	2.2.2.3 Procedures

	2.2.3 Using the Data Block and Screenset

	2.3 Steps for Creating an Application Using Dialog System

	3 Creating a Data Definition and Screenset
	3.1 Designing a Data Model
	3.1.1 Defining Data and Validations

	3.2 The Data Definition
	3.2.1 Prompted and Unprompted Mode
	3.2.2 Comments
	3.2.3 Steps for Creating a Data Definition
	3.2.4 The Data Block
	3.2.4.1 Data Block Copyfile
	3.2.4.2 Data Items

	3.2.5 Using Data Groups
	3.2.6 Dependencies
	3.2.7 Validating User Data
	3.2.7.1 Validation Criteria

	3.2.8 Error Message Definition
	3.2.9 Selecting Objects
	3.2.10 Further Information

	4 Window Objects
	4.1 Defining Objects for Your Screen Layout
	4.2 Components of a Window
	4.3 The Desktop
	4.3.1 Primary Windows
	4.3.2 Secondary Windows
	4.3.3 Relationship Between Primary and Secondary Windows

	4.4 Clipping
	4.5 Defining Windows
	4.5.1 Window Properties Dialog Box
	4.5.2 Manipulating a Window

	4.6 Dialog Boxes
	4.6.1 Modal Versus Modeless
	4.6.2 Dialog Boxes Versus Windows

	4.7 Message Boxes
	4.8 Menus
	4.8.1 The Menu Bar
	4.8.2 Pulldown Menus
	4.8.3 Context Menus

	4.9 Attaching an Icon

	5 Control Objects
	5.1 Control Objects
	5.1.1 Text and Entry Fields
	5.1.1.1 Displaying Text (Text Objects)
	5.1.1.2 Getting Input Using Entry Fields
	5.1.1.3 Multiple Line Entry Fields
	5.1.1.4 Editing an MLE
	5.1.1.5 Refreshing an MLE

	5.1.2 Push Buttons
	5.1.2.1 Assigning Bitmaps to Push Buttons

	5.1.3 Radio Buttons
	5.1.4 Check Boxes
	5.1.5 List Boxes
	5.1.5.1 Adding Items to a List Box

	5.1.6 Selection Boxes
	5.1.6.1 Entry Field

	5.1.7 Scroll Bars
	5.1.8 Group Boxes
	5.1.9 Tab Controls
	5.1.10 OLE2 Controls
	5.1.11 User Controls
	5.1.12 ActiveX Controls

	5.2 Grouping Controls
	5.3 Aligning Controls
	5.4 Sample Program
	5.5 Using Bitmaps
	5.5.1 Defining Bitmaps

	5.6 Bitmapped Push Buttons

	6 Using Dialog
	6.1 What is Dialog?
	6.1.1 Comments
	6.1.2 Levels of Dialog
	6.1.2.1 Control Dialog
	6.1.2.2 Window Dialog
	6.1.2.3 Global Dialog
	6.1.2.4 Where to Locate Your Dialog Statements

	6.1.3 Types of Dialog
	6.1.3.1 Events
	6.1.3.2 Functions
	6.1.3.3 Procedures

	6.2 Special Registers
	6.3 Important Dialog Events and Functions
	6.3.1 Initializing the Screenset
	6.3.2 Window Dialog
	6.3.2.1 Creating a Window
	6.3.2.2 Showing the First Window
	6.3.2.3 Showing a Window
	6.3.2.4 Unshowing a Window
	6.3.2.5 Changing the Default Parent Window
	6.3.2.6 Deleting a Window
	6.3.2.7 Setting the Focus on a Window
	6.3.2.8 Moving a Window
	6.3.2.9 Changing the Title of a Window
	6.3.2.10 Closing the Window

	6.3.3 Pressing Buttons
	6.3.3.1 Setting and Getting Button States

	6.3.4 Menu Bar Dialog
	6.3.4.1 Enabling and Disabling Choices
	6.3.4.2 Selecting Menu Choices

	6.3.5 Validating Input
	6.3.6 Using Procedures
	6.3.7 Returning Control to the Calling Program
	6.3.8 Regaining Control from the Calling Program

	6.4 Events Trapped by the Windows Operating System
	6.5 Sample Programs
	6.6 Sample Dialog

	7 Using the Screenset
	7.1 The Call Interface
	7.1.1 Generating the Data Block Copyfile
	7.1.1.1 Generating Copyfile Options

	7.1.2 The Structure of the Call Interface
	7.1.2.1 Controlling the Use of Screensets
	7.1.2.2 Using Multiple Screensets
	7.1.2.3 Using Multiple Instances of the Same Screenset

	7.1.3 Writing the COBOL Application Program
	7.1.3.1 The Control Block

	7.1.4 Debugging and Animating the Screenset and Your COBOL Program
	7.1.4.1 Testing the Screenset
	7.1.4.2 Defining Dialog
	7.1.4.3 Testing the Screenset Again
	7.1.4.4 Changing the Screenset

	7.1.5 Packaging Your Application

	7.2 Adding Help
	7.3 Optimizing the Application
	7.3.1 Limiting the Directory Search
	7.3.2 Searching for Event Dialog
	7.3.3 UNSHOW-WINDOW versus DELETE-WINDOW
	7.3.4 Minimize Naming of Objects
	7.3.5 Run-time Save Format
	7.3.6 Using ds-no-name-info

	7.4 Further Information

	8 Windows GUI Application Wizard
	8.1 Starting the Wizard
	8.2 Using the Wizard
	8.2.1 Step 1: Screenset Name
	8.2.2 Step 2: Interface Type
	8.2.3 Step 3: Class Library Features
	8.2.4 Step 4: Defining a Query
	8.2.5 Step 5: Extensions
	8.2.6 Step 6: Dialog System Run-time Configuration Options
	8.2.7 Step 7: Generate COBOL Programs
	8.2.8 Step 8: Validation of Selected Options

	8.3 Output from the Wizard
	8.4 Running the Application
	8.5 Further Information

	Part 2: Advanced Features
	9 Data Access
	9.1 The Windows GUI Application Wizard
	9.2 Accessing Installed Databases
	9.3 Manipulating the Data
	9.3.1 Edit Data
	9.3.2 Insert a New Row
	9.3.3 Delete a Row

	9.4 Viewing the Data
	9.4.1 Search for Data
	9.4.2 Sort Data

	10 Programming Your Own Controls
	10.1 Control Programs
	10.1.1 Control Implementation Architecture

	10.2 ActiveX Controls
	10.2.1 ActiveX Control Properties
	10.2.2 Tailoring Your ActiveX Control
	10.2.2.1 Selecting an ActiveX Control
	10.2.2.2 Defining the ActiveX Control Properties
	10.2.2.3 Customizing the ActiveX Control Program with the Programming Assistant
	10.2.2.4 Starting the Programming Assistant
	10.2.2.5 Summary

	10.3 User Controls
	10.3.1 Specify the User Control
	10.3.2 User Control Types
	10.3.2.1 Spin Button
	10.3.2.2 Status Bar
	10.3.2.3 Tree View
	10.3.2.4 Toolbar
	10.3.2.5 User Defined

	10.3.3 Summary

	11 Multiple Screensets
	11.1 Dsrunner
	11.1.1 Dsrunner Architecture
	11.1.2 Dsrunner Operation
	11.1.2.1 Parameters
	11.1.2.2 Dsrunner Screensets

	11.1.3 Dsrunner Program and Functions
	11.1.4 Using Dsrunner Functions
	11.1.5 Starting Screensets Using a Command Line
	11.1.6 Starting Screensets in Net Express IDE
	11.1.7 Starting a Screenset from a Program
	11.1.8 Launching a Screenset
	11.1.9 Launching an Application
	11.1.9.1 Running the Sample Subprogram

	11.2 Multiple Screensets and the Router Program
	11.2.1 Using Multiple Screensets
	11.2.2 Using Multiple Programs and Screensets
	11.2.3 Terms and Concepts
	11.2.3.1 The Active Screenset
	11.2.3.2 Events for Other Screensets

	11.2.4 Multiple Screenset Sample Application Using Router
	11.2.5 Using Multiple Instances of Screensets
	11.2.5.1 Tracking the Active Instance Value
	11.2.5.2 Using the Correct Data Block
	11.2.5.3 Sample Programs for Multiple Instances

	11.2.6 The Router Program
	11.2.7 The Main Program
	11.2.8 Multiple Screenset Dialog
	11.2.9 The Sequence of Events
	11.2.9.1 Repeating the Event

	11.2.10 Setting the Focus

	11.3 Further Information

	12 Migrating to Different Platforms
	12.1 Differences Across Environments
	12.1.1 Desktop Mode

	12.2 Developing for Graphical and GUI Emulation Environments
	12.3 General Portability Guidelines
	12.4 Other Cross Environment Issues
	12.5 Backward Compatibility Issues
	12.5.1 Notebooks
	12.5.2 Containers

	12.6 Compatibility Chart

	13 Using Panels V2
	13.1 Calling Panels V2
	13.2 Dialog System and Panels V2 Events
	13.3 Copyfiles
	13.3.1 Panels V2 Copyfile (pan2link.cpy)
	13.3.2 Dialog System Event Block (dssysinf.cpy)

	13.4 Building a Dialog System/Panels V2 Application
	13.4.1 Establishing Dialog System and Panels V2 Communication
	13.4.2 Identifying Dialog System Objects to Panels V2
	13.4.3 Perform Panels V2 functions

	13.5 Sample Program
	13.6 Panels V2 User Events

	14 Using the Client/Server Binding
	14.1 Introduction
	14.2 How the Client/Server Binding Works
	14.3 Connecting Your Programs to the Generic Modules
	14.3.1 Connecting Your Client Application to mfclient
	14.3.2 Connecting Your Server Application to mfserver
	14.3.3 Preparing a Communications Link

	14.4 Before Using the Client/Server Binding
	14.4.1 The mfclisrv.cpy Copyfile
	14.4.2 The Client/Server Binding Configuration File
	14.4.2.1 Possible Entries for the Configuration File
	14.4.2.2 Minimum Required Configuration File Entries
	14.4.2.3 Locating The Configuration File

	14.5 Connecting Your Client Program to mfclient
	14.6 Connecting your Server Program to mfserver
	14.7 Running a Client/Server Binding Application
	14.8 Animating Your Application
	14.9 Managing the Server
	14.9.1 Shutting Down mfserver
	14.9.2 Managing Authorization Passwords
	14.9.3 Setting the Maximum Number of Clients
	14.9.4 Enabling Server Override

	14.10 Advanced Topics
	14.10.1 Creating Audit Trails
	14.10.2 Overriding Configuration File Entries
	14.10.3 Using the In-line Configuration Facility
	14.10.4 Reduced Data Transfer Facility
	14.10.5 Server Controlled File Management Facility

	14.11 Running the Supplied Customer Example
	14.12 The System Error/Message Log
	14.13 Client/Server Binding Limitations

	15 Advanced Topics
	15.1 Implementing Applications to Run on Multiple Resolutions
	15.1.1 Enabling the Screenset for Multiple Resolutions
	15.1.2 Enabling Font Mapping
	15.1.3 Setting the DSFNTENV Environment Variable Using COBOL

	15.2 Using the Dialog System Error Message File Handler
	15.2.1 Using an Alternative Error Message File

	15.3 Building an Interface to a File Selection Facility
	15.3.1 The Dirdemo Sample Screenset
	15.3.2 The Dirdemo Data Block
	15.3.3 The Dirdemo Dialog

	15.4 Modifying Menu Items at Run Time
	15.5 Using the Call Interface
	15.6 Adding Help
	15.6.1 Running the Helpdemo Sample
	15.6.2 The Helpdemo Data Block
	15.6.3 The Helpdemo Dialog
	15.6.4 Entry Field Dialog

	15.7 Further Information

	16 Questions and Answers

	Part 3: Programming Tutorials
	17 Sample Programs
	17.1 Entry Fields
	17.1.1 Validating Entry Fields
	17.1.1.1 Complex Data Validation

	17.1.2 Editing Multiple Line Entry Fields
	17.1.2.1 Moving Text Using Your Application Program
	17.1.2.2 Moving Text Using Dialog

	17.2 Push Buttons
	17.2.1 Dialog for a Pause Push Button
	17.2.2 Dialog for Dynamically Changing Bitmaps Assigned to a Push Button

	17.3 Check Boxes
	17.3.1 Selecting Items From a List

	17.4 List Boxes
	17.4.1 Adding Items Using Group Item
	17.4.2 Adding Items Using Dialog
	17.4.3 Adding Items Using a Delimited String

	17.5 Scroll Bars
	17.5.1 Events Associated with a Scroll Bar
	17.5.2 Scroll Bar Properties

	17.6 Tab Controls
	17.7 The Call Interface
	17.7.1 Using Dsrnr
	17.7.2 The Push-pop Sample Program
	17.7.2.1 The Custom1 Sample Program

	18 Tutorial - Creating a Sample Screenset
	18.1 The Sample Data Definition
	18.1.1 Defining the Data Block
	18.1.2 Creating the Sample Window Object
	18.1.3 Creating the Sample Control Objects
	18.1.4 Creating a Message Box
	18.1.5 Saving Your Screenset
	18.1.6 Testing
	18.1.7 Defining Dialog
	18.1.7.1 The Sample Object Dialog Definitions
	18.1.7.2 The Sample Global Dialog Definition

	18.1.8 Testing the Screenset Again
	18.1.9 Changing the Screenset
	18.1.10 Summary

	18.2 Further Information

	19 Tutorial - Using the Sample Screenset
	19.1 Generating the Data Block Copyfile
	19.1.1 Selecting Options and Generating the Copyfile

	19.2 Writing the COBOL Application Program
	19.3 Debugging and Animating the COBOL Program
	19.4 Packaging Your Application

	20 Tutorial - Adding and Customizing a Status Bar
	20.1 Setting Up
	20.2 Adding a Status Bar to the Screenset
	20.2.1 Defining the Data Items
	20.2.2 Defining the Status Bar

	20.3 Running Your Screenset
	20.4 Manipulating the Status Bar
	20.4.1 Clock Time and Key State Maintenance
	20.4.1.1 Using the Timeout Facility

	20.4.2 Window/Status Bar Section Resizing
	20.4.3 Adding Mouse-over Hint Text

	20.5 Registering Events for the Status Bar
	20.6 20.6 Customizing the Status Bar Control Program
	20.6.1 Registering a Callback for the New Event
	20.6.2 Adding a Left-mouse-button- double-click Event
	20.6.2.1 Adding the Code
	20.6.2.2 Adding Additional Dialog

	21 Tutorial - Adding and Customizing a Menu Bar and Toolbar
	21.1 Setting Up
	21.2 Adding a Menu Bar and Toolbar to the Screenset
	21.2.1 Defining the Data Items
	21.2.2 Defining the Menu Bar and Toolbar

	21.3 Running Your Screenset
	21.4 Defining a Menu Structure
	21.4.1 Adding New Menu Options

	21.5 Defining a Toolbar Structure
	21.5.1 The Existing Toolbar Structure
	21.5.2 Adding New Toolbar Buttons

	21.6 Customizing theToolbar
	21.6.1 Setting up Resource Files
	21.6.2 Setting up Copyfiles
	21.6.3 Adding Dialog to the Screenset

	22 Tutorial - Adding an ActiveX Control
	22.1 Screenset Alterations
	22.2 Using the Dialog System Clock ActiveX Control

	23 Tutorial - Using Bitmaps to Change the Mouse Pointer
	23.1 Changing the Mouse Pointer
	23.1.1 The Moudemo Sample Screenset
	23.1.1.1 Changing the Side File

	23.2 Programming Bitmaps

	A Fonts and Colors
	A.1 Setting Fonts
	A.2 Setting Colors

	Index

