
1HW�([SUHVV�

Issue 4, March 2002

GDWDEDVH�DFFHVV

'DWDEDVH�$FFHVV
dbpubb.book Page 1 Wednesday, April 17, 2002 4:10 PM

Copyright © 2002 Micro Focus International Limited.
All rights reserved.

Micro Focus International Limited has made every effort to ensure that this book is
correct and accurate, but reserves the right to make changes without notice at its sole
discretion at any time. The software described in this document is supplied under a
license and may be used or copied only in accordance with the terms of such license,
and in particular any warranty of fitness of Micro Focus software products for any
particular purpose is expressly excluded and in no event will Micro Focus be liable for
any consequential loss.

Animator®, COBOL Workbench®, EnterpriseLink®, Mainframe Express®,
Micro Focus®, Net Express®, REQL® and Revolve® are registered trademarks, and
AAI™, Analyzer™, Application to Application Interface™, AddPack™, AppTrack™,
AssetMiner™, CCI™, DataConnect™, Dialog System™, EuroSmart™, FixPack™,
LEVEL II COBOL™, License Management Facility™, License Server™,
Mainframe Access™, Mainframe Manager™, Micro Focus COBOL™, Object COBOL™,
OpenESQL™, Personal COBOL™, Professional COBOL™, Server Express™,
SmartFind™, SmartFind Plus™, SmartFix™, SourceConnect™, Toolbox™, WebSync™,
and Xilerator™ are trademarks of Micro Focus International Limited. All other
trademarks are the property of their respective owners.

No part of this publication, with the exception of the software product user
documentation contained on a CD-ROM, may be copied, photocopied, reproduced,
transmitted, transcribed, or reduced to any electronic medium or machine-readable
form without prior written consent of Micro Focus International Limited.

Licensees may duplicate the software product user documentation contained on a CD-
ROM, but only to the extent necessary to support the users authorized access to the
software under the license agreement. Any reproduction of the documentation,
regardless of whether the documentation is reproduced in whole or in part, must be
accompanied by this copyright statement in its entirety, without modification.

U.S. GOVERNMENT RESTRICTED RIGHTS. It is acknowledged that the Software and the
Documentation were developed at private expense, that no part is in the public
domain, and that the Software and Documentation are Commercial Computer
Software provided with RESTRICTED RIGHTS under Federal Acquisition Regulations
and agency supplements to them. Use, duplication or disclosure by the U.S.
Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of The
Rights in Technical Data and Computer Software clause at DFAR 252.227-7013 et. seq.
or subparagraphs (c)(1) and (2) of the Commercial Computer Software Restricted
Rights at FAR 52.227-19, as applicable. Contractor is Micro Focus, 9420 Key West
Avenue, Rockville, Maryland 20850. Rights are reserved under copyright laws of the
United States with respect to unpublished portions of the Software.

20020417161018

dbpubb.book Page 2 Wednesday, April 17, 2002 4:10 PM

3

dbpubb.book Page 3 Wednesday, April 17, 2002 4:10 PM
Table of Contents

Preface . 13

Audience . 13

Notation . 14

Part 1: Introduction

1 Introduction . 17

1.1 Overview . 17

1.2 Embedded SQL . 18
1.2.1 Case . 21
1.2.2 OpenESQL Assistant . 22

1.3 Building your Application . 22
1.3.1 Internet Application Wizard . 23

1.4 Multiple Program Modules . 23

2 Host Variables . 25

2.1 Declaring Host Variables . 26
2.1.1 OpenESQL and DB2 Preprocessors 27

2.2 Host Arrays . 27
2.2.1 The FOR Clause . 29
2.2.2 Determining the Number of Rows Processed 30

2.2.2.1 The DB2 Preprocessor . 30

2.3 Indicator Variables . 31
2.3.1 Null Values. 32
2.3.2 Data Truncation . 33
2.3.3 Indicator Arrays. 33
Database Access

4

dbpubb.book Page 4 Wednesday, April 17, 2002 4:10 PM
3 Data Types . 35

3.1 Converting Data Types . 35
3.1.1 COBSQL Preprocessor. 35

3.1.1.1 Oracle . 36
3.1.1.2 Sybase . 36
3.1.1.3 Informix. 37

3.2 Integer Data Types. 37
3.2.1 Tiny Integer . 37

3.2.1.1 COBSQL Preprocessor . 37
3.2.2 Small Integer . 38

3.2.2.1 OpenESQL Preprocessor . 38
3.2.2.2 COBSQL Preprocessor - Oracle 38
3.2.2.3 COBSQL Preprocessor - Sybase 38
3.2.2.4 COBSQL Preprocessor - Informix 39

3.2.3 Integer . 39
3.2.3.1 OpenESQL Preprocessor . 39
3.2.3.2 COBSQL Preprocessor - Oracle 39
3.2.3.3 COBSQL Preprocessor - Sybase 40
3.2.3.4 COBSQL Preprocessor - Informix 40

3.2.4 Big Integer . 40

3.3 Character Data Types. 41
3.3.1 Fixed-length Character Strings . 41
3.3.2 Variable-length Character Strings . 41

3.3.2.1 OpenESQL and DB2 Preprocessors. 41
3.3.2.2 COBSQL Preprocessor . 42
3.3.2.3 COBSQL - Informix . 43

3.4 Approximate Numeric Data Types . 44
3.4.1 OpenESQL Preprocessor. 44
3.4.2 DB2 Preprocessor . 44
3.4.3 COBSQL Preprocessor. 44

3.5 Exact Numeric Data Types . 45
3.5.1 COBSQL Preprocessor. 45

3.6 Date and Time Data Types . 46
3.6.1 DB2 Preprocessor . 46
Database Access

5

dbpubb.book Page 5 Wednesday, April 17, 2002 4:10 PM
3.6.2 COBSQL Preprocessor . 46
3.6.2.1 Oracle . 46
3.6.2.2 Sybase. 47
3.6.2.3 Informix . 48

3.7 Binary Data Types . 48
3.7.1 OpenESQL Preprocessor . 48
3.7.2 DB2 Preprocessor . 48
3.7.3 COBSQL Preprocessor . 49

3.7.3.1 Oracle . 49
3.7.3.2 Sybase. 49
3.7.3.3 Informix . 50

4 Cursors . 51

4.1 Declaring a Cursor . 52
4.1.1 Object Oriented COBOL Syntax . 53

4.2 Opening a Cursor . 54

4.3 Using a Cursor to Retrieve Data . 55

4.4 Closing a Cursor . 56

4.5 Cursor Options . 56

4.6 Positioned UPDATE and DELETE Statements 57

4.7 Using Cursors . 58

5 Data Structures . 61

5.1 SQL Communications Area (SQLCA) . 61
5.1.1 The SQLCODE Variable . 62
5.1.2 The SQLSTATE Variable . 63
5.1.3 The Warning Flags . 63
5.1.4 The WHENEVER Statement . 64
5.1.5 SQLERRM . 65
5.1.6 SQLERRD . 65

5.2 The SQL Descriptor Area (SQLDA) . 66
5.2.1 Using the SQLDA. 67

5.2.1.1 The PREPARE and DESCRIBE Statements 68
5.2.1.2 The FETCH Statement . 68
Database Access

6

dbpubb.book Page 6 Wednesday, April 17, 2002 4:10 PM
5.2.1.3 The OPEN or EXECUTE Statements 68
5.2.2 The DESCRIBE Statement . 69

6 Dynamic SQL . 71

6.1 Dynamic SQL Statement Types . 71
6.1.1 Execute a Statement Once. 72
6.1.2 Execute the Same Statement More than Once 72
6.1.3 Select a Given List of Data . 72
6.1.4 Select any Amount of Data . 72

6.2 Preparing Dynamic SQL Statements . 73

6.3 Executing Dynamic SQL Statements . 75
6.3.1 Execute Immediate. 75
6.3.2 FREE Statement (COBSQL Informix) 76

6.4 Dynamic SQL Statements and Cursors . 76

6.5 CALL Statements . 77

Part 2: OpenESQL

7 OpenESQL . 81

7.1 ODBC Drivers and Data Source Names. 81
7.1.1 Installing ODBC Drivers . 81
7.1.2 Setting up a Data Source Name . 81

7.2 ORACLE OCI Support . 82

7.3 SQL Compiler Directive . 83

7.4 Data Sources . 88

7.5 Database Connections. 88

7.6 Keywords . 89

7.7 Building an Application . 89

7.8 Demonstration Applications . 90

7.9 Managing Transactions . 92

7.10 Data Types . 92

7.11 Using the SQLCA . 95
Database Access

7

dbpubb.book Page 7 Wednesday, April 17, 2002 4:10 PM
7.12 Dynamic SQL . 96

7.13 Positioned Update . 96
7.13.1 Limitations. 97

7.14 Using OpenESQL with Web and Application Servers 98
7.14.1 Thread Safety . 98
7.14.2 Connection Management. 98
7.14.3 Transactions. 99
7.14.4 User Accounts, Schemas and Authentication 100
7.14.5 Transaction Wrapper Sample . 100

7.15 XML Support . 108
7.15.1 PERSIST Statement . 108

8 OpenESQL Assistant . 111

8.1 Setting OpenESQL Assistant Options . 112

8.2 Starting the OpenESQL Assistant . 116

8.3 Connecting to a Data Source . 117

8.4 Selecting a Table. 119
8.4.1 Selecting a Column . 121
8.4.2 De-selecting a Column . 121
8.4.3 Selecting all the Columns in a Table 121

8.5 De-selecting a Table . 122

8.6 Displaying Column Details . 124

8.7 Creating a New Query . 125
8.7.1 Selecting a Different Table . 126
8.7.2 Changing the Query Type. 126
8.7.3 Connecting to a Different Data Source 126

8.8 Running a Select Query . 126

8.9 Specifying Search Criteria . 130

8.10 Specifying Order Data is Retrieved . 134
Database Access

8

dbpubb.book Page 8 Wednesday, April 17, 2002 4:10 PM
Part 3: DB2

9 DB2 . 139

9.1 Data Types . 139
9.1.1 Decimal . 139
9.1.2 Additional Data Types . 140

9.2 Compound SQL . 141

9.3 User Defined Functions . 142

9.4 Extensions to Embedded SQL Support . 144
9.4.1 The INCLUDE Statement . 144
9.4.2 The DECLARE TABLE Statement . 145
9.4.3 Integer Host Variables . 145
9.4.4 Qualified Host Variables . 145
9.4.5 Host Variable Groups and Indicator Arrays 146
9.4.6 The NOT Operator . 147
9.4.7 The Concat Operator (|) . 147
9.4.8 SQL Communications Area . 147
9.4.9 Support for Object Oriented COBOL Syntax 148
9.4.10 Support for Nested COBOL programs. 148

9.5 DB2 INIT Directive . 149

9.6 Compiling. 149
9.6.1 Compiling Programs that use a Remote DB2 Server 151

9.6.1.1 Automated Compiles . 151
9.6.2 DB2 Compiler Directive . 152

9.7 Error Codes. 166

9.8 Creating Debug Files . 167

9.9 Linking . 168

9.10 Binding . 169

9.11 Publishing your DB2 Applications on UNIX 169

10 SQL Option for DB2 . 171

10.1 Overview . 171

10.2 SQL Option Components. 172
Database Access

9

dbpubb.book Page 9 Wednesday, April 17, 2002 4:10 PM
10.3 XDB Server . 173
10.3.1 Server Configuration Utility . 173
10.3.2 Server Administration Options. 174

10.4 SQL Wizard . 174
10.4.1 Managing System Security and Priorities 175
10.4.2 Managing Locations, Tables and Queries 177
10.4.3 Creating and Running SQL Queries 177
10.4.4 Entering Data Directly into a Table 178
10.4.5 Importing and Exporting Data. 179

10.4.5.1 Import/Export NLS Considerations 180
10.4.6 Running Batch Scripts . 181

10.5 Migrate Utility . 181

10.6 Execute SQL Option . 182

10.7 Declaration Generator Utility . 182

10.8 Options Utility . 183

10.9 Bind Utility . 184

10.10 Gateway Profile Utility . 186

10.11 SQL Option Preprocessor . 186
10.11.1 SQL Communications Area (SQLCA) 186
10.11.2 SQL Descriptor Area (SQLDA). 187
10.11.3 Support for Object Oriented COBOL Syntax 187
10.11.4 Security . 188
10.11.5 DSNTIAR Facility . 188
10.11.6 Migration Considerations. 188

10.11.6.1 Invoking the Preprocessor. 189
10.11.6.2 Directives in Comments. 189
10.11.6.3 Ambiguous References . 189
10.11.6.4 Debug Files . 190
10.11.6.5 Maximum number of SQL statements 191
10.11.6.6 Setting Additional Directives under IDE 191

10.11.7 XDB Directive . 192
10.11.8 Error Messages . 192
10.11.9 Linking . 192
10.11.10 Distributing Your Application 193
Database Access

10

dbpubb.book Page 10 Wednesday, April 17, 2002 4:10 PM
10.12 SQL Option NLS Environment . 194

10.13 Using Existing XDB Data . 197

10.14 Tips . 197

11 Stored Procedures . 199

11.1 OpenESQL Stored Procedures . 199

11.2 DB2 Stored Procedures . 201
11.2.1 Working with Stored Procedures 202
11.2.2 Writing and Preparing Stored Procedures 202

11.2.2.1 Features of a Stored Procedure 203
11.2.2.2 Preparing Stored Procedures 203
11.2.2.3 How an Application Works with a Stored
 Procedure . 204

11.2.3 Writing and Preparing Applications to Use Stored
 Procedures . 205

11.2.3.1 Executing the SQL Statement CALL 205
11.2.3.2 Parameter Conventions . 207
11.2.3.3 Using Indicator Variables to Speed Processing 209
11.2.3.4 Declaring Data Types for Passed Parameters 210
11.2.3.5 Limitations . 210

11.2.4 Defining Stored Procedures under DB2 Universal
 Database . 211
11.2.5 Compiling Stored Procedures under DB2 Universal
 Database . 212
11.2.6 Debugging Stored Procedures under DB2 Universal
 Database . 215

Part 4: COBSQL

12 COBSQL . 221

11.1 Overview . 221

11.2 Operation. 222
11.2.1 Specifying Directives . 223
11.2.2 COBSQL Directives . 225
11.2.3 COBOL Directives . 226
Database Access

11

dbpubb.book Page 11 Wednesday, April 17, 2002 4:10 PM
11.3 Building COBSQL Applications . 227

11.4 Using the CP Preprocessor to Expand Copyfiles 228

11.5 National Language Support (NLS) . 230

11.6 Examples . 230
11.6.1 Oracle. 230
11.6.2 Sybase . 231
11.6.3 Informix . 231

11.7 Troubleshooting . 231
11.7.1 Common Problem Areas. 233
11.7.2 Oracle Considerations. 234

11.7.2.1 Oracle Pro*COBOL 1.8 Considerations 234
11.7.3 Oracle Pro*COBOL 8.x Considerations. 236

11.7.3.1 Directives . 236
11.7.3.2 Directives . 236
11.7.3.3 Micro Focus COBOL . 237

11.7.4 Sybase Considerations . 238
11.7.5 Informix Considerations . 241
Database Access

12

dbpubb.book Page 12 Wednesday, April 17, 2002 4:10 PM
Database Access

13

dbpubb.book Page 13 Wednesday, April 17, 2002 4:10 PM
Preface

This book describes how you can use Net Express to create a COBOL
application which uses embedded SQL to access a relational database.
Net Express provides:

• OpenESQL

• DB2 ECM

• COBSQL

This book does not provide details about SQL syntax, error messages
returned or any use of SQL outside of the COBOL environment. For
details of these, refer to the documentation supplied by your database
vendor.

Audience
This book is for Net Express COBOL programmers who want to create
or modify COBOL applications which access relational databases using
embedded SQL.

It is assumed that you are already familiar with both SQL and, if you are
using OpenESQL, ODBC. If you are using the DB2 ECM, it is assumed
that you are familiar with DB2. If you are using COBSQL, it is assumed
that you are familiar with the Oracle or Sybase database that you are
accessing.
Database Access

14 Preface

dbpubb.book Page 14 Wednesday, April 17, 2002 4:10 PM
Notation
The following type styles and conventions have been used in this book:

• Text that you type is shown like this:

cat script_name | more

The italic text denotes a variable that you type as part of the
command.

• Text in command lines or code examples that is optional is shown in
square brackets. In the following example, the expression can
specify that the column_name is like the pattern_value, or is not
like the pattern_value, depending on the absence or presence of
the optional word NOT:

column_name [NOT] LIKE pattern_value

• Sections or paragraphs that apply only to a particular database or
operating system are identified by a bold italic side heading
immediately preceding the paragraph it applies to. For example:

OpenESQL This paragraph only applies to OpenESQL and not to DB2 or
COBSQL.
Database Access

15

dbpubb.book Page 15 Wednesday, April 17, 2002 4:10 PM
Part 1: Introduction
This part contains the following chapters:

• Chapter 1, “Introduction”

• Chapter 2, “Host Variables”

• Chapter 3, “Data Types”

• Chapter 4, “Cursors”

• Chapter 5, “Data Structures”

• Chapter 6, “Dynamic SQL”
Database Access

16 Part 1: Introduction

dbpubb.book Page 16 Wednesday, April 17, 2002 4:10 PM
Database Access

17

dbpubb.book Page 17 Wednesday, April 17, 2002 4:10 PM
1 Introduction

1.1 Overview
Net Express includes a number of SQL preprocessors (OpenESQL, the
DB2 ECM and COBSQL) which enable you to access relational databases
by embedding SQL statements within your COBOL program:

• OpenESQL

The OpenESQL preprocessor enables you to access a relational
database via an ODBC driver by embedding SQL statements within
your COBOL program.

• DB2 ECM

The DB2 External Checker Module (ECM) is a new type of
integrated preprocessor provided with Net Express and designed to
work closely with the Micro Focus COBOL Compiler. The DB2 ECM
converts embedded SQL statements into the appropriate calls to
DB2 database services. It is intended for use with:

• IBM Software Development Kit (SDK) for Windows 95/NT
Version 2.1

• IBM DB2 for Windows 95/NT Single User Version 2.1

• IBM Distributed Database Connection Services (DDCS) for
Windows NT Version 2.3

• IBM DB2 Universal Database Version 6.1

• IBM DB2 Connect Version 5

• COBSQL

COBSQL is an integrated preprocessor designed to work with
COBOL precompilers supplied by relational database vendors. It is
intended for use with:

• Sybase Open Client Embedded SQL/COBOL Version 11.5
Database Access

18 Chapter 1 Introduction

dbpubb.book Page 18 Wednesday, April 17, 2002 4:10 PM
• Oracle Pro*COBOL Version 1.8

• Oracle Pro*COBOL Version 8.04

• Informix Embedded SQL/COBOL Version 9.x

If you are already using either of the above precompilers with an
earlier version of a Micro Focus COBOL product and want to migrate
your application to Net Express, you should use COBSQL. For any
other type of embedded SQL development, we recommend that
you use OpenESQL.

Note: Use of COBSQL is only supported for standard procedural COBOL
programs. You cannot use COBSQL with Object Oriented COBOL syntax
(OO programs) or with nested programs.

1.2 Embedded SQL
Each of the preprocessors works by taking the SQL statements that you
have embedded in your COBOL program and converting them to the
appropriate function calls to the database.

Within your COBOL program, each embedded SQL statement must be
preceded by the introductory keywords:

EXEC SQL

and followed by the keyword:

END-EXEC

For example:

EXEC SQL
 SELECT au_lname INTO :lastname FROM authors
 WHERE au_id = ’124-59-3864’
END-EXEC

The embedded SQL statement can be broken over as many lines as
necessary following the normal COBOL rules for continuation, but
between the EXEC SQL and END-EXEC keywords you can only code an
embedded SQL statement, you cannot include any ordinary COBOL code.
Database Access

1.2 Embedded SQL 19

dbpubb.book Page 19 Wednesday, April 17, 2002 4:10 PM
Most vendors provide SQL Reference documentation with their
database software which will include full information about embedded
SQL statements but you should, for example, be able to perform the
following typical operations using the statements shown:

With the exception of INSERT, DELETE(SEARCHED) and
UPDATE(SEARCHED) which are included for your convenience, the
embedded SQL statements described here work somewhat differently,
or are in addition to, standard SQL statements.

A full syntax description is given in the online help for each of the
embedded SQL statements below, together with an example of its use.

Operation SQL Statement(s)

Add data to a table INSERT

Change data in a table UPDATE

Retrieve a row of data from a table SELECT

Create a named cursor DECLARE CURSOR

Retrieve multiple rows of data using a cursor OPEN, FETCH, CLOSE

Statement Description

BEGIN DECLARE SECTION Marks the beginning of a host
variable declaration section

BEGIN TRANSACTION3 Opens a transaction in
AUTOCOMMIT mode

CALL3 Executes a stored procedure

CLOSE Ends row-at-a-time data retrieval
initiated by the OPEN statement

COMMIT Commits a transaction

CONNECT Connects to a database

DECLARE CURSOR Defines a cursor for row-at-a-time
data retrieval

DECLARE DATABASE Identifies a database

DELETE (POSITIONED)1 Removes the row where the cursor is
currently positioned

DELETE (SEARCHED) Removes table rows that meet the
search criteria
Database Access

20 Chapter 1 Introduction

dbpubb.book Page 20 Wednesday, April 17, 2002 4:10 PM
DESCRIBE Populates an SQLDA data structure

DISCONNECT2 Closes connections to one or all
databases

END DECLARE SECTION Marks the end of a host variable
declaration section

EXECSP3 Executes a stored procedure

EXECUTE Runs a prepared SQL statement

EXECUTE IMMEDIATE Runs the SQL statement contained in
the specified host variable

FETCH For a specified cursor, gets the next
row from the results set

INCLUDE Defines a specific SQL data structure
for use by an application

INSERT Adds data to a table or view

OPEN Begins row-at-a-time data retrieval
for a specified cursor

PREPARE Associates an SQL statement with a
name

QUERY ODBC3 Queries the ODBC data dictionary

ROLLBACK Rolls back the current transaction

SELECT DISTINCT Associates a cursor name with an
SQL statement

SELECT INTO1 Retrieves one row of results (also
known as a singleton select)

SET AUTOCOMMIT3 Controls AUTOCOMMIT mode

SET CONCURRENCY3 Sets the concurrency option for
standard-mode cursors

SET CONNECTION3 Specifies which database connection
to use for subsequent SQL statements

SET OPTION3 Assigns values for query-processing
options

SET SCROLLOPTION3 Sets the scrolling technique and row
membership for standard-mode
cursors

Statement Description
Database Access

1.2 Embedded SQL 21

dbpubb.book Page 21 Wednesday, April 17, 2002 4:10 PM
Notes:

1.2.1 Case
The case of embedded SQL keywords in your programs is ignored, for
example:

EXEC SQL CONNECT exec sql connect Exec Sql Connect

are all equivalent.

The case of cursor names, statement names and connection names must
match that used when the variable is declared. For example, if you
declare a cursor as C1, you must always refer to it a C1 (and not as c1).

The settings for the particular database determine whether other
words, such as table and column names, are case-sensitive.

SET TRANSACTION ISOLATION3 Sets the transaction isolation level
mode for a connection

UPDATE (POSITIONED)1 Changes data in the row where the
cursor is currently positioned

UPDATE (SEARCHED) Changes data in existing rows, either
by adding new data or by modifying
existing data

WHENEVER Specifies the default action
(CONTINUE, GOTO or PERFORM) to
be taken after a SQL statement is run

Statement Description

1 These statements have the same name as a standard SQL
statement but the syntax given in the online help augments the
standard SQL syntax

2 The DISCONNECT statement is not supported when accessing an
Oracle database via COBSQL

3 These statements are not supported by COBSQL
Database Access

22 Chapter 1 Introduction

dbpubb.book Page 22 Wednesday, April 17, 2002 4:10 PM
Hyphens are not permitted in SQL identifiers (in table and column
names, for example).

1.2.2 OpenESQL Assistant
Net Express includes an OpenESQL Assistant. You can use this interactive
tool to:

• Prototype SQL SELECT statements and test them against your
database

• Design SQL INSERT, UPDATE and DELETE statements

For further information, refer to the chapter OpenESQL.

1.3 Building your Application
Once you have written your COBOL application containing embedded
SQL, you must compile it specifying the appropriate Compiler directive
such that the preprocessor converts the embedded SQL statements into
function calls to the database:

• OpenESQL preprocessor:

Specify the SQL Compiler directive. See the chapter OpenESQL for
details.

• DB2 ECM preprocessor:

Specify the DB2 Compiler directive. See the chapter DB2 for details.

• COBSQL preprocessor:

Specify the PREPROCESS"COBSQL" Compiler directive. See the
chapter COBSQL for details.
Database Access

1.4 Multiple Program Modules 23

dbpubb.book Page 23 Wednesday, April 17, 2002 4:10 PM
1.3.1 Internet Application Wizard
Net Express includes an Internet Application Wizard. Use this wizard to
generate complete Web applications that access a relational database.
You can create a working SQL application within minutes.

For further information, refer to the on-line book Internet
Applications.

1.4 Multiple Program Modules
Multiple embedded SQL source files, compiled separately and linked to
a single executable file, can share the same database connection at run
time. This is also true for programs that are compiled into separate
dynamic-link libraries (.dll files). If subsequent program modules (in the
same process) do not process a CONNECT statement, they share the
same database connection with the module that included the
CONNECT statement.

The table below gives guidelines on how to use multiple program
modules with the different SQL preprocessors:

SQL preprocessors Guidelines

OpenESQL In a program that includes multiple, separately
compiled modules, you should compile only
one module with the INIT option of the SQL
Compiler directive. All other modules within
the program should share that first automatic
connection or make explicit connections using
the CONNECT statement.

OpenESQL,
DB2

Statement names are local to a particular
program module (compilation unit). This means
that a statement cannot be prepared in one
module and executed in another.

OpenESQL,
DB2

Cursor names should be unique within an
application

COBSQL If you specify the INIT directive more than once,
Net Express ignores second and subsequent uses
Database Access

24 Chapter 1 Introduction

dbpubb.book Page 24 Wednesday, April 17, 2002 4:10 PM
Database Access

25

dbpubb.book Page 25 Wednesday, April 17, 2002 4:10 PM
2 Host Variables

Host variables are data items defined within a COBOL program. They
are used to pass values to and receive values from a database. Host
variables can be defined in the File Section, Working-Storage Section,
Local-Storage Section or Linkage Section of your COBOL program and
have any level number between 1 and 48. Level 49 is reserved for
VARCHAR data items.

When a host variable name is used within an embedded SQL
statement, the data item name must begin with a colon (:) to enable
the Compiler to distinguish between host variables and tables or
columns with the same name.

Host variables are used in one of two ways:

• Input host variables

These are used to specify data that will be transferred from the
COBOL program to the database.

• Output host variables

These are used to hold data that is returned to the COBOL program
from the database.

For example, in the following statement, :book-id is an input host
variable that contains the ID of the book to search for, while :book-
title is an output host variable that returns the result of the search:

EXEC SQL
 SELECT title INTO :book-title FROM titles
 WHERE title_id=:book-id
END-EXEC
Database Access

26 Chapter 2 Host Variables

dbpubb.book Page 26 Wednesday, April 17, 2002 4:10 PM
2.1 Declaring Host Variables
Before you can use a host variable in an embedded SQL statement, you
must declare it. Host variable declarations should be bracketed by the
embedded SQL statements BEGIN DECLARE SECTION and END DECLARE
SECTION, for example:

EXEC SQL
 BEGIN DECLARE SECTION
END-EXEC
01 id pic x(4).
01 name pic x(30).
EXEC SQL
 END DECLARE SECTION
END-EXEC

display "Type your identification number: "
accept id.

* The following statement retrieves the name of the
* employee whose ID is the same as the contents of
* the host variable "id". The name is returned in
* the host variable "name".

EXEC SQL
 SELECT emp_name INTO :name FROM employees
 WHERE emp_id=:id
END-EXEC
display "Hello " name.

Note:

• You can use groups of data items as a single host variable.

• OpenESQL trims trailing spaces from character host variables. If the
variable consists entirely of spaces, OpenESQL does not trim the first
space character because some servers treat a zero length string as
NULL.
Database Access

2.2 Host Arrays 27

dbpubb.book Page 27 Wednesday, April 17, 2002 4:10 PM
2.1.1 OpenESQL and DB2 Preprocessors

You can use data items as host variables even if they have not been
declared using BEGIN DECLARE SECTION and END DECLARE SECTION.

When declaring host variables, you should bear the following in mind:

• Host variable names must conform to the COBOL rules for data items.

• Host variables can be declared anywhere that it is legal to declare
COBOL data items.

• Underscores (_) are not permitted in host variable names.

2.2 Host Arrays
An array is a collection of data items associated with a single variable
name. You can define an array of host variables (called host arrays) and
operate on them with a single SQL statement.

You can use host arrays as input variables in INSERT, UPDATE and
DELETE statements and as output variables in the INTO clause of SELECT
and FETCH statements. This means that you can use arrays with SELECT,
FETCH, DELETE, INSERT and UPDATE statements to manipulate large
volumes of data.

Host arrays are declared in the same way as simple host variables using
BEGIN DECLARE SECTION and END DECLARE SECTION. With host arrays,
however, you must use the OCCURS clause to dimension the array. For
example:

EXEC SQL
 BEGIN DECLARE SECTION
END-EXEC
01 AUTH-REC-TABLES
 05 Auth-id OCCURS 25 TIMES PIC X(12).
 05 Auth-Lname OCCURS 25 TIMES PIC X(40).
EXEC SQL
 END DECLARE SECTION
END-EXEC.
.
.

Database Access

28 Chapter 2 Host Variables

dbpubb.book Page 28 Wednesday, April 17, 2002 4:10 PM
.
EXEC SQL
 CONNECT USERID ’user’ IDENTIFIED BY ’pwd’ USING ’db_alias’
END-EXEC
EXEC SQL
 SELECT au-id, au-lname
 INTO :Auth-id, :Auth-Lname FROM authors
END-EXEC
display sqlerrd(3)

In this example, up to 25 rows (the size of the array) can be returned by
the SELECT statement. If the SELECT statement could return more than
25 rows, then 25 rows will be returned and SQLCODE will be set to
indicate that more rows are available but could not be returned.

Use a SELECT statement only when you know the maximum number of
rows to be selected. When the number of rows to be returned is
unknown, use the FETCH statement. Using arrays, it is possible to fetch
data in batches. This can be useful when creating a scrolling list of
information.

If you use multiple host arrays in a single SQL statement, their
dimensions must be the same.

Notes:

OpenESQL and
DB2

• You cannot mix host arrays and simple host variables within a single
SQL statement. If any of the host variables is an array, they must all
be arrays.

COBSQL • This information on host arrays applies in its entirety if you are
using an Oracle database. If you are using a Sybase database,
however, you can only use host arrays as output variables in either a
SELECT or a FETCH statement.

• Both Oracle and Sybase allow a simple host variable in the WHERE
clause of a SELECT statement. This is the only time that you can mix
array host variables and simple host variables.

Database Access

2.2 Host Arrays 29

dbpubb.book Page 29 Wednesday, April 17, 2002 4:10 PM
2.2.1 The FOR Clause

By default, the entire array is processed by an SQL statement but you
can use the optional FOR clause to limit the number of array elements
processed to just those that you want. This is especially useful in
UPDATE, INSERT and DELETE statements where you may not want to
use the entire array.

The FOR clause must use an integer host variable, for example:

EXEC SQL
 BEGIN DECLARE SECTION
END-EXEC
01 AUTH-REC-TABLES
 05 Auth-id OCCURS 25 TIMES PIC X(12).
 05 Auth-Lname OCCURS 25 TIMES PIC X(40).
01 maxitems PIC S9(4) COMP-5 VALUE 10.
EXEC SQL
 END DECLARE SECTION
END-EXEC.
.
.
.
EXEC SQL
 CONNECT USERID ’user’ IDENTIFIED BY ’pwd’ USING ’db_alias’
END-EXEC
EXEC SQL
 FOR :maxitems
 UPDATE authors
 SET au_lname = :Auth_Lname
 WHERE au_id = :Auth_id
END-EXEC
display sqlerrd(3)

In this example, 10 rows (the value of :maxitems) are modified by the
UPDATE statement.

The number of array elements processed is determined by comparing
the dimension of the host array with the FOR clause variable. The lesser
value is used.

If the value of the FOR clause variable is less than or equal to zero, no
rows are processed.
Database Access

30 Chapter 2 Host Variables

dbpubb.book Page 30 Wednesday, April 17, 2002 4:10 PM
Note:

COBSQL
Preprocessor

If you are using COBSQL, this information on the FOR clause is only
applicable if you are using an Oracle database. It does not apply if you
are using either a Sybase or an Informix database.

2.2.2 Determining the Number of Rows
Processed
The third element of SQLERRD in the SQLCA, SQLERRD(3), records the
number of rows processed for INSERT, UPDATE, DELETE and SELECT
INTO statements.

OpenESQL
Preprocessor

For FETCH statements, SQLERRD(3) always contains the number of rows
fetched by the last FETCH statement.

COBSQL and DB2
Preprocessors

For FETCH statements, SQLERRD(3) records the cumulative sum of rows
processed.

2.2.2.1 The DB2 Preprocessor

SQLERRD(3) contains the following:

• If PREPARE is invoked and successful, an estimate of the number of
rows that will be returned.

• After INSERT, UPDATE and DELETE, the actual number of rows
affected.

• If compound SQL is invoked, a count of the number of successful
sub-statements.

• If CONNECT is invoked, either 1 if the database can be updated or 2
if the database is read-only.

• If an error occurs when processing a host array, the last row that was
processed successfully.
Database Access

2.3 Indicator Variables 31

dbpubb.book Page 31 Wednesday, April 17, 2002 4:10 PM
SQLERRD(4) contains the following:

• If PREPARE is invoked and successful, a relative cost estimate of the
resources required to process the statement.

• If compound SQL is invoked, a count of the number of successful
sub-statements.

• If CONNECT is invoked, 0 for a one-phase commit from a down-level
client; 1 for a one-phase commit; 2 for a one-phase, read-only
commit; 3 for a two-phase commit.

SQLERRD(5) contains the following:

• The total number of rows deleted, inserted, or updated as a result
of both:

• The enforcement of constraints after a successful delete
operation.

• The processing of triggered SQL statements from activated
triggers.

• If compound SQL is invoked, an accumulation of the number of such
rows for all sub-statements. In some cases, when an error is
encountered, this field contains a negative value that is an internal
error pointer.

• If CONNECT is invoked, an authentication type value of 0 for a
server authentication; 1 for client authentication; 2 for
authentication using DB2 Connect; 3 for DCE security services
authentication; 255 for unspecified authentication.

2.3 Indicator Variables
Embedded SQL enables you to store and retrieve null values from a
database by using indicator variables. Indicator variables are always
defined as:

pic S9(4) comp-5.
Database Access

32 Chapter 2 Host Variables

dbpubb.book Page 32 Wednesday, April 17, 2002 4:10 PM
2.3.1 Null Values

Unlike COBOL, SQL supports variables that can contain null values. A
null value means that no entry has been made and usually implies that
the value is either unknown or undefined. A null value enables you to
distinguish between a deliberate entry of zero (for numerical columns)
or a blank (for character columns) and an unknown or inapplicable
entry. For example, a null value in a price column does not mean that
the item is being given away free, it means that the price is not known
or has not been set.

Together, a host variable and its companion indicator variable specify a
single SQL value. Both variables must be preceded by a colon (:). When a
host variable is null, its indicator variable has the value -1; when a host
variable is not null, the indicator variable has a value other than -1.

Within an embedded SQL statement an indicator variable should be
placed immediately after its corresponding host variable. For example,
the following embedded UPDATE statement uses a saleprice host
variable with a companion indicator variable, saleprice-null:

EXEC SQL
 UPDATE closeoutsale
 SET temp_price = :saleprice:saleprice-null,
 listprice = :oldprice
END-EXEC

In this example, if saleprice-null has a value of -1, when the
UPDATE statement executes, the statement is read as:

EXEC SQL
 UPDATE closeoutsale
 SET temp_price = null, listprice = :oldprice
END-EXEC

You cannot use indicator variables in a search condition. To search for
null values, use the is null construct. For example, you can use the
following:

 if saleprice-null equal -1
 EXEC SQL
 DELETE FROM closeoutsale
 WHERE temp_price is null
 END-EXEC
 else
 EXEC SQL
Database Access

2.3 Indicator Variables 33

dbpubb.book Page 33 Wednesday, April 17, 2002 4:10 PM
 DELETE FROM closeoutsale
 WHERE temp_price = :saleprice
 END-EXEC
 end-if

2.3.2 Data Truncation
Indicator variables serve an additional purpose if truncation occurs
when data is retrieved from a database into a host variable. If the host
variable is not large enough to hold the data returned from the
database, the warning flag sqlwarn1 in the SQLCA data structure is set
and the indicator variable is set to the size of the data contained in the
database.

2.3.3 Indicator Arrays
Use indicator arrays in the same ways that you can use indicator
variables, that is:

• To assign null values.

• To detect null values.

• To detect data truncation.

In the following example, an indicator array is set to -l so that it can be
used to insert null values into a column:

EXEC SQL
 BEGIN DECLARE SECTION
END-EXEC
01 sales-id OCCURS 25 TIMES PIC X(12).
01 sales-name OCCURS 25 TIMES PIC X(40).
01 sales-comm OCCURS 25 TIMES PIC S9(9) COMP-5.
01 ind-comm OCCURS 25 TIMES PIC S9(4) COMP-5.
EXEC SQL
 END DECLARE SECTION
END-EXEC.
.
.
.
MOVE -1 TO ind-comm.
.

Database Access

34 Chapter 2 Host Variables

dbpubb.book Page 34 Wednesday, April 17, 2002 4:10 PM
.

.
EXEC SQL
 INSERT INTO SALES (ID, NAME, COMM)
 VALUES (:sales_id, :sales_name, :sales_comm:ind-comm)
END-EXEC

COBSQL If you are using COBSQL, this information on indicator arrays is only
applicable if you are using an Oracle database. It does not apply if you
are using a Sybase database.
Database Access

35

dbpubb.book Page 35 Wednesday, April 17, 2002 4:10 PM
3 Data Types

SQL data types differ from those used in COBOL.

SQL has a standard set of data types, but the exact implementation of
these varies between databases and many databases do not implement
the full set.

3.1 Converting Data Types
Within your COBOL program a host variable can act as a COBOL
program variable and as a SQL database variable and so the
preprocessor must convert, or map, COBOL data types to the
appropriate SQL data type. This means that you need to declare your
host variables with the correct COBOL picture clause so that the
preprocessor maps it to the correct SQL data type. To do this, you need
to know the SQL data types used by the data source to which you are
going to connect.

The following sections describe the different SQL data types and how
to declare host variables that map directly onto them.

3.1.1 COBSQL Preprocessor
When using Sybase, Informix or Oracle with COBSQL, the database
engine is able to perform some sort of conversion to change the data
from a COBOL data type to a database data type. A general rule of
thumb is that for numeric or integer data types host variables should
be defined as:

PIC S9(..)..COMP..

while character or text data types should be defined as:

PIC X(...).
Database Access

36 Chapter 3 Data Types

dbpubb.book Page 36 Wednesday, April 17, 2002 4:10 PM
Both Oracle and Sybase allow you to define the database data type for
a given host variable. This can be useful for the more complex data
types.

3.1.1.1 Oracle

For Oracle, this is done as follows:

EXEC SQL
BEGIN DECLARE SECTION
END-EXEC.
*
* Define data item as Oracle data type DISPLAY
*
01 emp-comm pic s9(6)v99 DISPLAY SIGN LEADING SEPARATE
*
EXEC SQL
 VAR emp-comm IS DISPLAY(8,2)
END-EXEC.
EXEC SQL
 END DECLARE SECTION
END-EXEC.

3.1.1.2 Sybase

For Sybase, this is done as follows:

EXEC SQL
 BEGIN DECLARE SECTION
END-EXEC.
*
* Define item as Sybase specific data type
*
01 money-item CS-MONEY.
*
EXEC SQL
 END DECLARE SECTION
END-EXEC.

For more information about defining the database type of a host
variable, refer to the COBOL precompiler manual supplied by your
database vendor.
Database Access

3.2 Integer Data Types 37

dbpubb.book Page 37 Wednesday, April 17, 2002 4:10 PM
3.1.1.3 Informix

Informix provides a number system routines that you can call to
manipulate different data types. For more information about these
routines, please refer to the Programming with INFORMIX-
ESQL/COBOL manual.

3.2 Integer Data Types

3.2.1 Tiny Integer
A tiny integer (TINYINT) is a 1-byte integer SQL data type that can be
declared in COBOL as

PIC S9(4) COMP-5.

Note: DB2 does not support the tiny integer data type.

3.2.1.1 COBSQL Preprocessor

Sybase supports the use of tiny integer host variables. The definition
for Sybase is:

03 tinyint1 PIC S9(2) COMP-5.
03 tinyint2 PIC S9(2) COMP.
03 tinyint3 PIC S9(2) BINARY.

These map onto the Sybase data type TINYINT.
Database Access

38 Chapter 3 Data Types

dbpubb.book Page 38 Wednesday, April 17, 2002 4:10 PM
3.2.2 Small Integer
A small integer (SMALLINT) is a 2-byte integer SQL data type that can be
declared in COBOL with usage BINARY, COMP, COMP-X, COMP-5 or
COMP-4.

For example, all of the following definitions are valid for host variables
to map directly onto the SMALLINT data type.

03 shortint1 PIC S9(4) COMP.
03 shortint2 PIC S9(4) BINARY.
03 shortint3 PIC X(2) COMP-5.
03 shortint4 PIC S9(4) COMP-4.
03 shortint5 PIC 9(4) USAGE DISPLAY.
03 shortint6 PIC S9(4) USAGE DISPLAY.

3.2.2.1 OpenESQL Preprocessor

OpenESQL currently supports signed small integers, but not unsigned
small integers.

3.2.2.2 COBSQL Preprocessor - Oracle

With Oracle, it is best to define the host variable as shortint1 or
shortint2 or as:

03 shortint7 PIC S9(4) COMP-5.

These map onto the Oracle data type NUMBER(38).

3.2.2.3 COBSQL Preprocessor - Sybase

With Sybase, all except shortint3 should be accepted. You can also
use:

03 shortint7 PIC S9(4) COMP-5.

These map onto the Sybase data type SMALLINT.
Database Access

3.2 Integer Data Types 39

dbpubb.book Page 39 Wednesday, April 17, 2002 4:10 PM
3.2.2.4 COBSQL Preprocessor - Informix

With Informix, it is best to define the host variable as shortint1 or
shortint2 or as:

03 shortint7 PIC S9(4) COMP-5.

These map onto the Informix data type SMALLINT.

3.2.3 Integer
An integer (INT) is a 4-byte integer SQL data type that can be declared
in COBOL with usage BINARY, COMP, COMP-X, COMP-5 or COMP-4.

All of the following definitions are valid for host variables to map
directly onto the INT data type.

03 longint1 PIC S9(9) COMP.
03 longint2 PIC S9(9) COMP-5.
03 longint3 PIC X(4) COMP-5.
03 longint4 PIC X(4) COMP-X.
03 longint5 PIC 9(9) USAGE DISPLAY.
03 longint6 PIC S9(9) USAGE DISPLAY.

3.2.3.1 OpenESQL Preprocessor

OpenESQL currently supports signed integers, but not unsigned
integers.

3.2.3.2 COBSQL Preprocessor - Oracle

With Oracle, it is best to define integer host variables as longint1,
longint2 or as:

03 longint7 PIC S9(8) COMP-5.

These map to the Oracle data type NUMBER(38).
Database Access

40 Chapter 3 Data Types

dbpubb.book Page 40 Wednesday, April 17, 2002 4:10 PM
3.2.3.3 COBSQL Preprocessor - Sybase

With Sybase, all except longint3 should be accepted. You can also use:

03 longint7 PIC S9(8) COMP-5.

These map to the Sybase data type INT.

3.2.3.4 COBSQL Preprocessor - Informix

With Informix, it is best to define integer host variables as longint1,
longint2 or as:

03 longint7 PIC S9(9) COMP-5.

These map to the Informix data type INT.

3.2.4 Big Integer
A big integer (BIGINT) is an 8-byte integer SQL data type that can be
declared in COBOL as:

PIC S9(18) COMP-3.

Notes:

DB2 Preprocessor DB2 does not support the big integer data type.

COBSQL
Preprocessor Oracle, Sybase and Informix do not support big integers.

OpenESQL
Preprocessor

OpenESQL supports a maximum size of S9(18) for COBOL data items
used as host variables to hold values mapped from the SQL data type
BIGINT. However, a BIGINT data type can hold a value that is larger than
the maximum value that can be held in a PIC S9(18) data item;
therefore, ensure that your code checks for data truncation.

Database Access

3.3 Character Data Types 41

dbpubb.book Page 41 Wednesday, April 17, 2002 4:10 PM
3.3 Character Data Types

3.3.1 Fixed-length Character Strings
Fixed-length character strings (CHAR) are SQL data types with a driver
defined maximum length. They are declared in COBOL as PIC X(n)
where n is an integer between 1 and the maximum length.

For example:

03 char-field1 pic x(5).
03 char-field2 pic x(254).

COBSQL Note: This maps to the Oracle data type CHAR(n), to the Sybase data
type CHAR(n) and to the Informix data type CHAR(n). For both Oracle
and Sybase, the largest supported fixed length character string is 255
bytes. For Informix, the largest supported fixed length character is 32KB.

3.3.2 Variable-length Character Strings

3.3.2.1 OpenESQL and DB2 Preprocessors

Variable-length character strings (VARCHAR) are SQL data types that
can be declared in COBOL in one of two ways:

• As fixed-length character strings (PIC X(n)).

• As group items containing only two elementary items, both of
which must have a level number of 49. The first item is a 2-byte
field declared with usage COMP or COMP-5 that represents the
effective length of the character string. The second item is a PIC
X(n) data type, where n is an integer, and holds the actual data.
Database Access

42 Chapter 3 Data Types

dbpubb.book Page 42 Wednesday, April 17, 2002 4:10 PM
For example:

03 varchar1.
 49 varchar1-len pic 9(4) comp-5.
 49 varchar1-data pic x(200).
03 Longvarchar1.
 49 Longvarchar1-len pic 9(4) comp.
 49 Longvarchar1-data pic x(30000).

If the data being copied to a SQL CHAR, VARCHAR or LONG VARCHAR
data type is longer than the defined length, then the data is truncated
and the SQLWARN1 flag in the SQLCA data structure is set. If the data is
smaller than the defined length, a receiving CHAR data type may be
padded with blanks.

3.3.2.2 COBSQL Preprocessor

3.3.2.2.1 Oracle

For Oracle, the host variable is defined using the Oracle keyword
VARYING. An example of its use is as follows:

EXEC SQL
 BEGIN DECLARE SECTION
END-EXEC.
01 USERNAME PIC X(20) VARYING.
EXEC SQL
 END DECLARE SECTION
END-EXEC.

Oracle will then expand the data item USERNAME into the following
group item:

01 USERNAME
 02 USERNAME-LEN PIC S9(4) COMP-5.
 02 USERNAME-ARR PIC X(20).
Database Access

3.3 Character Data Types 43

dbpubb.book Page 43 Wednesday, April 17, 2002 4:10 PM
Within the COBOL code, references must be made to either USERNAME-
LEN or USERNAME-ARR but within SQL statments the group name
USERNAME must be used. For example:

move "SCOTT" to USERNAME-ARR.
move 5 to USERNAME-LEN.
exec sql
 connect :USERNAME identified by :pwd
 using :db-alias
end-exec.

This maps to the Oracle data type VARCHAR(n) or VARCHAR2(n). For
very large character items, Oracle provides the data type LONG.

3.3.2.2.2 Sybase

For Sybase, the host variable must be defined with a PIC X(n) picture
clause as the Sybase precompiler does not support the use of group
items to handle VARCHAR SQL data types.

These map to the Sybase data type of VARCHAR(n).

3.3.2.3 COBSQL - Informix

For Informix, the host variable must be defined with a PIC X(n) picture
clause as the Informix precompiler does not support the use of group
items to handle VARCHAR SQL data types.

These map to the Informix data type of VARCHAR(n). The maximum
length of a VARCHAR field depends on the version of Informix being
used. For more information on VARCHAR data items, please refer to
the Informix Guide to SQL manual.
Database Access

44 Chapter 3 Data Types

dbpubb.book Page 44 Wednesday, April 17, 2002 4:10 PM
3.4 Approximate Numeric Data Types
The 32-bit SQL floating-point data type, REAL, is declared in COBOL as
usage COMP-2.

The 64-bit SQL floating-point data types, FLOAT and DOUBLE, are
declared in COBOL as usage COMP-2.

For example:

01 float1 usage comp-2.

3.4.1 OpenESQL Preprocessor
Both 32-bit and 64-bit floating-point data types are mapped to COMP-2
COBOL data items because single-precision floating point is not
supported in embedded SQL by OpenESQL.

3.4.2 DB2 Preprocessor
DB2 Universal Database supports single-precision floating point (REAL)
as COMP-1 and double-precision floating point (FLOAT or DOUBLE) as
COMP-2.

DB2 Version 2.1 only supports double-precision floating point (FLOAT or
DOUBLE) as COMP-2.

3.4.3 COBSQL Preprocessor
Oracle supports the use of both COMP-1 and COMP-2 data items. These
both map to the Oracle data type NUMBER.

Sybase supports the use of both COMP-1 and COMP-2 data items.
COMP-1 data items map to the Sybase data type REAL. COMP-2 data
items map to the Sybase data type FLOAT.

Informix does not support either COMP-1 or COMP-2 data items.
Informix only supports fixed numeric data items in COBOL, that is PIC
Database Access

3.5 Exact Numeric Data Types 45

dbpubb.book Page 45 Wednesday, April 17, 2002 4:10 PM
S9(m)V9(n). Informix will convert FLOAT and SMALLFLOAT SQL
columns into this format.

3.5 Exact Numeric Data Types
The exact numeric data types DECIMAL and NUMERIC can hold values
up to a driver-specified precision and scale.

They are declared in COBOL as COMP-3, PACKED-DECIMAL or as
NUMERIC USAGE DISPLAY.

For example:

03 packed1 pic s9(8)v9(10) usage comp-3.
03 packed2 pic s9(8)v9(10) usage display.

3.5.1 COBSQL Preprocessor
For Oracle, these map to the data type NUMBER(p,s). For Sybase, they
map to either NUMBER(p,s) or to DECIMAL(p,s). For Informix, they map
to either DECIMAL(p,s) or to MONEY(p,s).

• For more information on the difference between the NUMERIC and
DECIMAL data types, refer to the chapter on Using and Creating
Datatypes in the Sybase Transact-SQL Users Guide

• For more information on the difference between the DECIMAL and
MONEY data types, refer to the Data Types chapter in the Informix
Guide to SQL.
Database Access

46 Chapter 3 Data Types

dbpubb.book Page 46 Wednesday, April 17, 2002 4:10 PM
3.6 Date and Time Data Types
COBOL does not have date/time data types so SQL date/time columns
are converted to character representations.

If a COBOL output host variable is defined as PIC X(n), for a SQL
timestamp value, where n is greater than or equal to 19, the date and
time will be specified in the format yyyy-mm-dd hh:mm:ss.ff..., where
the number of fractional digits is driver defined.

For example:

1994-05-24 12:34:00.000

3.6.1 DB2 Preprocessor
For DB2, the TIMESTAMP data type has a maximum length of 26
characters.

3.6.2 COBSQL Preprocessor

3.6.2.1 Oracle

Oracle date items have a unique data definition and Oracle provides
functions to convert date, time and datetime fields when used within a
COBOL program. These functions are:

• TO_CHAR

Converts from Oracle’s date format to a character string.

• TO_DATE

Converts a character string into an Oracle date.
Database Access

3.6 Date and Time Data Types 47

dbpubb.book Page 47 Wednesday, April 17, 2002 4:10 PM
Both functions take an item to be converted followed by the date, time
or datetime mask to be applied to that data item. An example of this is
as follows:

exec sql
 select ename, TO_CHAR(hiredate, ’DD-MM-YYYY’)
 from emp
 into :ename, :hiredate
 where empno = :empno
end-exec.

exec sql
 insert into emp (ename, TO_DATE(hiredate, ’DD-MM-YYYY’))
 values (:ename, :hiredate)
end-exec.

This maps to the Oracle data type of DATE. For more information about
the DATE data type, refer to the Oracle SQL Language Reference
Manual. More information about the use of functions within Oracle
SQL statements can be found in this manual.

3.6.2.2 Sybase

Sybase provides a function, called convert, to change the format of a
data type. Using the Oracle examples above, the SQL syntax would be:

exec sql
 select ename, convert(varchar(12) hiredate, 105)
 from emp
 into :ename, :hiredate
 where empno = :empno
end-exec.

exec sql
 insert into emp (ename, hiredate)
 values (:ename, convert(datetime :hiredate, 105)
end-exec.

This maps to the Sybase data type of either SMALLDATETIME or
DATETIME. For more information on the difference between the
SMALLDATETIME and the DATETIME data types, refer to the chapter
Using and Creating Datatypes in the Sybase Transact-SQL User’s Guide.

For more information on the Sybase convert function, refer to the
Sybase SQL Server Reference Manual: Volume 1 Commands, Functions
and Topics.
Database Access

48 Chapter 3 Data Types

dbpubb.book Page 48 Wednesday, April 17, 2002 4:10 PM
3.6.2.3 Informix

Informix expects dates to either be in Julian format, or of the format
mm/dd/yyyy:

• When using Julian dates, define the field as PIC S9(9) COMP.

• For dates in the format mm/dd/yyyy:

• define the COBOL field as PIC X(10).

• use the DATE_TYPE function.

For more information on passing dates to Informix, refer to the
INFORMIX-ESQL/COBOL Programmer’s Manual.

3.7 Binary Data Types

3.7.1 OpenESQL Preprocessor
SQL BINARY, VARBINARY and IMAGE data are represented in COBOL as
PIC X (n) fields. No data conversion is performed. When data is fetched
from the database, if the COBOL field is smaller than the amount of
data, the data is truncated and the SQLWARN1 field in the SQLCA data
structure is set to "W". If the COBOL field is larger than the amount of
data, the field is padded with null (x"00") bytes. To insert data into
BINARY, VARBINARY or LONG VARBINARY columns, you must use
dynamic SQL statements.

3.7.2 DB2 Preprocessor
With DB2, use CHAR FOR BIT DATA to represent BINARY, VARCHAR(n)
FOR BIT DATA to represent VARBINARY and LONG VARCHAR FOR BIT
DATA to represent LONG VARBINARY. If you use the IBM ODBC driver,
BINARY, VARBINARY and LONG VARBINARY are the data types returned
instead of the IBM equivalent. The IMAGE data type can be represented
by BLOB. DB2 uses LOBs (Character Large Object, Binary Large Object or
Database Access

3.7 Binary Data Types 49

dbpubb.book Page 49 Wednesday, April 17, 2002 4:10 PM
Graphical Large Object to define very large columns (2 Gigabytes
maximum). You can use static SQL with these data types.

3.7.3 COBSQL Preprocessor

3.7.3.1 Oracle

Oracle provides support for binary data. The difference between binary
and character data is that Oracle will do codeset conversions on
character data, but will leave binary data untouched.

The two Oracle data types are RAW and LONG RAW. There are some
restrictions on the use of RAW and LONG RAW - consult your Oracle
documentation for further details.

3.7.3.2 Sybase

Sybase provides three binary data types: BINARY, VARBINARY and
IMAGE. IMAGE is a complex data type and as such, host variables can
be defined as CS-IMAGE, for example:

EXEC SQL
 BEGIN DECLARE SECTION
END-EXEC.
*
* Define item as Sybase specific data type.
*
01 image-item CS-IMAGE.
*
EXEC SQL
 END DECLARE SECTION
END-EXEC.

Note: For more information on using the Sybase data types of BINARY,
VARBINARY and IMAGE, please refer to the chapter Using and Creating
Datatypes in the Sybase Transact-SQL User’s Guide.

Database Access

50 Chapter 3 Data Types

dbpubb.book Page 50 Wednesday, April 17, 2002 4:10 PM
3.7.3.3 Informix

Informix supports two types of Binary data items, TEXT and BYTE. These
data types do not store the actual data; in fact, they are file names.
Therefore, in COBOL, the corresponding item is a PIC X(n).

For more information on TEXT and BYTE data items, refer to the
Informix Guide to SQL.
Database Access

51

dbpubb.book Page 51 Wednesday, April 17, 2002 4:10 PM
4 Cursors

Where the result returned by a SELECT statement includes more than
one row of data, that is the results set, you must declare and use a
cursor. A cursor indicates the current position in a results set, in the
same way that the cursor on a screen indicates the current position.

A cursor enables you to:

• Fetch rows of data one at a time

• Perform updates and deletions at a specified position within a
results set.

The example below demonstrates the following sequence of events:

1 The DECLARE CURSOR statement associates the SELECT statement
with the cursor Cursor1.

2 The OPEN statement opens the cursor, thereby executing the
SELECT statement.

3 The FETCH statement retrieves the data for the current row from
the columns au_fname and au_lname and places the data in the
host variables first_name and last_name.

4 The program loops on the FETCH statement until no more data is
available.

5 The CLOSE statement closes the cursor.

EXEC SQL DECLARE Cursor1 CURSOR FOR
 SELECT au_fname, au_lname FROM authors
END-EXEC
...
EXEC SQL
 OPEN Cursor1
END-EXEC
...
perform until sqlcode not = zero
 EXEC SQL
 FETCH Cursor1 INTO :first_name,:last_name
 END-EXEC
 display first_name, last_name
Database Access

52 Chapter 4 Cursors

dbpubb.book Page 52 Wednesday, April 17, 2002 4:10 PM
end-perform
...
EXEC SQL
 CLOSE Cursor1
END-EXEC

4.1 Declaring a Cursor
Before a cursor can be used, it must be declared. This is done using the
DECLARE CURSOR statement in which you specify a name for the cursor
and either a SELECT statement or the name of a prepared SQL
statement.

Cursor names must conform to the rules for identifiers on the database
that you are connecting to, for example, some databases do not allow
hyphens in cursor names.

EXEC SQL
 DECLARE Cur1 CURSOR FOR
 SELECT first_name FROM employee
 WHERE last_name = :last-name
END-EXEC

This example specifies a SELECT statement using an input host variable
(:last-name). When the cursor OPEN statement is executed, the values
of the input host variable are read and the SELECT statement is
executed.

EXEC SQL
 DECLARE Cur2 CURSOR FOR stmt1
END-EXEC
...
move "SELECT first_name FROM emp " &
 "WHERE last_name=?" to prep.
EXEC SQL
 PREPARE stmt1 FROM :prep
END-EXEC
...
EXEC SQL
 OPEN Cur2 USING :last-name
END-EXEC
Database Access

4.1 Declaring a Cursor 53

dbpubb.book Page 53 Wednesday, April 17, 2002 4:10 PM
In this example, the DECLARE CURSOR statement references a prepared
statement (stmt1). A prepared SELECT statement can contain question
marks (?) which act as parameter markers to indicate that data is to be
supplied when the cursor is opened. The cursor must be declared
before the statement is prepared.

COBSQL A cursor can be declared in either the data division or the procedure
division of your program. The DECLARE CURSOR statement does not
generate any code but if a cursor is declared within the procedure
division, COBSQL generates an animation breakpoint for the DECLARE
CURSOR statement.

4.1.1 Object Oriented COBOL Syntax
Within an Object Oriented (OO) program, you can declare a cursor
anywhere that it is valid to declare a data item. Cursors are local to the
object that they are opened in, that is, two instances of an object
opening the "same" cursor each get their own cursor instance.

You can open a cursor in one method, fetch it in a second and close it
in a third but it must be declared in object-storage if you want to do
this.

Notes:

COBSQL • Object oriented COBOL syntax is not supported by COBSQL.

• Some versions of the Informix precompiler can generate incorrect
code if a cursor is declared within the Working-Storage section. We
therefore recommend that you only declare cursors in the
procedure division when using INFORMIX.
Database Access

54 Chapter 4 Cursors

dbpubb.book Page 54 Wednesday, April 17, 2002 4:10 PM
4.2 Opening a Cursor
Once a cursor has been declared, it must be opened before it can be
used. This is done using the OPEN statement, for example:

EXEC SQL
 OPEN Cur1
END-EXEC

If the DECLARE CURSOR statement references a prepared statement
that contains parameter markers, the corresponding OPEN statement
must specify the host variables or the name of an SQLDA structure that
will supply the values for the parameter markers, for example:

EXEC SQL
 OPEN Cur2 USING :last-name
END-EXEC

If an SQLDA data structure is used, the data type, length, and address
fields must already contain valid data when the OPEN statement is
executed.

COBSQL When a cursor is opened, no locks are applied to the tables the data is
being selected from.

COBSQL An Oracle database allows a cursor to be re-opened before it is closed
such that the SELECT statement is re-evaluated. If the program has been
compiled in ANSI mode, however, re-opening the cursor before it has
been closed generates an error. For more information on the MODE
precompiler directive, refer to the Programmer’s Guide to the ORACLE
Precompilers.
Database Access

4.3 Using a Cursor to Retrieve Data 55

dbpubb.book Page 55 Wednesday, April 17, 2002 4:10 PM
4.3 Using a Cursor to Retrieve Data
Once a cursor has been opened, it can be used to retrieve data from
the database. This is done using the FETCH statement. The FETCH
statement retrieves the next row from the results set produced by the
OPEN statement and writes the data returned to the specified host
variables (or to addresses specified in an SQLDA structure). For
example:

 perform until sqlcode not = 0
 EXEC SQL
 FETCH Cur1 INTO :first_name
 END-EXEC
 display ’First name: ’ fname
 display ’Last name : ’ lname
 display spaces
 end-perform

When the cursor reaches the end of the results set, a value of 100 is
returned in SQLCODE in the SQLCA data structure and SQLSTATE is set
to "02000".

As data is fetched from a cursor. locks can be placed on the tables the
data is being selected from. For more information about the different
types of cursors, the locked data they can read and the locks they put
on data, see the section Cursor Options below.

COBSQL The ORACLE precompiler directive, MODE, affects the value put into
SQLCODE when no data is found. For more information on the use of
the MODE precompiler directive, refer to the Programmer’s Guide to
the ORACLE Precompilers.
Database Access

56 Chapter 4 Cursors

dbpubb.book Page 56 Wednesday, April 17, 2002 4:10 PM
4.4 Closing a Cursor
When your application has finished using the cursor, it should be closed
using the CLOSE statement. For example:

EXEC SQL
 CLOSE Cur1
END-EXEC

Normally, when a cursor is closed, all locks on data and tables are
released. If the cursor is closed within a transaction, however, the locks
may not be released.

COBSQL The ORACLE precompiler directive, MODE, affects what happens to a
cursor when either the commit or rollback command is used. For more
information on the use of the precompiler directive MODE, refer to the
Programmer’s Guide to the ORACLE Precompilers.

COBSQL When a cursor is closed, the ORACLE client may deallocate the memory
and resources associated with the cursor. The following precompiler
optins control the deallocatin of cursors: HOLD_CURSOR,
MAXOPENCURSORS and RELEASE_CURSOR. For more information on
the use of the precompiler directives, refer to the Programmer’s Guide
to the ORACLE Precompilers.

4.5 Cursor Options
OpenESQL The information given here on cursor options is only applicable to

OpenESQL.

The behavior and performance of cursors can be tuned using the
following embedded SQL statements:

Embedded SQL Statement Description

SET SCROLLOPTION Selects how the row membership of
the results set of a cursor is
determined.
Database Access

4.6 Positioned UPDATE and DELETE Statements 57

dbpubb.book Page 57 Wednesday, April 17, 2002 4:10 PM
Note: SET SCROLLOPTION and SET CONCURRENCY are part of the
Extended SQL Syntax and are not supported by all ODBC drivers.

4.6 Positioned UPDATE and DELETE
Statements

Positioned UPDATE and DELETE statements are used in conjunction
with cursors and include WHERE CURRENT OF clauses instead of search
condition clauses. The WHERE CURRENT OF clause specifies the
corresponding cursor.

EXEC SQL
 UPDATE emp SET last_name = :last-name
 WHERE CURRENT OF Cur1
END-EXEC

This will update last_name in the row that was last fetched from the
database using cursor Cur1.

EXEC SQL
 DELETE emp WHERE CURRENT OF Cur1
END-EXEC

This example will delete the row that was last fetched from the
database using cursor Cur1.

OpenESQL With some ODBC drivers, cursors that will be used for positioned
updates and deletes must include a FOR UPDATE clause. Note that
positioned UPDATE and DELETE are part of the Extended ODBC Syntax
and are not supported by all drivers.

SET CONCURRENCY Activate concurrency control. (With
concurrent access, data would soon
become unreliable without some kind
of control.). Use this statement before
the cursor is opened.

Embedded SQL Statement Description
Database Access

58 Chapter 4 Cursors

dbpubb.book Page 58 Wednesday, April 17, 2002 4:10 PM
COBSQL With COBSQL, cursors that will be used for positioned updates and
deletes must include a FOR UPDATE clause.

4.7 Using Cursors
Cursors are very useful for handling large amounts of data but there are
a number of issues which you should bear in mind when using cursors,
namely: data concurrency, integrity and consistency.

To ensure the integrity of your data, a database server can implement
different locking methods. Some types of data access do not acquire any
locks, some acquire a shared lock and some an exclusive lock. A shared
lock allows other processes to access the data but not update it. An
exclusive lock does not allow any other process to access the data.

When using cursors there are three levels of isolation and these control
the data that a cursor can read and lock:

• Level Zero

Level zero can only be used by read-only cursors. At level zero, the
cursor will not lock any rows but may be able to read data that has
not yet been committed. Reading uncommitted data is dangerous
(as a rollback operation will reset the data to its previous state) and
is normally called a "dirty read". Not all databases will allow dirty
reads.

• Level One

Level one can be used by read-only cursors or updateable cursors.
With level one, shared locks are placed on the data unless the FOR
UPDATE clause is used. If the FOR UPDATE clause is used, exclusive
locks are placed on the data. When the cursor is closed, the locks are
released. A standard cursor, that is a cursor without the FOR
UPDATE clause will normally be at isolation level one and use shared
locks.

• Level Three

Level three cursors are used with transactions. Instead of the locks
being released when the cursor is closed, the locks are released
when the transaction ends. With level three it is usual to place
exclusive locks on the data.
Database Access

4.7 Using Cursors 59

dbpubb.book Page 59 Wednesday, April 17, 2002 4:10 PM
It is worth pointing out that there can be problems with "dead-locks"
or "deadly embraces" where two processes are competing for the same
data. The classic example is where one process locks data A and then
requests a lock on data B while a second process locks data B and then
requests a lock on data A. Both processes have data that the other
process requires. The database server should spot this case and send
errors to one, or both, processes.

COBSQL Oracle, Sybase and Informix allallow an application to set the isolation
level of the cursor and their documentation discusses the types of locks
that are applied and how they work. Their documentation also
discusses the physical level that the data is locked at. This can be a
single row, a set of rows (that is, the page level), or the whole table.
Care should be taken when using cursors that scan multiple tables, or
tables that are used by most processes, as this will reduce the
accessibility of the locked data.

Note:

COBSQL Oracle, Sybase and Informix enable cursors to be defined with a
number of different clauses e.g. FOR READ ONLY, FOR UPDATE etc.
These clauses effect the isolation level of the cursor and how it acts
when involved in transaction processing. For more information on the
effect of these difference clauses, refer to the SQL reference book
supplied with your database.
Database Access

60 Chapter 4 Cursors

dbpubb.book Page 60 Wednesday, April 17, 2002 4:10 PM
Database Access

61

dbpubb.book Page 61 Wednesday, April 17, 2002 4:10 PM
5 Data Structures

The Net Express SQL preprocessors use two data structures:

5.1 SQL Communications Area (SQLCA)
After each embedded SQL statement is executed, error and status
information is returned in the SQL Communications Area (SQLCA).

Full details of the layout of the SQLCA data structure are given in the
online help file. Look under SQLCA in the help file index.

The SQLCA contains two variables (sqlcode and sqlstate) plus a
number of warning flags which are used to indicate whether an error
has occurred in the most recently executed SQL statement.

COBSQL For COBSQL, SQLSTATE is a separate data item. For the currently
supported versions of Oracle and Sybase, the SQLCA should be used in
preference to the SQLSTATE variable. The SQLSTATE variable will
eventually supersede the SQLCA as the preferred method of passing
data between the database and the client application, but this is not
yet the case.

Data
Structure

Description Function

SQLCA SQL Communications
Area

Returns status and error
information.

SQLDA SQL Descriptor Area Describes the variables used in
dynamic SQL statements.
Database Access

62 Chapter 5 Data Structures

dbpubb.book Page 62 Wednesday, April 17, 2002 4:10 PM
5.1.1 The SQLCODE Variable
Testing the value of sqlcode is the most common way of determining
the success or failure of an embedded SQL statement. The possible
values for sqlcode are:

Full details of SQLCODE values are given in the online help file. Look
under "SQLCODE" in the help file index.

COBSQL and DB2 For COBSQL and DB2, it is possible to get other positive values. This
means that the SQL statement has executed but produced a warning.

COBSQL • For details about the range of positive values that SQLCODE can be
set to, consult your Oracle, Sybase or Informix Error Messages
manual. The above SQLCODES are produced by OpenESQL. The
values for SQLCODE and the errors reported by Oracle, Sybase and
Informix are all different. Please refer to Oracle, Sybase or Informix
Error Messages manuals for more information on the errors
returned.

• The value +100 is the ANSI standard for ’data not found’. Oracle can
return another value for ’data not found’. To get Oracle to return
the value +100 for ’data not found’, either of the Oracle
precompiler directives MODE=ANSI or END_OF_FETCH=100 must be
set. This will affect other aspects of the way the Oracle precompiler
handles SQL statements. For more details on the Oracle precompiler
MODE or END_OF_FETCH=+100 directives, refer to the
Programmer’s Guide to the ORACLE Precompilers.

• Even when SQLCODE contains zero, a warning may have been
generated. The values of the sqlwarn flags should be checked to
determine the type of warning. For Oracle, Sybase and Informix,

Value Meaning

0 The statement ran without error.

1 The statement ran, but a warning was generated. The
values of the sqlwarn flags should be checked to
determine the type of error.

100 Data matching the query was not found or the end of
the results set has been reached. No rows were
processed.

< 0 (negative) The statement did not run due to an application,
database, system, or network error.
Database Access

5.1 SQL Communications Area (SQLCA) 63

dbpubb.book Page 63 Wednesday, April 17, 2002 4:10 PM
sqlwarn0 will always be set when the database server has sent a
warning back to the application.

5.1.2 The SQLSTATE Variable

DB2 DB2 Universal Database returns SQL-92 compliant SQLSTATE values.
DB2 Version 2.1 does not.

The sqlstate variable was introduced in the SQL-92 standard and is
the recommended mechanism for future applications. It is divided into
two components:

• The first two characters are called the class code. Any class code
that begins with the letters A through H or the digits 0 through 4
indicates a sqlstate value that is defined by the SQL standard or
another standard.

• The last three characters are called the subclass code.

A value of "00000" indicates that the previous embedded SQL
statement executed successfully.

For specific details of the values returned in SQLSTATE when using
Oracle, Sybase or Informix, refer to the relevant Database Error
Messages manual. Full details of SQLSTATE values are also given in the
online file. Look under SQLSTATE in the help file index.

5.1.3 The Warning Flags
Some statements may cause warnings to be generated. To determine
the type of warning, your application should examine the contents of
the sqlwarn flags. The value of the flag will be set to "W" if that
particular warning occured, otherwise the value will be a blank (space).

Each sqlwarn flag has a specific meaning. For more information on
the meaning of the sqlwarn flags, refer to the online help - look
under "SQLCA" in the help file index.
Database Access

64 Chapter 5 Data Structures

dbpubb.book Page 64 Wednesday, April 17, 2002 4:10 PM
5.1.4 The WHENEVER Statement
Explicitly checking the value of sqlcode or sqlstate after each
embedded SQL statement can involve writing a lot of code; an
alternative is to check the status of the SQL statement by using a
WHENEVER statement in your application.

The WHENEVER statement is not an executable statement; it is a
directive to the Compiler to generate automatically code that handles
errors after each executable embedded SQL statement.

The WHENEVER statement allows one of three default actions
(CONTINUE, GOTO or PERFORM) to be registered for each of the
following conditions:

COBSQL For Oracle, Sybase and Informix, the ’SQLWARNING’ clause will be
triggered when sqlwarn0is set to ’W’.

Oracle When no data is returned from a SELECT or FETCH statement, the
condition NOT FOUND is triggered, regardless of the setting of the
Oracle precompiler directive MODE.

Informix Informix allows you to perform a STOP or a CALL from within a
WHENEVER statement. These are additions to the ANSI standard and
are documented in the Informix ESQL/COBOL programmers manual.

A WHENEVER statement for a particular condition replaces all previous
WHENEVER statements for that condition.

The scope of a WHENEVER statement is related to its physical position in
the source program, not its logical position in the run sequence. For
example, in the following code if the first SELECT statement does not
return anything, paragraph A is performed, not paragraph C:

 EXEC SQL
 WHENEVER NOT FOUND PERFORM A
 END-EXEC.
 perform B.
 EXEC SQL

Condition Value of sqlcode

NOT FOUND 100

SQLWARNING +1

SQLERROR < 0 (negative)
Database Access

5.1 SQL Communications Area (SQLCA) 65

dbpubb.book Page 65 Wednesday, April 17, 2002 4:10 PM
 SELECT col1 into :host-var1 FROM table1
 WHERE col2 = :host-var2
 END-EXEC.
 A.
 display "First item not found".
 B.
 EXEC SQL
 WHENEVER NOT FOUND PERFORM C.
 END-EXEC.
 C.
 display "Second item not found".

5.1.5 SQLERRM
The SQLERRM data area is used to pass error messages to the
application from the database server. The SQLERRM data area is split
into two parts: SQLERRML and SQLERRMC. SQLERRML holds the length
of the error message and SQLERRMC holds the error text. Within an
error routine, the following code can be used to display the SQL error
message:

 if (SQLERRML > ZERO) and (SQLERRML < 80)
 display ’Error Message: ’, SQLERRMC(1:SQLERRML)
 else
 display ’Error Message: ’, SQLERRMC
 end-if.

5.1.6 SQLERRD
The SQLERRD data area is an array of six integer status values.

COBSQL Oracle, Sybase and Informix may set one (or more) of the six values
within the SQLERRD array. These indicate how may rows were effected
by the SQL statement just executed. For example, SQLERRD(3) holds
the total number of rows returned by a SELECT or a series of FETCH
statements.
Database Access

66 Chapter 5 Data Structures

dbpubb.book Page 66 Wednesday, April 17, 2002 4:10 PM
5.2 The SQL Descriptor Area (SQLDA)
Use an SQL Descriptor Area (SQLDA) instead of host variables in the
following circumstances:

• Dynamic SQL statements

When the number of parameters to be passed or their data types
are unknown at compilation time

• Static SQL statements

With a cursor FETCH statement.

An SQLDA contains descriptive information about each input parameter
or output column:

• Column name

• Data type

• Length

• A pointer to the data buffer for each input or output parameter

The SQLDA is unique to each precompiler and ensures that data is
converted in the correct format.

Typically, an SQLDA is used with parameter markers to specify input
values for prepared SQL statements. However, to receive data from a
prepared SELECT statement, you can also use an SQLDA with either the
DESCRIBE statement or the INTO option of a PREPARE statement.

The Oracle SQLDA is not compatible with that used by Sybase,
OpenESQL or DB2. Similarly, the Sybase, OpenESQL or DB2 SQLDAs are
not compatible with the Oracle SQLDA.

COBSQL For both Oracle and Sybase, the SQLDA is only required if your program
uses dynamic SQL.

COBSQL Oracle, Sybase and Informix do not allow the SQLDA to be included in
your program using the following syntax statement:

EXEC SQL
 INCLUDE SQLDA
END-EXEC
Database Access

5.2 The SQL Descriptor Area (SQLDA) 67

dbpubb.book Page 67 Wednesday, April 17, 2002 4:10 PM
For Oracle, Sybase and Informix, the SQLDA must be defined as a
standard COBOL copyfile.

COBSQL Oracle provides an extra copyfile, ORACA, for use with dynamic SQL.
This can be included in your program using the following syntax:

EXEC SQL
 INCLUDE ORACA
END-EXEC

You must set the Oracle precompiler option, ORACA=YES before you
can use the ORACA. For more information on setting Oracle
precompiler options, refer to the Programmer’s Guide to the Oracle
Precompilers.

COBSQL Oracle does not supply an SQLDA but the Programmer’s Guide to the
Oracle Precompilers contains a definition of the layout.

COBSQL Sybase does not supply an SQLDA copyfile. The Sybase precompiler
documentation describes the layout of the SQLDA and how to assign
values to the various items within it. The documentaion also describes
how to get Sybase to convert between COBOL and Sybase data types.

OpenESQL The SQLDA structure is supplied in the file sqlda.cpy in the source
directory under your Net Express base installation directory. You can
include it in your COBOL program by adding the following statement
to your data division:

EXEC SQL
 INCLUDE SQLDA
END-EXEC

Full details of the OpenESQL SQLDA are given in the online help file.
Look under "SQLDA" in the help file index.

5.2.1 Using the SQLDA
Before an SQLDA structure is used, your application must initialise the
following fields:

SQLN This must be set to the maximum number of SQLVAR
entries that the structure can hold.

SQLDABC The maximum size of the SQLDA. This is calculated as
SQLN * 44 + 16
Database Access

68 Chapter 5 Data Structures

dbpubb.book Page 68 Wednesday, April 17, 2002 4:10 PM
5.2.1.1 The PREPARE and DESCRIBE Statements

You can use the DESCRIBE statement (or the PREPARE statement with
the INTO option) to enter the column name, data type, and other data
into the appropriate fields of the SQLDA structure.

Before the statement is executed, the SQLN and SQLDABC fields should
be initialised as described above.

After the statement has been executed, the SQLD field will contain the
number of parameters in the prepared statement. A SQLVAR record is
set up for each of the parameters with the SQLTYPE and SQLLEN fields
completed.

If you do not know how big the value of SQLN should be, you can issue
a DESCRIBE statement with SQLN set to 1 and SQLD set to 0. No column
detail information is moved into the SQLDA structure, but the number
of columns in the results set is inserted into SQLD.

5.2.1.2 The FETCH Statement

Before performing a FETCH statement using an SQLDA structure, the
application must initialize SQLN and SQLDABC as described above. It
must then insert into the SQLDATA field the address of each program
variable that will receive the data from the corresponding column. (The
SQLDATA field is part of SQLVAR). If indicator variables are used,
SQLIND must also be set to the corresponding address of the indicator
variable.

The data type field (SQLTYPE) and length (SQLLEN) are filled with
information from a PREPARE INTO or a DESCRIBE statement. These
values can be overwritten by the application prior to a FETCH
statement.

5.2.1.3 The OPEN or EXECUTE Statements

To use an SQLDA structure to specify input data to an OPEN or EXECUTE
statement, your application must supply the data for the fields of the
entire SQLDA structure, including the SQLN, SQLD, SQLDABC, and
SQLTYPE, SQLLEN, and SQLDATA fields for each variable. If the value of
the SQLTYPE field is an odd number, the address of the indicator
variable must also be supplied in SQLIND.
Database Access

5.2 The SQL Descriptor Area (SQLDA) 69

dbpubb.book Page 69 Wednesday, April 17, 2002 4:10 PM
5.2.2 The DESCRIBE Statement
After a PREPARE statement, you can execute a DESCRIBE statement to
retrieve information about the data type, length and column name of
each column returned by the specified prepared statement. This
information is returned in the SQL Descriptor Area (SQLDA):

EXEC SQL
 DESCRIBE stmt1 INTO :sqlda
END-EXEC

If you want to execute a DESCRIBE statement immediately after a
PREPARE statement, you can use the INTO option on the PREPARE
statement to perform both steps at once:

EXEC SQL
 PREPARE stmt1 INTO :sqlda FROM :stmtbuf
END-EXEC
Database Access

70 Chapter 5 Data Structures

dbpubb.book Page 70 Wednesday, April 17, 2002 4:10 PM
Database Access

71

dbpubb.book Page 71 Wednesday, April 17, 2002 4:10 PM
6 Dynamic SQL

If everything is known about a SQL statement when the application is
compiled, it is known as a static SQL statement.

In some cases, however, the full text of a SQL statement may not be
known when an application is written. For example, you may need to
allow the end-user of the application to enter a SQL statement. In this
case, the statement needs to be constructed at run-time. This is called a
dynamic SQL statement.

6.1 Dynamic SQL Statement Types
There are four types of dynamic SQL statement:

These types of dynamic SQL statement are described more fully below.

Dynamic SQL Statement Type Perform
Queries?

Return Data?

Execute a statement once No No; can only return
success or failure

Execute the same statement more
than once

No No; can only return
success or failure

Select a given list of data with a
given set of selection criteria

Yes Yes

Select any amount of data with
any selection criteria

Yes Yes
Database Access

72 Chapter 6 Dynamic SQL

dbpubb.book Page 72 Wednesday, April 17, 2002 4:10 PM
6.1.1 Execute a Statement Once
With this type of dynamic SQL statement, the SQL statement is executed
immediately. Each time the statement is executed, it is re-parsed.

6.1.2 Execute the Same Statement
More than Once
This type of dynamic SQL statement is either a statement that can be
executed more than once or a statement that requires host variables.
For the second type, the statement has to be prepared before it can be
executed.

6.1.3 Select a Given List of Data
This type of dynamic SQL statement is a SELECT statement where the
number of, and type of host variables is known. The normal sequence of
SQL statements is:

1 Prepare the statement

2 Declare a cursor to hold the results

3 Open the cursor

4 Fetch the variables

5 Close the cursor.

6.1.4 Select any Amount of Data
This type of dynamic SQL statement, and the hardest to code, is where
the type of the variables is only resolved at run-time, the number of
variables is only resolved at run-time, or a mixture of both. The normal
sequence of SQL statements is:

1 Prepare the statement

2 Declare a cursor for the statement
Database Access

6.2 Preparing Dynamic SQL Statements 73

dbpubb.book Page 73 Wednesday, April 17, 2002 4:10 PM
3 Describe the variables to be used

4 Open the cursor using the variables just described

5 Describe the variables to be fetched

6 Fetch the variables using their descriptions

7 Close the cursor.

If either the input host variables, or the output host variables are
known (at compile time), then the OPEN or FETCH can name the host
variables and they do not need to be described.

6.2 Preparing Dynamic SQL Statements
The PREPARE statement takes a character string containing a dynamic
SQL statement and associates a name with the statement, for example:

 move "INSERT INTO publishers " &
 "VALUES (?,?,?,?)" to stmtbuf
 EXEC SQL
 PREPARE stmt1 FROM :stmtbuf
 END-EXEC

Dynamic SQL statements can contain parameter markers - question
marks (?) that act as a place holder for a value. In the example above,
the values to be substituted for the question marks must be supplied
when the statement is executed.

Once you have prepared a statement, you can use it in one of two
ways:

• You can execute a prepared statement.

• You can open a cursor that references a prepared statement.
Database Access

74 Chapter 6 Dynamic SQL

dbpubb.book Page 74 Wednesday, April 17, 2002 4:10 PM
COBSQL Oracle does not use question marks as place holders. It uses the host
variable notation. By convention the place holders are named Vn,
where n is a number to make the place holder unique within a
statement. For readability the same place holder can be used more than
once, but when the statement is executed (or opened if you are using a
cursor), there must still be one host variable for each place holder, for
example:

 string "update ordtab " delimited by size
 "set order_no = :v1, "
 "line_no = :v2, "
 "cust_code = :v3, "
 "part_no = :v4, "
 "part_name = :v5, "
 "order_val = :v6, "
 "pay_value = :v7 "
 "where order_no = :v1 and "
 "line_no = :v2 and "
 "cust_code = :v3 " delimited by size
 into Updt-Ord-Stmt-Arr
 end-string
 move 190 to Updt-Ord-Stmt-Len

 EXEC SQL PREPARE updt_ord FROM :Updt-Ord-Stmt END-EXEC

 EXEC SQL EXECUTE updt_ord USING
 :dcl-order-no, :dcl-line-no, :dcl-cust-code,
 :dcl-part-no, :dcl-part-name:ind-part-name,
 :dcl-order-val,:dcl-pay-value,
 :dcl-order-no, :dcl-line-no, :dcl-cust-code
 END-EXEC

where Updt-Ord-Stmt has been defined as a host variable type of
VARYING.

COBSQL When using the Oracle precompiler, the physical location of a PREPARE
statement is important. A PREPARE statement must appear before an
EXECUTE or a DECLARE statement.
Database Access

6.3 Executing Dynamic SQL Statements 75

dbpubb.book Page 75 Wednesday, April 17, 2002 4:10 PM
6.3 Executing Dynamic SQL Statements
The EXECUTE statement runs a specified prepared SQL statement.

Note: Only statements that do not return results can be executed in this
way.

If the prepared statement contains parameter markers, the EXECUTE
statement must include either the using :hvar option to supply
parameter values using host variables or the using descriptor
:sqlda_struct option identifying an SQLDA data structure already
populated by the application. The number of parameter markers in the
prepared statement must match the number of SQLDATA entries
(using descriptor :sqlda) or host variables (using :hvar).

 move "INSERT INTO publishers " &
 "VALUES (?,?,?,?)" to stmtbuf
 EXEC SQL
 PREPARE stmt1 FROM :stmtbuf
 END-EXEC
 ...
 EXEC SQL
 EXECUTE stmt1 USING :pubid,:pubname,:city,:state
 END-EXEC.

In this example, the four parameter markers are replaced by the
contents of the host variables supplied via the USING clause in the
EXECUTE statement.

6.3.1 Execute Immediate
If the dynamic SQL statement does not contain any parameter markers,
you can use EXECUTE IMMEDIATE instead of PREPARE followed by
EXECUTE, for example:

 move "DELETE FROM emp " &
 "WHERE last_name = ’Smith’" to stmtbuf
 EXEC SQL
 EXECUTE IMMEDIATE :stmtbuf
 END-EXEC
Database Access

76 Chapter 6 Dynamic SQL

dbpubb.book Page 76 Wednesday, April 17, 2002 4:10 PM
COBSQL When using EXECUTE IMMEDIATE, the statement is re-parsed each time
it is executed. If a statement is likely to be used many times it is better
to PREPARE the statement and then EXECUTE it when required.

6.3.2 FREE Statement (COBSQL
Informix)
The Informix precompiler provides a FREE statement that will release
resources that are allocated to a prepared statement or to a cursor.

Once you have finished with a prepared statement, you would then use
the FREE statement, for example:

move "INSERT INTO publishers " " &
 "VALUES (?,?,?,?)" to stmtbuf
EXEC SQL
 PREPARE stmt1 FROM :stmtbuf
END-EXEC
 ...
EXEC SQL
 EXECUTE stmt1 USING :pubid,:pubname,:city,:state
END-EXEC.
 ...
EXEC SQL
 FREE stmt1
END-EXEC

6.4 Dynamic SQL Statements and Cursors
If a dynamic SQL statement returns a result, you cannot use the
EXECUTE statement. Instead, you must declare and use a cursor.

First, declare the cursor using the DECLARE CURSOR statement:

EXEC SQL
 DECLARE C1 CURSOR FOR dynamic_sql
END-EXEC
Database Access

6.5 CALL Statements 77

dbpubb.book Page 77 Wednesday, April 17, 2002 4:10 PM
In the example above, dynamic_sql is the name of a dynamic SQL
statement. You must use the PREPARE statement to prepare the
dynamic SQL statement before the cursor can be opened, for example:

move "SELECT char_col FROM mfesqltest " &
 "WHERE int_col = ?" to sql-text
EXEC SQL
 PREPARE dynamic_sql FROM :sql-text
END-EXEC

Now, when the OPEN statement is used to open the cursor, the
prepared statement is executed:

EXEC SQL
 OPEN C1 USING :int-col
END-EXEC

If the prepared statement uses parameter markers, then the OPEN
statement must supply values for those parameters by specifying either
host variables or an SQLDA structure.

Once the cursor has been opened, the FETCH statement can be used to
retrieve data, for example:

EXEC SQL
 FETCH C1 INTO :char-col
END-EXEC

See the chapter Cursors for a full discussion of the FETCH statement.

Finally, the cursor is closed using the CLOSE statement:

EXEC SQL
 CLOSE C1
END-EXEC

See the chapter Cursors for a full discussion of the CLOSE statement.

6.5 CALL Statements
A CALL statement can be prepared and executed as dynamic SQL.

• You can use parameter markers (?) in dynamic SQL wherever you
use host variables in static SQL
Database Access

78 Chapter 6 Dynamic SQL

dbpubb.book Page 78 Wednesday, April 17, 2002 4:10 PM
• Use of the IN, INPUT, OUT, OUTPUT, INOUT and CURSOR keyword
following parameter markers is the same as their use after host
variable parameters in static SQL.

• The whole call statement must be enclosed in braces to conform to
ODBC cannonical stored procedure syntax (the Open ESQL
precompiler does this for you in static SQL). For example:

 move ’{call myproc(?, ? out)}’ to sql-text
 exec sql
 prepare mycall from :sql-text
 end-exec
 exec sql
 execute mycall using :parm1, :param2
 end-exec

• If you use parameter arrays, you can limit the number of elements
used with a FOR clause on the EXECUTE, for example:

 move 5 to param-count
 exec sql
 for :param-count
 execute mycall using :parm1, :param2
 end-exec
Database Access

79

dbpubb.book Page 79 Wednesday, April 17, 2002 4:10 PM
Part 2: OpenESQL
This part contains the following chapters:

• Chapter 7, “OpenESQL”

• Chapter 8, “OpenESQL Assistant”
Database Access

80 Part 2: OpenESQL

dbpubb.book Page 80 Wednesday, April 17, 2002 4:10 PM
Database Access

81

dbpubb.book Page 81 Wednesday, April 17, 2002 4:10 PM
7 OpenESQL

The OpenESQL preprocessor enables you to access a relational
database via an ODBC driver by embedding SQL statements within your
COBOL program.

Unlike separate preprocessors, OpenESQL is controlled by specifying
the SQL directive when you compile your application.

7.1 ODBC Drivers and Data Source Names
To obtain ODBC support, you must:

1 Install ODBC drivers.

2 Set up an ODBC Data Source Name (DSN).

7.1.1 Installing ODBC Drivers
At the beginning of the Net Express installation, you should indicate
that you wish to install a number of ODBC drivers by selecting ODBC
drivers from the given list.

Note: Most of these drivers will only work if the Client Software for the
specific database is present.

7.1.2 Setting up a Data Source Name
The Net Express ODBC support cannot work until you have set up a
data source name (DSN) in the ODBC Manager. You can access the
ODBC Manager via the Control Panel on Windows 95, Windows 98, or
Database Access

82 Chapter 7 OpenESQL

dbpubb.book Page 82 Wednesday, April 17, 2002 4:10 PM
Windows NT desktop. Click on the appropriate 16bit ODBC or 32bit
ODBC icon. Click on the System DSN tab.

The ODBC Data Source Administrator dialog box opens. All those drivers
that are installed as a part of Net Express appear with names that begin
Net Express In addition, Net Express installs the Microsoft Access
driver. This driver appears as Net Express Microsoft Access.

For details of how to assign DSNs, click on the Help button in the ODBC
Data Source Administrator dialog box.

Notes:

• The ODBC drivers provided with Server Express are licensed for
development use only. You may use these drivers to develop
Net Express applications but you may not distribute the drivers to
your users. To redistribute ODBC drivers with your application, you
need run-time licenses for the drivers. Contact your Micro Focus
sales representative for information on obtaining licenses for run-
time distribution of the ODBC drivers. See List of Key Features in
your Getting Started for more detailed licensing information.

• An Informix 7 driver is not available for AIX. Therefore, Informix 7
clients are not supported on AIX.

7.2 ORACLE OCI Support
OpenESQL provides an alternative for developers using ORACLE data
sources, in the form of the ORACLE OCI interface. ORACLE OCI provides
faster processing of SQL statements than the more generic ODBC
interface that OpenESQL normally uses. To use this interface, you must
compile your applications with the following directive:

sql(targetdb=ORACLEOCI)

When connecting to the Oracle server, use an Oracle Net8 service name
in place of an ODBC data source name in the CONNECT statement. See
your Oracle documentation on how to set up ORACLE Net8 services.
Database Access

7.3 SQL Compiler Directive 83

dbpubb.book Page 83 Wednesday, April 17, 2002 4:10 PM
When you use Oracle OCI, be aware that the following OpenESQL
functions are not supported:

• BEGIN TRANSACTION statement

• CALL statement

• EXECSP statement

• QUERY ODBC statement

• SET AUTOCOMMIT statement

• SET TRANSACTION ISOLATION statement

• Scrolling cursorsd (including SET SCROLLOPTION and SET
CONCURRENCY statements)

• WITH PROMPT parameter on CONNECT statement

• SQL (CONNECTIONPOOL) directive

7.3 SQL Compiler Directive
When you compile your program, you must specify the SQL Compiler
directive and its appropriate options such that the preprocessor
converts the embedded SQL statements into function calls to the data
source. The ODBC driver that your program calls depends on the
particular data source that you are accessing.

There are two ways of specifying options for the SQL Compiler directive:

• You can use the $SET statement in your program. For example:

$set sql(dbman=odbc, datecheck, autocommit)

• You can use the Net Express Advanced Directives screen. Select Build
Settings from the Project menu, select your program, click on the
Compile tab and then press the Advanced button.

Note: You cannot use a mixture of these methods - you must use one or
the other.

Database Access

84 Chapter 7 OpenESQL

dbpubb.book Page 84 Wednesday, April 17, 2002 4:10 PM
The table below lists the SQL Compiler directive options.

Option Description

DBMAN=preprocessor Specifies the preprocessor to use. This should always be set
to odbc, that is dbman=odbc. This directive is not required
when compiling programs with OpenESQL.

[NO]ANSI92ENTRY If this is set, OpenESQL conforms to the SQL ANSI 92 entry
level standard.

[NO]AUTOCOMMIT If this is set, each SQL statement is treated as a separate
transaction and is committed immediately upon execution.
If this is not set, and the ODBC driver you are using
supports transactions, statements must be explicitly
committed (or rolled back) as part of a transaction.

[NO]CHECK If this is set, each SQL statement is sent to the database at
compilation time. If you specify statement checking at
compilation time, you must also set DB and PASS.

CHECKSINGLETON Causes OpenESQL to check if singleton SELECTs return
more than one row when executed. If this occurs,
OpenESQL sets SQLCODE to a -811.

CONCAT=ascii character code Specifies the ASCII character code to use for the CONCAT
symbol (|). Use this directive only if you need to change the
default, which is 33.

CONNECTIONPOOL=[DRIVER |
ENVIRONMENT | NONE]

Default is NONE. Enables use of ODBC 3.0 connection
pooling. When a connection is closed, the Driver Manager
actually keeps it alive for a timeout period, and saves the
overhead of re-establishing a connection from scratch if
the application re-opens an identical connection. ODBC
allows you to choose between having a pooling for an
ODBC environment or for each driver. See your ODBC
documentation for details. This option is only useful for
applications that frequently open and close connections.
Note that some environments, such as Microsoft
Transaction Server (MTS) control connection pooling
themselves. This option will probably improve the
performance of ISAPI applications that are not running
under MTS.

[NO]CTRACE Causes debug information to be put into a sqltrace.txt file.
Default is NOCTRACE.
Database Access

7.3 SQL Compiler Directive 85

dbpubb.book Page 85 Wednesday, April 17, 2002 4:10 PM
[NO]CURSORCASE If ESQLVERSION is 2.0, CURSORCASE is implied. Default is
NOCURSORCASE which means that cursor names are case
insensitive. CURSORCASE means that they are case
sensitive. Note that in previous versions of OpenESQL,
cursor names have been case sensitive.

[NO]DB The name of the data source to connect to. This option
works in conjunction with the INIT and/or CHECK options.

[NO]DETECTDATE Default is NODETECTDATE. If DETECTDATE is set,
OpenESQL inspects character host variables for ODBC
escape sequences:

{d<data>} - date
{t<data>} - time
{ts<data>} - timestamp

and binds the parameter appropriately, rather than as a
character column. This is necessary if your server does not
have a suitable native character string date representation
(for example, Microsoft Access). It is also useful for generic
applications. It can, however, cause problems if you have
other character columns that can legitimately contain data
that starts with "{d", "{t" or "{ts".

[NO]ESQLVERSION Set OpenESQL syntax level.

[NO]FIPSFLAG Enables FIPS flagging (NIST certification requirement only).
Default is NOFIPSFLAG.

GEN-CC2 Generates OpenESQL database interface calls, using call
convention 2 rather than call convention 74. Use this
directive to generate applications in the same way that
Net Express 3.0 did. If creating an .exe, you may need to
add odbcrw32.lib to your link statement.

[NO]IGNORE-
NESTED=program-id

In nested programs, this is the program-id at which to start
generating the database interface code. If the program file
name matches the program-id, you can just specify
IGNORE-NESTED. Default is NOIGNORE-NESTED.

[NO]INIT If this is set, the preprocessor automatically generates code
to make the connection to the database. If you specify
INIT, you must also specify DB and PASS. It is highly
recommend that you use EXEC SQL CONNECT statements
in your application instead.

Option Description
Database Access

86 Chapter 7 OpenESQL

dbpubb.book Page 86 Wednesday, April 17, 2002 4:10 PM
[NO]NIST If this is set, OpenESQL will conform to the NIST
interpretation of the SQL ANSI 92 entry level standard.

NOT=ascii character code Specifies the ASCII character code to use for NOT symbol
(¬). Use this only if you need to change the default setting,
which is: 170.

ODBCTRACE= [ALWAYS |
NEVER | USER]

Default is USER. ODBCTRACE=USER enables you to control
ODBC tracing via the OBDC control panel from which you
can specify the file that the trace goes into. ALWAYS lets
you control OBDC tracing via a directive, which is more
convenient from within the IDE. ALWAYS generates the
trace into MFSQLTRACE.LOG in the current directory,
regardless of the settings on the ODBC Control Panel.
Under normal development conditions, and depending on
the project's build setting, this is the Debug or Release
directory of the current project. NEVER means that the
application will never be traced and overrides the control
panel. As ODBC trace files can contain sensitive
information, use NEVER in production applications in
secure environments.

[NO]PARAMARRAY Default is PARAMARRAY. If PARAMARRAY is set, ODBC
array binding is used, if it is supported by the ODBC driver,
for all input parameters.

[NO]PASS The login to use to connect to the data source. This option
works in conjunction with the INIT and/or CHECK options.

[NO]PRE Default is PRE, which causes the preprocessor to generate
code to load the OpenESQL runtime module
(odbcrw32.dll) dynamically at runtime. This conflicts with
the LITLINK compiler directive. So if you use LITLINK,
specify NOPRE to stop the dynamic loading code being
generated. In this case, you must add odbcrw32.lib to the
list of LIBs to be linked in your build settings. Then the
linker generates code into the executable which causes the
operating system to load odbcrw32.dll implicitly when the
executable is loaded.

[NO]QUALFIX Causes the preprocessor to append three characters to the
name of the host variables when declaring them to ODBC.
Default is QUALFIX.

Option Description
Database Access

7.3 SQL Compiler Directive 87

dbpubb.book Page 87 Wednesday, April 17, 2002 4:10 PM
[NO]RESULTARRAY Default is RESULTARRAY. If RESULTARRAY is set, ODBC
array binding is used, if it is supported by the ODBC driver,
for all output parameters.

STMTCACHE Sets the cache size for prepared statements used by
OpenESQL. The default is 20. Depending upon your
application and data source, performance improvements
or data errors can result if this value is set higher than that.

[NO]TARGETDB=[MSQLSERVER
| ORACLEOCI | ORACLE |
INFORMIX | SYBASE | DB2 |
ORACLE7]

Set this directive if you want to optimize performance for
a specific data source or have the application generate
database calls using ORACLE OCI rather than ODBC calls.

THREAD=[SHARE | ISOLATE] Default is SHARE. If THREAD is set to ISOLATE, all
connections, cursors and so on are local to the thread that
creates them. This is required for multi-threaded
application server environments such as IIS/ISAPI. With
THREAD=SHARE, if you have a hard-coded CONNECT
statement and thread 1 executes it and then thread 2
executes it, thread 2 gets an error because the connection
is already open. With THREAD=ISOLATE, each thread gets
its own connection.

[NO]USECURLIB[NO | YES |
IFNEEDED]

Controls use of the ODBC’s Cursor Library. The Cursor
Library can provide support for scrolling cursors when the
underlying driver doesn’t, and can also allow "simulated"
positioned updates. With USECURLIB=YES, the Cursor
Library will always be used. With USERCURLIB=NO, it will
never be used. With the default USERCURLIB=IFNEEDED, it
will be used if the application tries to do something the
driver manager thinks the driver doesn’t support. To use a
scrolling cursor with the Cursor Library, you must use a
STATIC cursor. To do positioned updates using the Cursor
Library, you must use OPTCCVAL concurrency. Please
beware, a "simulated" positioned update might hit more
than one row. We recommend including the primary key in
the select for this reason.

Option Description
Database Access

88 Chapter 7 OpenESQL

dbpubb.book Page 88 Wednesday, April 17, 2002 4:10 PM
7.4 Data Sources
When you install Net Express, two Data Source Names (DSNs) are
created automatically. These are NetExpress Sample1 and NetExpress
Sample2 and they point to the sample Access databases (demo.mdb and
sample.mdb) that are installed as part of Net Express in the
demo\smpldata directory. If you want to look at an XDB database, the
DSN is NetExpress XDB Sample1.

7.5 Database Connections
Before your program can access any data in a database, it must make a
connection to the database.

There are two methods your program can use to connect to a database.

• Explicit connection (recommended method)

The CONNECT statement is typically used if the program is designed
to access different data sources whose names are not known at
compilation time or if the program is going to access multiple
databases.

• Implicit connection

This is generally used if your program is only going to connect to
one database which is known at compilation time. If you specify the
INIT option of the SQL Compiler directive, the compiler inserts a call
at the start of the program to automatically connect the program to
the data source specified in the DB option of the SQL Compiler
directive using the login information specified in the PASS option.

When your application has finished working with a database, it should
disconnect from the database. This is done using the DISCONNECT
statement.

If implicit connection is being used, OpenESQL automatically
disconnects from the data source when the program terminates.
Database Access

7.6 Keywords 89

dbpubb.book Page 89 Wednesday, April 17, 2002 4:10 PM
If you want OpenESQL to perform an implicit disconnect and rollback in
the event of abnormal program termination this can be achieved by
specifying the INIT=PROT option of the SQL Compiler directive.

7.6 Keywords
A number of keywords are recognized by OpenESQL and should not
therefore be used within your program for other purposes. A full list of
reserved keywords is given in the online help file. Look under
"OpenESQL" in the help file index.

7.7 Building an Application
To build an OpenESQL application, you need to:

1 Write your application, surrounding your SQL statements with the
keywords EXEC SQL and END-EXEC.

2 Compile your application using the SQL Compiler directive.

3 Configure a data source via ODBC Data Sources on the Control
Panel (see the section Setting up a Data Source Name).

The copyfiles sqlca.cpy and sqlda.cpy are located in the source directory
under your Net Express base installation directory and can be included
in your program in the normal way.

When you build your .exe, using Net Express, all the necessary object
files are linked in for you automatically unless you compile your
program with directive SQL(GEN-CC2).

Note: If you move your application to another system, you should
ensure that the file odbcrw32.dll is available on that system.

Database Access

90 Chapter 7 OpenESQL

dbpubb.book Page 90 Wednesday, April 17, 2002 4:10 PM
7.8 Demonstration Applications
A number of demonstration applications are supplied in the odbcesql
directory which is located in the demo directory under your Net Express
base installation directory.

Before you can use any of the demonstration applications, you need to
have installed at least one ODBC driver. A number of ODBC drivers are
installed automatically with Net Express including a Microsoft Access
driver. In addition, two sample Access databases are supplied in the
demo\smpldata directory and two data source names which point to
them are created automatically when you install Net Express. You can
run the demonstration applications against the sample database
pointed to by the data source name NetExpress Sample2 (or NetExpress
XDB Sample1 for XDB).

The OpenESQL demonstration applications all produce a console log
displaying their progress and, possibly, query results. They all terminate
on receipt of an error, after displaying an error message.

• connect.app

Prompts for a data source, user name and password. Enter a data
source name of "NetExpress Sample2" (or "NetExpress XDB
Sample1" for XDB), a user name of "admin" and leave the password
blank (just press return). Four tests which perform connects and
disconnects using a variety of syntax options are run. The fifth test
displays an SQL Data Sources dialog. Select "NetExpress Sample2"
(or "NetExpress XDB Sample1" for XDB) from the Machine Data
Source list and click on OK. A Login dialog is displayed. Enter a login
name of "admin", leave the password blank and click on OK. The
fifth test is run and the program terminates.

• select.app

Connects to the sample database and prompts for a customer code.
Enter BLUEL (as the prompt suggests). Two fields from the customer
record are displayed and the program prompts for another
customer code. Just press the return key this time. The program
prompts for a region. Enter CA (as the prompt suggests). The
program displays a list of customers in that region and prompts for
another region. This time, press the return key to terminate the
program.
Database Access

7.8 Demonstration Applications 91

dbpubb.book Page 91 Wednesday, April 17, 2002 4:10 PM
• static.app and dynamic.app

Both applications run the same sequence of tests, but using
different SQL syntax options. They both start by prompting for a
data source and user name. Enter "NetExpress Sample2" (or
"NetExpress XDB Sample1" for XDB) and "admin" respectively. The
test sequence is:

connect
drop test table
create test table
insert a row
commit
update the row
read and verify
rollback
read and verify
drop test table
disconnect
create test table

Step two may output an error message - this is expected and the
programs will continue. The final stage should produce an error
message, and again this is not treated as a genuine error (though
the absence of an ODBC error is treated as a test failure).

• whenever.app

Attempts to connect and displays an error message. Displays an SQL
Data Sources dialog. Select "NetExpress Sample2" (or "NetExpress
XDB Sample1" for XDB) and click on OK. A Login dialog is displayed.
Enter a login name of "admin", leave the password blank and click
on OK. Tests error handling and outputs two error messages.

• catalog.app

Displays an SQL Data Sources dialog. Select "NetExpress Sample2"
(or "NetExpress XDB Sample1" for XDB) and click on OK. A Login
dialog is displayed. Enter a login name of "admin", leave the
password blank and click on OK. Performs three data dictionary
queries and outputs the results.
Database Access

92 Chapter 7 OpenESQL

dbpubb.book Page 92 Wednesday, April 17, 2002 4:10 PM
7.9 Managing Transactions
With OpenESQL, you can use the COMMIT and ROLLBACK statements to
exploit the transaction control facilities of ODBC. Although ODBC
specifies transaction AUTOCOMMIT after each statement as the default
mode of operation, OpenESQL turns this off for greater compatibility
with other SQL systems. If you require this functionality, specify the
AUTOCOMMIT option of the SQL Compiler directive.

Note: Not all ODBC drivers implement transaction processing and those
that do not may make updates to the database permanent immediately.

7.10 Data Types
The online help includes a table which shows the mappings used by
OpenESQL when converting between SQL and COBOL data types. Look
up Reference, Database Access, OpenESQL, Data Types in the online
help contents.

The format of an ODBC date is yyyy-mm-dd, and an ODBC time is
hh:mm:ss. These may not correspond to the native date/time formats
for the data source in use. For input character host variables, native
data source date/time formats can be used. For most data sources, we
recommend a picture clause of PIC X(26), for example:

 01 mydate PIC x(26).
 ...
 EXEC SQL
 INSERT INTO TABLE1 VALUES (1,’1997-01-24 12:24’)
 END-EXEC
 ...
 EXEC SQL
 SELECT DT INTO :mydate FROM TABLE1 WHERE X = 1
 END-EXEC
 display mydate

Alternatively, you can use ODBC escape sequences. ODBC defines escape
sequences for date, time and timestamp literals. These escape sequences
Database Access

7.10 Data Types 93

dbpubb.book Page 93 Wednesday, April 17, 2002 4:10 PM
are recognized by ODBC drivers which replace them with data source
specific syntax.

The escape sequences for date, time and timestamp literals take the
form:

{d ’yyyy-mm-dd’} - for date.
{t ’hh:mm:ss’} - for time.
{ts yyyy-mm-dd hh:mm:ss[.f...] - for timestamp.

The example program below shows date, time and timestamp escape
sequences being used:

 working-storage section.
 EXEC SQL INCLUDE SQLCA END-EXEC

 01 date-field1 pic x(26).
 01 date-field2 pic x(26).
 01 date-field3 pic x(26).

 procedure division.
* Connect to the data source. This is one of the Sample
* datasources supplied with NetExpress
 EXEC SQL
 CONNECT TO ’NetExpress Sample1’ USER ’admin’
 END-EXEC
* If the Table is there drop it.
 EXEC SQL
 DROP TABLE DT
 END-EXEC

* Create a table with columns for DATE, TIME, and DATE/TIME
* NOTE: Access uses DATETIME column for all three.
* Some databases will have dedicated column types.
* If you are creating DATE/TIME columns on another data
* source, refer to your database documentation to see how to
* define the columns.

 EXEC SQL
 CREATE TABLE DT (id INT,
 myDate DATE NULL,
 myTime TIME NULL,
 myTimestamp TIMESTAMP NULL)
 END-EXEC

* INSERT into the table using the ODBC Escape sequences

 EXEC SQL
Database Access

94 Chapter 7 OpenESQL

dbpubb.book Page 94 Wednesday, April 17, 2002 4:10 PM
 INSERT into DT values (1 ,
 {d ’1961-10-08’}, *> Set just the date part
 {t ’12:21:54’ }, *> Set just the time part
 {ts ’1966-01-24 08:21:56’ } *> Set both parts
)
 END-EXEC

* Retrieve the values we just inserted

 EXEC SQL
 SELECT myDate
 ,myTime
 ,myTimestamp
 INTO :date-field1
 ,:date-field2
 ,:date-field3
 FROM DT
 where id = 1
 END-EXEC

* Display the results.

 display ’where the date part has been set :’
 date-field1
 display ’where the time part has been set :’
 date-field2
 display ’NOTE, most data sources will set a default ’
 ’for the date part ’
 display ’where both parts has been set :’
 date-field3

* Remove the table.

 EXEC SQL
 DROP TABLE DT
 END-EXEC

* Disconnect from the data source

 EXEC SQL
 DISCONNECT CURRENT
 END-EXEC

 stop run.
Database Access

7.11 Using the SQLCA 95

dbpubb.book Page 95 Wednesday, April 17, 2002 4:10 PM
In the above example, you can use host variables defined with SQL
TYPEs for date/time variables. Define the following host variables as:

01 my-id pic s9(08) COMP-5.
01 my-date sql type is date.
01 my-time sql type is time.
01 my-timestamp sql type is timestamp.

and replace the INSERT statement with the following code:

*> INSERT into the table using SQL TYPE HOST VARS
 MOVE 1 TO MY-ID
 MOVE "1961-10-08" TO MY-DATE
 MOVE "12:21:54" TO MY-TIME
 MOVE "1966-01-24 08:21:56" TO MY-TIMESTAMP

 EXEC SQL
 INSERT into DT value (
 :MY-ID
 ,:MY-DATE
 ,:MY-TIME
 ,:MY-TIMESTAMP)
 END-EXEC

7.11 Using the SQLCA
The SQLCA data structure is included in the file sqlca.cpy in the source
directory under your Net Express base installation directory. To include
it in your program, use the following statement in the data division:

 EXEC SQL INCLUDE SQLCA END-EXEC

If you do not include this statement, the COBOL Compiler automatically
allocates an area, but it is not addressable from within your program.
However, if you declare either of the data items SQLCODE or SQLSTATE
separately, the COBOL Compiler generates code to copy the
corresponding fields in the SQLCA to the user-defined fields after each
EXEC SQL statement.

If you declare the data item MFSQLMESSAGETEXT, it is updated with a
description of the exception condition whenever SQLCODE is non-zero.
MFSQLMESSAGETEXT must be declared as a character data item,
Database Access

96 Chapter 7 OpenESQL

dbpubb.book Page 96 Wednesday, April 17, 2002 4:10 PM
PIC X(n), where n can be any legal value. This is particularly useful as
ODBC error messages often exceed the 70-byte SQLCA message field.

Note: You do not need to declare SQLCA, SQLCODE, SQLSTATE or
MFSQLMESSAGETEXT as host variables.

7.12 Dynamic SQL
The demonstration application, dynamic.app is located in the odbcesql
directory which is in the demo directory under your base Net Express
installation directory. Open this project and select Step from the
Animate menu (you may need to rebuild the project first) in order to
step through the application for a demonstration of how to use
dynamic SQL in your COBOL programs.

7.13 Positioned Update
ODBC supports positioned update, which updates the row most recently
fetched by using a cursor. However, not all drivers provide support for
positioned update.

With some ODBC drivers, the select statement used by the cursor must
contain a FOR UPDATE clause to enable positioned update. Most data
sources require specific combinations of SCROLLOPTION and
CONCURRENCY to be specified either by SET statements or in the
DECLARE CURSOR statement. If this fails to work, the ODBC Cursor
Library provides a restricted implementation of positioned update
which can be enabled by compiling with the directive
SQL(USECURLIB=YES) and using SCROLLOPTION STATIC and
CONCURRENCY OPTCCVAL (or OPTIMISTIC). To avoid multiple rows
being updated when using the ODBC Cursor Library, the cursor query
should include the primary key column(s) for the table to be updated.
Database Access

7.13 Positioned Update 97

dbpubb.book Page 97 Wednesday, April 17, 2002 4:10 PM
7.13...1 Example

EXEC SQL CONNECT TO ’srv1’ USER ’sa’ END-EXEC

EXEC SQL DECLARE C1 CURSOR FOR
 SELECT last_name, first_name
 FROM staff
 FOR UPDATE
END-EXEC

EXEC SQL
 OPEN C1
END-EXEC

PERFORM UNTIL SQLCODE NOT = ZERO

 EXEC SQL
 FETCH C1 INTO :fname,:lname
 END-EXEC

 IF SQLCODE = ZERO
 DISPLAY fname " " lname
 DISPLAY "Update?"
 ACCEPT reply
 IF reply = "y"
 DISPLAY "New last name?"
 ACCEPT lname
 EXEC SQL
 UPDATE staff

 SET last_name=:lname WHERE CURRENT OF c1
 END-EXEC
 DISPLAY "update sqlcode=" SQLCODE
 END-IF
 END-IF
END-PERFORM

EXEC SQL DISCONNECT ALL END-EXEC
STOP RUN.

7.13.1 Limitations
You cannot use host arrays with positioned update. The other form of
UPDATE used in standard SQL statements is known as a searched
Database Access

98 Chapter 7 OpenESQL

dbpubb.book Page 98 Wednesday, April 17, 2002 4:10 PM
update. See the Help for more details about setting DECLARE CURSOR
options and examples.

7.14 Using OpenESQL with Web and
Application Servers

This section describes what you must do to use OpenESQL in
environments controlled by Web and Application Servers, such as IIS,
MTS, COM+, CICS and Tuxedo.

All servers differ, but the principle described here is common to them
all.

7.14.1 Thread Safety
OpenESQL is thread safe. Normally all threads in an application share
SQL resources such as connections and cursors. When running with an
application server, however, threads will be scheduled to handle
requests from different users. Therefore, you must use the directive:

SQL(THREAD=ISOLATE)

to ensure that each thread’s resources are isolated from each other.

7.14.2 Connection Management
In most environments, the application server will manage a pool of
connections, which means that actual connect and disconnect requests
to the database will be rare. When an application runs, it will reuse an
existing connection. In most cases, connection pooling will be managed
by the ODBC Driver Manager and will be transparent to the application.
In other cases, the application server itself will manage the connection
pool, and the application must use a "set connection" statement before
it does anything else.
Database Access

7.14 Using OpenESQL with Web and Application Servers 99

dbpubb.book Page 99 Wednesday, April 17, 2002 4:10 PM
Where the application uses OpenESQL connect and disconnect
statements, and it is not clear that the application server itself enables
ODBC connection pooling, it might be worth experimenting with the
SQL(CONNECTIONPOOL=...) directive. However, you are unlikely to need
to do this.

7.14.3 Transactions
In many cases, the application server will provide transaction
management. This will be determined when your component is placed
under the control of the application server. If the application server is
not providing transaction management, it must use OpenESQL COMMIT
and ROLLBACK statements to manage transactions. If, however, the
application server is providing transaction management, you must do
the following:

• If connection management is not provided by the application server
(that is, your application uses connect and disconnect statements),
you must use the SQL(AUTOCOMMIT) directive. This does not mean
that your SQL statements will be committed automatically, rather
that your application will not be handling transactions by COMMIT
and ROLLBACK statements.

• Your application must not use OpenESQL COMMIT and ROLLBACK
statements. Instead, your application server will provide API calls or
return codes for you to signal success or failure.

If you are using MTS or COM+, the default transaction isolation level,
when the application server is managing transactions, can be serialized.
This might cause excessive locking, and reduce concurrency. Your
application must be prepared to deal with its transaction being aborted
when the application server attempts to resolve a deadlock. To ease
these problems, you can use the following statement:

exec sql set transaction isolation read committed end-exec

to set a less stringent isolation level. In this case, the statement must be
the first statement to be executed after the CONNECT statement. Note
that when SQL(AUTOCOMMIT) is not used, a commit or rollback is
required immediately prior to executing a SET TRANSACTION
ISOLATION statement.
Database Access

100 Chapter 7 OpenESQL

dbpubb.book Page 100 Wednesday, April 17, 2002 4:10 PM
7.14.4 User Accounts, Schemas and
Authentication
When running in an application server environment, the user account in
which your application executes might be different from the account
used for development. ODBC data sources set up as user data sources
might, therefore, not be available. You will probably find it more
convenient to set up data sources as system data sources on deployment
systems. When a file-based data source is used, the database files must
be accessible by the account used by the application server. When
accessing the database, particularly if integrated security is used (that is,
when the DBMS uses the same account number as the operating
system), the default schema might be different from that used during
development. This might well be what is intended, if different schema
names are used for development and deployment. Alternatively, it
might mean that tables are no longer visible to the application. It must
either use explicit owner qualification, or execute a database-specific
statement, which will select the correct schema to be the default.

7.14.5 Transaction Wrapper Sample
The following is an example of an transaction wrapper generated by
the OCX Wizard modified to include the OpenESQL logic to handle the
following scenarios using a SQL Server data source:

• standalone transaction with no MTS/COM+ involved

• component managed by MTS/COM+ but without MTS/COM+
handling transactions

• component and transactions handled by MTS/COM+

$set ooctrl(+p) sql(thread=isolate autocommit)
 *>---
 *> Class description
 *>---
 class-id. cblsqlwrapper
 inherits from olebase.
 object section.
 class-control.
 cblsqlwrapper is class "cblsqlwrapper"
Database Access

7.14 Using OpenESQL with Web and Application Servers 101

dbpubb.book Page 101 Wednesday, April 17, 2002 4:10 PM
 *> OCWIZARD - start list of classes
 objectcontext is class "objectcontext"
 olebase is class "olebase"
 oleSafeArray is class "olesafea"
 oleVariant is class "olevar"
 *> OCWIZARD - end list of classes
 *>---USER-CODE. Add any additional class names below.
 *>---
 working-storage section. *> Definition of global data
 *>---

 *>---
 class-object. *> Definition of class data and methods
 *>---
 object-storage section.

 *> OCWIZARD - start standard class methods
 *>---
 *> Return details about the class.
 *> If you have a type library, theClassId and theInterfaceId
 *> here MUST match.
 *> theProgId must match the registry entry for this class
 *> (a zero length string implies using the class file name)
 *> theClassId must match the CLSID stored in the registry.
 *> theVersion is currently ignored (default 1 used).
 *>---
 method-id. queryClassInfo.
 linkage section.
 01 theProgId pic x(256).
 01 theClassId pic x(39).
 01 theInterfceId pic x(39).
 01 theVersion pic x(4) comp-5.
 01 theDescription pic x(256).
 01 theThreadModel pic x(20).
 procedure division using by reference theProgId
 by reference theClassId
 by reference theInterfceId
 by reference theVersion
 by reference theDescription
 by reference theThreadModel.
 move z"{3EADD92C-06C5-46F2-A2E0-7EB0794C14DF}" to theClassId
 move z"{5BF3F966-9932-4835-BFF6-2582CA2592AD}" to theInterfceId
 move z"Description for class cblsqlwrapper"
 to theDescription
 move z"Apartment" to theThreadModel
 exit method.
 end method queryClassInfo.
 .
Database Access

102 Chapter 7 OpenESQL

dbpubb.book Page 102 Wednesday, April 17, 2002 4:10 PM
 *>---
 *> Return details about the type library - delete if unused.
 *> theLocale is currently ignored (default 0 used).
 *> theLibraryName is a null terminated string used for auto
 *> registration, and supports the following values:
 *> <no string> - Library is embedded in this binary
 *> <number> - As above, with this resource number
 *> <Path> - Library is at this (full path) location
 *>---
 method-id. queryLibraryInfo.
 linkage section.
 01 theLibraryName pic x(512).
 01 theMajorVersion pic x(4) comp-5.
 01 theMinorVersion pic x(4) comp-5.
 01 theLibraryId pic x(39).
 01 theLocale pic x(4) comp-5.
 procedure division using by reference theLibraryName
 by reference theMajorVersion
 by reference theMinorVersion
 by reference theLibraryId
 by reference theLocale.
 move 1 to theMajorVersion
 move 0 to theMinorVersion
 move z"{24207F46-7136-4285-A660-4594F5EE7B87}" to theLibraryId
 exit method.
 end method queryLibraryInfo.

 *>---

 *> OCWIZARD - end standard class methods

 end class-object.

 *>---
 object. *> Definition of instance data and methods
 *>---
 object-storage section.

 *> OCWIZARD - start standard instance methods
 *> OCWIZARD - end standard instance methods

 *>---
 method-id. "RetrieveString".
 working-storage section.

 01 mfsqlmessagetext pic x(400).
 01 ESQLAction pic x(100).
Database Access

7.14 Using OpenESQL with Web and Application Servers 103

dbpubb.book Page 103 Wednesday, April 17, 2002 4:10 PM
 COPY DFHEIBLK.

 COPY SQLCA.
 *>...your transaction program name
 01 transactionPgm PIC X(7) VALUE ’mytran’.

 local-storage Section.
 01 theContext object reference.
 01 transactionStatusFlag pic 9.
 88 transactionPassed value 1.
 88 transactionFailed value 0.
 *>---USER-CODE. Add any local storage items needed below.

 01 ReturnValue pic x(4) comp-5.
 88 IsNotInTransaction value 0.

 01 transactionControlFlag pic 9.
 88 TxnControlledByMTS value 0.
 88 TxnNotControlledByMTS value 1.

 linkage Section.

 *>...Info passed to transaction
 01 transaction-Info.
 05 transaction-Info-RC pic 9.
 05 transaction-Info-data pic x(100).

 *>...Info returned from transaction via
 01 transaction-Info-Returned pic x(100).

 procedure division using by reference transaction-Info
 returning transaction-Info-Returned.

 *>...initialisation code
 perform A-Initialise
 perform B-ConnectToDB
 if TxnNotControlledByMTS
 perform C-SetAutoCommitOff
 end-if

 *>...set isolation level to override SQLServer default, serialize
 perform D-ResetDefaultIsolationLevel

 *>...set cursor type to overrde the OpenESQL default, dynamic+lock
 perform E-ResetDefaultCursorType
Database Access

104 Chapter 7 OpenESQL

dbpubb.book Page 104 Wednesday, April 17, 2002 4:10 PM
 *>...call the transaction
 perform F-CallTransaction

 *>...finalisation code - issue Commit/Rollback if not controlled
 *>...by MTS/COM+
 if TxnNotControlledByMTS
 if transactionPassed
 perform X-Commit
 else
 perform X-Rollback
 end-if

 perform Y-Disconnect

 *>...Transaction Server - use setAbort if the method fails:
 if theContext not = null
 if transactionPassed
 invoke theContext "setComplete"
 else
 invoke theContext "setAbort"
 end-if
 invoke theContext "finalize" returning theContext
 end-if

 exit method
 .

 A-Initialise.

 *>...Transaction Server - get the context we are running in
 invoke objectcontext "GetObjectContext" returning theContext

 *>...check if this component is enlisted in an MTS transation
 if theContext = null
 set TxnNotControlledByMTS to true
 else
 invoke theContext "IsInTransaction" returning ReturnValue
 if IsNotInTransaction
 set TxnNotControlledByMTS to true
 else
 set TxnControlledByMTS to true
 end-if
 end-if

 *>...initialise program variables
 set transactionPassed to true

 INITIALIZE DFHEIBLK
Database Access

7.14 Using OpenESQL with Web and Application Servers 105

dbpubb.book Page 105 Wednesday, April 17, 2002 4:10 PM
 .

 B-ConnectToDB.

 *>...connect to data source

 EXEC SQL
 CONNECT TO ’SQLServer 2000’ USER ’SA’
 END-EXEC

 if sqlcode zero
 move z"connection failed " to ESQLAction
 perform Z-ReportSQLErrorAndExit
 end-if
 .

 C-SetAutoCommitOff.

 EXEC SQL
 SET AUTOCOMMIT OFF
 END-EXEC
 if sqlcode zero
 move z"Set Autocommit Off failed " to ESQLAction
 perform Z-ReportSQLErrorAndExit
 end-if

 perform X-Commit
 .

 D-ResetDefaultIsolationLevel.
 *> the default isolation level for SQLServer is "Serialized", so
 *> here we reset it to something more appropriate

 EXEC SQL
 SET TRANSACTION ISOLATION READ COMMITTED
 END-EXEC
 if sqlcode zero
 move z"set transaction isoation failed " to ESQLAction
 perform Z-ReportSQLErrorAndExit
 end-if
 .

 E-ResetDefaultCursorType.
 *> the default cursor type for OpenESQL is dynamic + lock
 *> the most efficient is a "client" or "firehose" cursor - this is
 *> a cursor declared as forward + read only - doing this here will
 *> set it as a default from now on. If Forward causes a problem,
 *> change the concurrency to fast forward (but note that it will
Database Access

106 Chapter 7 OpenESQL

dbpubb.book Page 106 Wednesday, April 17, 2002 4:10 PM
 *> then no longer be a client cursor)

 EXEC SQL
 SET CONCURRENCY READ ONLY
 END-EXEC
 if sqlcode zero
 move z"Set Concurrency Read Only" to ESQLAction
 perform Z-ReportSQLErrorAndExit
 end-if

 EXEC SQL
 SET SCROLLOPTION FORWARD
 END-EXEC
 if sqlcode zero
 move z"Set Concurrancy Read Only" to ESQLAction
 perform Z-ReportSQLErrorAndExit
 end-if
 .

 F-CallTransaction.

 *>...call the program to process the transaction
 move 0 to transaction-Info-RC
 call tranactionPgm using dfheiblk transaction-Info

 *>...check if processing was okay
 if transaction-Info-RC = 0
 set transactionPassed to true
 else
 set transactionFailed to true
 end-if
 .

 X-Commit.

 EXEC SQL
 COMMIT
 END-EXEC
 if sqlcode zero
 move z"Commit failed " to ESQLAction
 perform Z-ReportSQLErrorAndExit
 end-if
 .

 X-Rollback.

 EXEC SQL
 ROLLBACK
Database Access

7.14 Using OpenESQL with Web and Application Servers 107

dbpubb.book Page 107 Wednesday, April 17, 2002 4:10 PM
 END-EXEC
 if sqlcode zero
 move z"Rollback failed " to ESQLAction
 perform Z-ReportSQLErrorAndExit
 end-if
 .

 Y-Disconnect.

 EXEC SQL
 DISCONNECT CURRENT
 END-EXEC
 if sqlcode zero
 move z"Disconnect failed " to ESQLAction
 perform Z-ReportSQLErrorAndExit
 end-if
 .

 Z-ReportSQLErrorAndExit.

 move spaces to transaction-Info-Returned
 string ESQLAction delimited by x"00"
 "SQLSTATE = "
 SQLSTATE
 " "
 mfsqlmessagetext
 into transaction-Info-Returned
 end-string

 exit method
 .

 exit method.
 end method "RetrieveString".
 *>---

 end object.
 end class cblsqlwrapper.

See the Distributed Computing book for additional details on setting up
MTS/COM+ or WebSphere transactions.
Database Access

108 Chapter 7 OpenESQL

dbpubb.book Page 108 Wednesday, April 17, 2002 4:10 PM
7.15 XML Support
Net Express comes with XML ODBC drivers, which you can set up to
access XML files just like any ODBC data source. You can then build SQL
statements using the OpenESQL Assistant from the XML data source.

7.15.1 PERSIST Statement

To help you in converting information to XML, OpenESQL has added the
PERSIST statement which allows you to save information defined in a
cursor SELECT statement as XML files. The syntax is:

PERSIST cursor_name TO xml_destination

where xml_destination may be an identifier, a host variable or a literal
enclosed in single or double quotes. The cursor must also have
SCROLLOPTION set to static. For example:

 01 hv pic x(50).
 procedure-division.

 *> set whenever clause to handle sql errors
 exec sql whenever sqlerror goto sql-error end-exec
 exec sql whenever sqlwarning perform sql-warning end-exec

 *> connect to data source
 exec sql connect to "data source" end-exec

 *> declare static cursor with column info you want to save to xml file
 exec sql
 declare c static cursor for
 select * from emp
 end-exec

 *> open cursor
 exec sql open c end-exec

 *> save data to xml file using double quoted literal
 exec sql
 persist c to "c:\XML Files\xmltest1.xml"
 end-exec
Database Access

7.15 XML Support 109

dbpubb.book Page 109 Wednesday, April 17, 2002 4:10 PM
 *> save data to xml file using single quoted literal
 exec sql
 persist c to ’c:\XML Files\xmltest2.xml’
 end-exec

 *> save data to xml file using a host variable
 move "c:\XML Files\xmltest3.xml" to hv
 exec sql
 persist c to :hv
 end-exec

 *> close the cursor
 exec sql close c end-exec

 *> disconnect from datasource
 exec sql disconnect current end-exec

 goback.

Note: Data Direct ODBC version 3.70 or later drivers are required to use
this statement.
Database Access

110 Chapter 7 OpenESQL

dbpubb.book Page 110 Wednesday, April 17, 2002 4:10 PM
Database Access

111

dbpubb.book Page 111 Wednesday, April 17, 2002 4:10 PM
8 OpenESQL Assistant

The OpenESQL Assistant is an interactive tool that makes it easy for you
to:

• Prototype SQL SELECT statements and test them against your
database.

• Design SQL INSERT, UPDATE and DELETE statements.

Once you have created your SQL queries, you can use the OpenESQL
Assistant to insert them into your Net Express COBOL code. All you
have to do is open the appropriate project and program, and the
OpenESQL Assistant will insert the SQL query at the current insertion
point. And if you want it to, the OpenESQL Assistant will even create
and insert any auxiliary code made necessary by the insertion of your
SQL queries.

This chapter is in the form of a tutorial which shows you how to:

• Specify OpenESQL Assistant Options

• Start the OpenESQL Assistant

• Connect to a data source

• Select a table

• Select a column

• De-select a column

• Select all the columns in a table

• De-select a table

• Display column details

• Create a new query

• Select a different table

• Change the query type

• Connect to a different data source
Database Access

112 Chapter 8 OpenESQL Assistant

dbpubb.book Page 112 Wednesday, April 17, 2002 4:10 PM
• Run a select query

• Specify search criteria

• Sort data retreived

• Disconnect from a data source

• Create a table join

• Add an embedded SQL statement to your program

• Add auxiliary code to your program

• Change a select(cursor) query to do an Array FETCH

• Generate Query as Stored Procedure

• Close the OpenESQL Assistant

8.1 Setting OpenESQL Assistant Options
You can change certain default settings to control how OpenESQL
Assistant generates a query via the OpenESQL Assistant Configuration
Options dialog box. To do this, click Embedded SQL on the Options
menu.
Database Access

8.1 Setting OpenESQL Assistant Options 113

dbpubb.book Page 113 Wednesday, April 17, 2002 4:10 PM
The following dialog box is displayed:

Figure 8-1. OpenESQL Assistant Configuration Options

The following options can be set:

• Qualify tables with owner name

By default, OpenESQL Assistant builds all queries unqualified.
However, if the data source has multiple tables with the same table
name, you might want to build the query with a specific owner.
Check this option and the table list will include the owner name in
parentheses after the table name in the tree view. Then select the
table name with the owner that you want to use in the query and
all table names in the query will be qualified with the owner name.

• Quote table and column names

By default, OpenESQL Assistant does not enclose column and table
names with the quote identifier associated with the data source
unless the column or table name has embedded blanks, special
Database Access

114 Chapter 8 OpenESQL Assistant

dbpubb.book Page 114 Wednesday, April 17, 2002 4:10 PM
character such as "$" or DBCS characters in it. You can force all table
and column names to be enclose by checking this option.

• Use level 49 for VARCHARs

By default, OpenESQL Assistant generates a host variable as a PIC
X(n) field for VARCHAR columns. When data is mapped to the host
variable, it is null terminated. However, if you’d like to get a length
of the column data returned, you need to check this option and
OpenESQL Assistant will generate the host variable with two level-
49 variables; one for the length of the data mapped and one for the
actual text data.

• Use SQLSTATE

By default, OpenESQL Assistant generates SQL statements using
SQLCODE checking. Check this option if you want OpenESQL
Assistant to generate SQL statements using SQLSTATE checking.

• Use SQL TYPE for host variables

By default, OpenESQL Assistant now generates COBOL host
variables using SQL TYPE definitions where appropiate. This allows
the SQL precompiler to better determine the type of useage a host
variable will be used for. You can still generate host variables the
old way by unchecking this option. You should also uncheck this
option if you are using the copybook with Array Fetches.

• Logon details

If you always connect to the same data source or always use the
same logon information to connect to data sources, you can save
that information using the following fields:

• User name

The userid or logon id required to connect to the data source.

• Password

The password required to connect to the data source for the
User name specified previously. Information entered in this field
is not displayed on entry but instead is displayed as asterisks .

• Max result rows

By default, OpenESQL Assistant only returns the first 50 rows when
you run a query. This is to prevent queries from returning huge
number of rows that may crash your machine or overload your
Database Access

8.1 Setting OpenESQL Assistant Options 115

dbpubb.book Page 115 Wednesday, April 17, 2002 4:10 PM
network if testing with network servers since the purpose of this
tool is to interactively build/test queries and you may not yet have
specified all the criteria required. You can set this value to a higher
number but choose a reasonable number that reflects the amount
of data you expect to be returned or need to test for.

• Host variable name

OpenESQL Assistant will create host variables using a combination of
the column name and a prefix setting selected in this drop-down list.
If the combination is either too long or contains invalid characters to
be a valid COBOL name, the column number is used. To make a valid
COBOL name, OpenESQL Assistant converts all underscores into
hyphens. You can choose from the following options:

• Table name as prefix

Use the table name as a prefix to column name. The
combination must be 31 characters or fewer or column numbers
will be substituted for the column name. This is the default
prefix setting.

• No prefix

Generate variable names using only the column name. If name is
greater than 31 characters or contains invalid COBOL characters,
the column number is generated with a prefix of FLD.

• Alphabetic character prefix

Generate variable names using "A" as prefix for the first table
selected, "B" as the prefix for the second table selected, and so
on.

• Restrict tables in list

By default, OpenESQL Assistant will use the tree view to show all
tables, views, aliases, and synonymns found in a data source. For
certain types of data sources, this could create a very large list. To
improve response time in building this list, you can restrict this list
by qualifying what tables to return. For example, you could request
that only tables that begin with OWNER that starts with "XYZ%" be
returned. In general, this is comparable to the LIKE function where:

• The underscore character (_) represents any single character.

• The percent sign (%) represents a string of zero or more
characters.
Database Access

116 Chapter 8 OpenESQL Assistant

dbpubb.book Page 116 Wednesday, April 17, 2002 4:10 PM
• Any other character represents itself.

There are three fields that you can use to restrict the list:

• Qualifier

• Owner

• Table name

Not all data sources support all three, so you should look at the data
source properties to determine which fields are supported by the
data source you want to connect to.

In the example above, you would enter in the Owner field "XYZ%",
click OK to save you settings and then connect to the data source. If
your restrictions results in no tables, OpenESQL Assistant will return
"< no tables selected >" as the table name.

8.2 Starting the OpenESQL Assistant
To start the OpenESQL Assistant, select Dockable Windows from the
Net Express View menu. Select the OpenESQL Assistant checkbox and
close the Dockable Windows dialog box.

Figure 8-2. OpenESQL Assistant
Database Access

8.3 Connecting to a Data Source 117

dbpubb.book Page 117 Wednesday, April 17, 2002 4:10 PM
The OpenESQL Assistant window is a dockable window, although you
can toggle this facility by right-clicking in the grey area immediately
below the title bar and checking (or unchecking) Allow docking. You
can also hide the window by right-clicking and checking Hide. If you are
unfamiliar with docking or hiding windows, look up Docking in the
online help file and select Rearranging views and dockable windows.

8.3 Connecting to a Data Source
Once you have started the OpenESQL Assistant, a list of all the ODBC
data sources that you have set up is displayed. In Figure 8-1 above, for
example, Excel_Files and Oracle_Database are two of the existing data
sources that are displayed by the OpenESQL Assistant.

To connect to a data source, double-click on its name, or on the
appropriate data source icon, for example:

Figure 8-3. Data Source Icon and Name

Note: You can connect to one data source only at any one time. For
information on changing the data source to which you are connected
to, see the section Connecting to a Different Data Source.

Depending on how the data source is set up, you may be prompted to
enter one or more of the following:

• a user-id

• a password

• a database name

If you haven’t set up any data sources yourself, you can use one of the
sample data sources that is set up automatically when you install
Net Express. One of these, NetExpress Sample2 points to a sample
Database Access

118 Chapter 8 OpenESQL Assistant

dbpubb.book Page 118 Wednesday, April 17, 2002 4:10 PM
Microsoft Access database, sample.mdb which is supplied with
Net Express and installed in the demo\smpldata\access directory. In the
remainder of this chapter, references to the Microsoft Access data
source NetExpress Sample2 can be simply exchanged for NetExpress
XDB Sample1 if you want to examine an XDB database. This applies
equally to the directory structures shown within the Figures.

You can look at the data source properties after you are connected to a
data source by right-clicking on the data source and clicking Data
Source Properties on the popup menu.

Figure 8-4. Data Source Properties

Information about the data source includes the identifier quote
character that is used, and the maximum size of column and table
names. In this example, the Owner Name Length is 0, which indicates
that this data source does not support the OWNER field, so you would
not use this field to restrict list of tables in the Setup function discussed
previously.

The remainder of this tutorial assumes that you are using the
sample.mdb database and this is the database which is shown in all of
the illustrations.
Database Access

8.4 Selecting a Table 119

dbpubb.book Page 119 Wednesday, April 17, 2002 4:10 PM
8.4 Selecting a Table
Once you have connected to a data source, the names of all the tables
in that data source are displayed underneath the data source name:

Figure 8-5. Selecting a Table

You can select a table by double-clicking on its name. You will be
prompted to select the type of query that you want. At this point, it
doesn’t matter which type of query you select, so accept the default (a
singleton select) by simply clicking on the OK button:

Figure 8-6. Selecting a Query
Database Access

120 Chapter 8 OpenESQL Assistant

dbpubb.book Page 120 Wednesday, April 17, 2002 4:10 PM
Once you have selected a query, the COBOL code for the query you have
selected is automatically generated and displayed under the Query tab.
At the same time, a list of all the columns in the table is displayed
underneath the table name:

Figure 8-7. Displaying Columns

You will notice that a table alias is generated automatically by the
OpenESQL Assistant:

SELECT FROM Customer A

As this is the first table that you have selected, the alias used is the letter
"A". If you were to select a second table, the OpenESQL Assistant would
generate an alias of "B" and so on.

Notice also that each column name is prefixed by its alias (A.CustID,
A.Company). This enables you to distinguish the columns in one table
from those in another.

Notes:

• Some databases uses special characters in the names of system
tables. For example, Oracle can use system tables whose names
contain a dollar ($). Therefore, the OpenESQL Assistant sets the
option to enclose column and table names in quotes automatically
Database Access

8.4 Selecting a Table 121

dbpubb.book Page 121 Wednesday, April 17, 2002 4:10 PM
whenever the assistant sees a name that would be illegal if not
enclosed in quotes.

• If the name generated from the column name (including any
prefixes and suffixes) would be illegal in COBOL because it is longer
than 31 characters or contains illegal characters, a host variable is
generated using the column number (for example, COL005) rather
than the column name.

8.4.1 Selecting a Column

To select a column, simply double-click on the column name. Notice that
the COBOL code is automatically updated.

8.4.2 De-selecting a Column
You can de-select a selected column by double-clicking on it. Each time
you select or de-select a column, the COBOL code is automatically
updated.

8.4.3 Selecting all the Columns in a
Table
You can select all of the columns in a table by:

• Right-clicking on the table name

• Clicking on Select All Columns
Database Access

122 Chapter 8 OpenESQL Assistant

dbpubb.book Page 122 Wednesday, April 17, 2002 4:10 PM
Figure 8-8. Selecting Columns

You can always tell whether a column is currently selected because, if it
is, the column icon is checked:

Figure 8-9. Column Icon

8.5 De-selecting a Table
You can de-select a table by double-clicking on it a second time. If you
have already selected columns from this table, you will be prompted to
confirm that you want to de-select it. Click on the Yes button.
Database Access

8.5 De-selecting a Table 123

dbpubb.book Page 123 Wednesday, April 17, 2002 4:10 PM
The table is de-selected and the code that was generated is amended:

Figure 8-10. De-selecting a Table

Note that you must double-click on the table name or table icon to de-
select the table. Clicking on the minus sign (-) simply toggles the view of
the table (+ displays all the columns, - hides them).

For example, select the Customer table again by double-clicking on it.
Select all the columns by right-clicking on the table name and clicking
Select All Columns. Now click on the minus sign to hide the columns:

Figure 8-11. Hiding the Columns in a Selected Table
Database Access

124 Chapter 8 OpenESQL Assistant

dbpubb.book Page 124 Wednesday, April 17, 2002 4:10 PM
8.6 Displaying Column Details
To see more detailed information on the columns in a table, simply click
on the Details tab.

Figure 8-12. Displaying Column Details

The information that is displayed is as follows:

• Column Name

The column name of each column in the table is displayed. Notice
that each column name is prefixed by the table alias, for example,
CustID is shown as A.CustID. A tick in the box to the left of the
column name indicates that the column is currently selected.

• Type

The data type of the column is displayed. These are the data types
used by the data source to which you are connected. The data type
of a column must match the COBOL picture clause of the host
variable that is used to pass values for that column to and from the
data source.

You can get the OpenESQL Assistant to generate a copyfile (in the
current directory and called tablename.cpy) which declares all the
necessary host variables with the correct COBOL picture clauses
(that is, matching the data type of the table columns). See the
section Adding Auxiliary Code below.
Database Access

8.7 Creating a New Query 125

dbpubb.book Page 125 Wednesday, April 17, 2002 4:10 PM
• Precision

The total number of digits in the column is displayed. Precision is
only displayed for those columns for which it is relevant. If the
column is a text column, precision shows the length of the column.

• Scale

The number of digits to which the column is rounded is displayed.
Scale is only displayed for those columns for which it is relevant.

• Host Variable

The OpenESQL Assistant automatically generates a host variable for
each column. The host variable name takes the form:

:<table-name>-<column-name>

For example, the host variable generated by the OpenESQL
Assistant for the CustID column is :Customer-CustID, that for the
City column is :Customer-City and that for the Phone column is
:Customer-Phone.

• Indicator Variable

As well as a host variable, the OpenESQL Assistant also generates an
indicator variable for each column. The indicator variable name
takes the form:

:<table-name>-<column-name>-NULL

For example, the indicator variable generated by the OpenESQL
Assistant for the CustID column is :Customer-CustID-NULL, that
for the City column is :Customer-City-NULL and that for the
Phone column is :Customer-Phone-NULL.

8.7 Creating a New Query
The following sections explain the ways in which you can modify an
existing query or create a new query.
Database Access

126 Chapter 8 OpenESQL Assistant

dbpubb.book Page 126 Wednesday, April 17, 2002 4:10 PM
8.7.1 Selecting a Different Table

To select a different table you must first de-select the currently selected
table by double-clicking on it (if you have any columns currently
selected you will be prompted to confirm that you want to de-select the
table) and then select the new table by double-clicking on that. You will
be prompted to select a query type.

8.7.2 Changing the Query Type
You cannot change the query type without first de-selecting the
currently selected table and then either re-selecting it (if you want to
create a different type of query for the same table) or selecting a new
table. Once you have selected a table, you will be prompted to select a
query. Select the query that you want and click on the OK button.

8.7.3 Connecting to a Different Data
Source
If you want to connect to a different data source, click on the Create a
New Query button, . This disconnects you from the current data source
thus allowing you to select a new data source by double-clicking on its
name. If you attempt to connect to a new data source without first
disconnecting from the current data source, an error message is displayed
informing you that you cannot connect to a second data source.

8.8 Running a Select Query
Connect to the NetExpress Sample2 data source and select the
Customer table. You will be prompted for a query type. Select SELECT
(cursor), enter "CSR506" in the Cursor name entry field and click on the
OK button.
Database Access

8.8 Running a Select Query 127

dbpubb.book Page 127 Wednesday, April 17, 2002 4:10 PM
Figure 8-13. Selecting a SELECT (cursor) Query

You will notice that the COBOL code for the SELECT statement is
automatically generated and displayed:

Figure 8-14. SELECT (cursor) Query Code
Database Access

128 Chapter 8 OpenESQL Assistant

dbpubb.book Page 128 Wednesday, April 17, 2002 4:10 PM
This code includes:

• A DECLARE CURSOR statement which creates the cursor to be used
in the SELECT:

DECLARE CSR506 CURSOR FOR SELECT FROM Customer A

• An OPEN statement which executes the SELECT statement specified
in the corresponding DECLARE CURSOR statement:

OPEN CSR506

• A FETCH statement to retrieve the next row from the cursor’s results
set:

FETCH CSR506 INTO

• A CLOSE statement to close the cursor:

CLOSE CSR506

As the query stands, it would cause a syntax error - click on the Run the
Query button, , to see the error displayed - because it does not specify
which column(s) to select or what to select them into.

To select a column, double-click on it. Select A.CustID. For each column
that you select, the automatically generated code is updated as follows:

• The column is added to the DECLARE CURSOR statement, for
example:

DECLARE CSR506 CURSOR FOR SELECT
 A.CustID
FROM Customer A

• A host variable (into which the column will be read) is added to the
INTO clause of the FETCH statement, for example:

FETCH CSR506 INTO
 :Customer-CustID:Customer-CustID-NULL
Database Access

8.8 Running a Select Query 129

dbpubb.book Page 129 Wednesday, April 17, 2002 4:10 PM
Figure 8-15. Adding Columns to a SELECT Statement

Now select A.Company and A.Phone. Once you have selected all the
columns that you want, you can run the query by clicking on the Run
Database Access

130 Chapter 8 OpenESQL Assistant

dbpubb.book Page 130 Wednesday, April 17, 2002 4:10 PM
the Query button, . The OpenESQL Assistant automatically displays
the results of the query:

Figure 8-16. Query Results

8.9 Specifying Search Criteria
You can limit which rows are returned by a SELECT statement by
specifying search criteria (a WHERE clause). The OpenESQL Assistant
provides a special screen which enables you, quickly and easily, to
specify the search criteria used in the WHERE clause.
Database Access

8.9 Specifying Search Criteria 131

dbpubb.book Page 131 Wednesday, April 17, 2002 4:10 PM
To limit the number of rows returned by the SELECT statement, click on
the Search Criteria tab:

Figure 8-17. Search Criteria Tab

To specify search criteria:

1 Select a column name from the Column list box. This list box displays
the column name of every column in the currently selected table(s).

2 Select a conditional operator. Click on the down-pointing arrow to
scroll through the valid conditional operators.

3 Select a Target Type. The target type must be a host variable, a
literal, a special register or a column name.

4 Select, or enter, a Target Value. If you have selected column name as
the target type, a list of all the valid column names generated by
the OpenESQL Assistant is displayed in the target value list box. If
you have selected host variable as the target type, a list of all the
valid host variables generated by the OpenESQL Assistant is
displayed in the target value list box. If you have selected either
literal or special register, the Edit button to the right of the target
value list box is enabled. This means that you can either enter a
Database Access

132 Chapter 8 OpenESQL Assistant

dbpubb.book Page 132 Wednesday, April 17, 2002 4:10 PM
value directly into the target value list box or you can click on the
Edit button to display the Literal Value Editor.

Once you are happy with what you have selected, click on the right-
pointing arrow (>). This moves your search criteria across into the right-
hand pane and, at the same time, updates the COBOL code in the query
window.

For example, you can limit the customer IDs returned by the SELECT
statement created above as follows:

1 Select A.City in the Column list box.

2 Select = as the conditional operator.

3 Select Literal as the target type.

4 The Edit button to the right of the target value list box is now
enabled. Click on it to display the Literal Value Editor dialog box:

Figure 8-18. Literal Value Editor

5 Enter London as the target value. Notice that the OpenESQL
Assistant automatically adds the correct delimiters (in this case
single quotation marks). Click on the OK button.

6 Now click on the right-pointing arrow to move your search criterion
across into the right-hand pane.
Database Access

8.9 Specifying Search Criteria 133

dbpubb.book Page 133 Wednesday, April 17, 2002 4:10 PM
Figure 8-19. Specifying Search Criteria

Now when you run this query again (click on the Run the Query button,
), only the customer IDs of those customers with an entry of London

in the City columm are displayed:

Figure 8-20. Limiting the Customer IDs by Specifying Search Criteria
Database Access

134 Chapter 8 OpenESQL Assistant

dbpubb.book Page 134 Wednesday, April 17, 2002 4:10 PM
Once you have specified the first search criterion and moved it to the
right-hand pane, the second and subsequent criteria must follow a
logical AND or logical OR which you select by checking the appropriate
radio button.

You can select a search criterion displayed in the right-hand pane and
click on the left-pointing arrow (<). This removes the search criterion
from the right-hand pane and places it in the appropriate boxes in the
left-hand pane such that you can edit it. Moving search criteria from the
right to the left-hand pane also removes the associated COBOL code
from the automatically generated query.

8.10 Specifying Order Data is Retrieved
You can order the rows that are returned by a SELECT statement by
specifying which columns to sort (an ORDER BY clause). The OpenESQL
Assistant provides a dialog box that enables you to quickly and easily
select which columns to order on in the ORDER BY clause.

To order data returned by the SELECT statement, click the Sort tab:

Figure 8-21. Sort Tab
Database Access

8.10 Specifying Order Data is Retrieved 135

dbpubb.book Page 135 Wednesday, April 17, 2002 4:10 PM
To specify which columns are to be in an ORDER BY clause:

1 Select a column name from the Column in SELECT list box. This list
box displays the column name of every column that currently has
been selected for the query.

2 Select a sort sequence for the column selected by clicking on either
the Asc (ascending) or Desc (descending) radio buttonl operators.

3 Check Use integers for column names if you want the query to be
generated using a number to represent the column name. The
column names will still be displayed in the Columns in ORDER BY
field, but the integer value of the column will be generated for the
query.
Database Access

136 Chapter 8 OpenESQL Assistant

dbpubb.book Page 136 Wednesday, April 17, 2002 4:10 PM
Database Access

137

dbpubb.book Page 137 Wednesday, April 17, 2002 4:10 PM
Part 3: DB2
This part contains the following chapters:

• Chapter 9, “DB2”

• Chapter 10, “SQL Option for DB2”

• Chapter 11, “Stored Procedures”
Database Access

138 Part 3: DB2

dbpubb.book Page 138 Wednesday, April 17, 2002 4:10 PM
Database Access

139

dbpubb.book Page 139 Wednesday, April 17, 2002 4:10 PM
9 DB2

This chapter describes how you can access a DB2 database from a
COBOL program which contains embedded SQL statements and has
been compiled and linked using Net Express.

The DB2 External Compiler Module (ECM) is an integrated preprocessor
provided with Net Express and designed to work more closely with the
Micro Focus COBOL Compiler. The DB2 ECM converts embedded SQL
statements into the appropriate calls to DB2 database services.

9.1 Data Types
In addition to the data types described in the chapter Data Types as
being supported, DB2 also supports the following data types:

9.1.1 Decimal
The DECIMAL data type describes a packed-decimal item, with or
without a decimal point. In COBOL, such items can be declared either
as COMP-3 or as PACKED-DECIMAL.
Database Access

140 Chapter 9 DB2

dbpubb.book Page 140 Wednesday, April 17, 2002 4:10 PM
9.1.2 Additional Data Types

All additional data types must be declared using SQL syntax of the form:

>>--level_number--name-+------------+-SQL-+-----------+-->
 | | | |
 +-USAGE-+----+ +-TYPE-+----+
 | | | |
 +-IS-+ +-IS-+

 >--sql_type--+----------+--><
 | |
 +-(-size-)-+

where

VALUE clauses are not permitted on the new SQL data types.

Depending on the sql_type specified, the actual data created may be an
elementary or group item. The names of elements in the group item are
generated automatically.

The table below shows the structure of the data items created using
SQL syntax by showing the equivalent native COBOL definition. Note
that although the same data is created in each case, the items must be
declared using the SQL syntax in order to be recognised as acceptable
host variables by the DB2 ECM. (This is because the COBOL definitions
are ambiguous: various of the new SQL types, and existing group items
which are expanded to individual host variables, are indistinguishable).
All previously existing data types continue to be declared using normal

level_number is within the range 1 to 48

sql_type is one of the new SQL data types BLOB, CLOB,
DBCLOB, BLOB-FILE, CLOB-FILE, DBCLOB-FILE,
BLOB-LOCATOR, CLOB-LOCATOR, DBCLOB-
LOCATOR or TIMESTAMP. TIMESTAMPs are not new
to DB2 V2 and are provided as a convenience by
the DB2 ECM.

size may only be specified for BLOBs, CLOBs and
DBCLOBs, and is mandatory. It may be qualified
with K (Kilobytes), M (Megabytes) or G (Gigabytes).
Database Access

9.2 Compound SQL 141

dbpubb.book Page 141 Wednesday, April 17, 2002 4:10 PM
COBOL syntax. The only exception to this rule is TIMESTAMP, which may
be declared using either form.

9.2 Compound SQL
Compound SQL is supported, including the extended form now
available in DB2 V2. Note that incomplete Compound SQL statements
are detected by the DB2 ECM and cause an error to be produced.
However, DB2 may not always recover from this condition and valid SQL
statements later in the program source may generate additional errors.

SQL syntax Equivalent COBOL syntax

01 MY-BLOB SQL BLOB(125M). 01 MY-BLOB.
 49 MY-BLOB-LENGTH PIC
S9(9) COMP-5.
 49 MY-BLOB-DATA PIC
X(131072000).

03 A SQL CLOB(3K). 03 A.
 49 A-LENGTH PIC S9(9)
COMP-5.
 49 A-DATA PIC X(3072).

03 HV SQL DBCLOB(125). 03 HV.
 49 HV-LENGTH PIC S9(9)
COMP-5.
 49 HV-DATA PIC G(125).

01 B SQL BLOB-LOCATOR. 01 B PIC S9(9) COMP-5.

01 C SQL CLOB-FILE. 01 C.
 49 C-NAME-LENGTH PIC
S9(9) COMP-5.
 49 C-DATA-LENGTH PIC
S9(9) COMP-5.
 49 C-FILE-OPTIONS PIC
S9(9) COMP-5.
 49 C-NAME PIC
X(255).

01 TS SQL TIMESTAMP. 01 TS PIC X(29).
Database Access

142 Chapter 9 DB2

dbpubb.book Page 142 Wednesday, April 17, 2002 4:10 PM
9.3 User Defined Functions
A program containing a reference to a User Defined Function (UDF)
causes a separate module to be invoked; it contains user-supplied code
which returns an appropriate value or values. The UDF code itself does
not contain any SQL.

Running a program containing embedded SQL statements causes DB2
to be invoked and this in turn may invoke the UDF module. The
declaration of the UDF should specify the language this module is
written in. DB2 currently allows this to be C only, although on some
platforms it is possible to write the module in COBOL. The following
section demonstrates by use of example how this may be achieved.
More complete descriptions of User Defined Functions and parameter
descriptions are provided in the DB2 documentation.

User Defined Functions written in COBOL are not currently supported
on UNIX.

Note: In a client/server configuration, the UDF module is invoked on the
server and these restrictions apply to the server only - any client can
access UDFs if the server is suitable.

The entry points in the UDF should be defined using C calling
conventions. The following sample code segments show the use and
definition of a simple UDF to calculate an exponent:

Program 1 declares the function to DB2. This program must be compiled
and executed before program 2 can be compiled.

exec sql
 create function mfexp(integer, integer)
 returns integer
 fenced
 external name ’db2v2fun!mfexp’
 not variant
 no sql
 parameter style db2sql
 language cobol
 no external action
end-exec
Database Access

9.3 User Defined Functions 143

dbpubb.book Page 143 Wednesday, April 17, 2002 4:10 PM
Note the LANGUAGE COBOL clause. This is provided by Micro Focus
COBOL as an extension to the DB2 syntax. It is equivalent to LANGUAGE
C and, regardless of which is used, the called module should conform to
the C calling convention. The EXTERNAL NAME clause specifies, in this
case, that the called module is called db2v2fun (.dll or .dlw dependent
on platform) and the entry point within this is mfexp.

Program 2 uses the UDF:

 move 2 to hv-integer
 move 3 to hv-integer-2
 exec sql
 values (mfexp(:hv-integer, :hv-integer-2))
 into :hv-integer-3
 end-exec

Program 3 is a pure COBOL program containing the UDF itself.

$set case
 special-names.
 call-convention 0 is cc.
 linkage section.
 01 a pic s9(9) comp-5.
 01 b pic s9(9) comp-5.
 01 c pic s9(9) comp-5.
 01 an pic s9(4) comp-5.
 01 bn pic s9(4) comp-5.
 01 cn pic s9(4) comp-5.
 01 udf-sqlstate pic x(6).
 01 udf-fname pic x(28).
 01 udf-fspecname pic x(19).
 01 udf-msgtext pic x(71).
 procedure division cc.
 goback
 .
 entry "mfexp" cc
 using a b c an bn cn
 udf-sqlstate
 udf-fname
 udf-fspecname
 udf-msgtext.
 if an not = 0 or bn not = 0
 move -1 to cn
 else
 compute c = a ** b
 move 0 to cn
 end-if
 goback
 .
Database Access

144 Chapter 9 DB2

dbpubb.book Page 144 Wednesday, April 17, 2002 4:10 PM
This module should be compiled to create a dynamically loadable
executable (dll) and placed somewhere where the operating system can
locate it (on the PATH).

Note: Entry-point names are case sensitive on all systems. Care should be
exercised in matching case names, and the CASE Compiler directive
should be specified (as per the $SET statement in the example program
above).

9.4 Extensions to Embedded SQL Support
This section discusses Micro Focus extensions to the embedded SQL
support.

9.4.1 The INCLUDE Statement
Statements of the form:

exec sql
 include filename
end-exec

are permitted and are processed in exactly the same way as the
statement:

copy filename

The included file can contain any COBOL statements that a copyfile can,
including further EXEC SQL statements.

UNIX On AIX, the filename is converted to lower case for the special case of
sqlca or sqlda, no matter how it is specified.
Database Access

9.4 Extensions to Embedded SQL Support 145

dbpubb.book Page 145 Wednesday, April 17, 2002 4:10 PM
9.4.2 The DECLARE TABLE Statement

Statements of the form:

exec sql
 DECLARE table-name TABLE
 ...
end-exec

are permitted and are treated as comments.

9.4.3 Integer Host Variables
The embedded SQL support requires the format of integers to be
USAGE COMP-5. For your convenience, the DB2 ECM also allows host
variables to use USAGE COMP, COMP-4 and BINARY and generates
additional code to convert the format. The most efficient code is
generated when COMP-5 is used.

9.4.4 Qualified Host Variables

Host variables can be qualified using DB2 for MVS compatible syntax.

For example, suppose you have defined some host variables as follows:

01 block-1.
 03 hostvar pic s9(4) comp-5.
01 block-2.
 03 hostvar pic s9(4) comp-5.

You can qualify which instance of hostvar to use with syntax of the
form:

exec sql
 fetch s2 into :block-1.hostvar
end-exec
Database Access

146 Chapter 9 DB2

dbpubb.book Page 146 Wednesday, April 17, 2002 4:10 PM
9.4.5 Host Variable Groups and
Indicator Arrays
When host variables are declared in a group item, an SQL statement
which needs to refer to each of these variables in turn can be
abbreviated by referring instead to the group-name. If you need to
associate indicator variables with these host variables, define a table of
indicator variables with as many instances as there are host variables,
and reference this table (the item with the OCCURS clause, not a group
item containing it).

For example, suppose you have defined some host variables as follows:

01 host-structure.
 03 sumh pic s9(9) comp-5.
 03 avgh pic s9(9) comp-5.
 03 minh pic s9(9) comp-5.
 03 maxh pic s9(9) comp-5.
 03 varchar.
 49 varchar-l pic s9(4) comp.
 49 varchar-d pic x(1000).
 01 indicator-table.
 03 indic pic s9(4) comp-5 occurs 4.
 01 redefines indicator-table.
 03 indic1 pic s9(4) comp-5.
 03 indic2 pic s9(4) comp-5.
 03 indic3 pic s9(4) comp-5.
 03 indic4 pic s9(4) comp-5.

In such an example, the procedural statement:

exec sql fetch s3 into
 :host-structure:indic
end-exec

is equivalent to:

exec sql fetch s3 into
 :sumh:indic1, :avgh:indic2, :minh:indic3,
 :maxh:indic4, :varchar
end-exec

The four declared indicator variables are allocated to the first four host
variables. If five or more had been declared, all five host variables
would have an associated indicator variable.
Database Access

9.4 Extensions to Embedded SQL Support 147

dbpubb.book Page 147 Wednesday, April 17, 2002 4:10 PM
The table of indicator variables is redefined only to show the equivalent
SQL statement (subscripting is not allowed in SQL statements). The
redefinition can be omitted and the COBOL program can refer to the
indicator variables using subscripting, if desired.

9.4.6 The NOT Operator
DB2 allows the operators ¬=, ¬> and ¬<. These are mapped to <>, <=
and >=. The character representation of the NOT operator varies from
system to system, so you can define it using the NOT option of the DB2
Compiler directive.

9.4.7 The Concat Operator (|)
In some countries the symbol used for the concat operator is not the
ASCII character (|). The DB2 ECM enables you to specify a different ASCII
character for the concat operator via the CONCAT option of the DB2
Compiler directive.

9.4.8 SQL Communications Area
After any SQL statement has executed, important information is
returned to the program in an area called the SQL Communications
Area (SQLCA). The SQL Communications Area is usually included in your
program using the statement:

exec sql include sqlca end-exec

This causes the source file sqlca.cpy (on Windows) or sqlca.cbl (on UNIX)
to be included in your source code. This source file, supplied with the
DB2 ECM, contains a COBOL definition of the SQLCA.

If you do not include this statement, the DB2 ECM automatically
allocates an area, but this area is not addressable in your program.
However, if you declare either or both of SQLCODE and SQLSTATE, the
DB2 ECM generates code to copy the corresponding fields in the SQLCA
area to the user-defined fields after each EXEC SQL statement. We
recommend you define the entire SQLCA (this facility is provided for
ANSI compatibility).
Database Access

148 Chapter 9 DB2

dbpubb.book Page 148 Wednesday, April 17, 2002 4:10 PM
After any non-zero condition in SQLCODE, the DB2 ECM updates the
contents of the MFSQLMESSAGETEXT data item with a description of
the exception condition, provided it has been defined. If it is, it must be
declared as a character data item (PIC X(n), where n can be any legal
value; if the message does not fit into the data item it is truncated).

None of SQLCA, SQLCODE, SQLSTATE and MFSQLMESSAGETEXT is
required to be declared as host variables.

9.4.9 Support for Object Oriented
COBOL Syntax
The DB2 ECM has been enhanced to work with Object Oriented COBOL
syntax (OO programs). There are, however, a couple of restrictions that
you should be aware of:

• The INIT option of the DB2 Compiler directive is disabled if it is used
within an OO program. This means that if you want the
functionality of the DB2(INIT=PROT) Compiler directive, you will
need to include a non-OO module and compile it with this directive.

• If you use an EXEC SQL WHENEVER statement within a METHOD,
any additional METHODs coded in the same CLASS that have SQL
statements in them need to have the section that is referenced in
the preceding WHENEVER statement defined. Not doing this results
in a compilation error indicating that the section has not been
defined. You can get around this restriction by defining another
EXEC SQL WHENEVER statement.

9.4.10 Support for Nested COBOL
programs
The DB2 ECM allows you to work with nested COBOL programs.

By default, DB2 interface code is generated for every nested COBOL
program. To avoid generating DB2 interface code for each nested
program, use the DB2 directive IGNORE-NESTED. To use the IGNORE-
Database Access

9.5 DB2 INIT Directive 149

dbpubb.book Page 149 Wednesday, April 17, 2002 4:10 PM
NESTED directive properly, there is one restriction that you should be
aware of:

• You must specify the PROGRAM-ID statement in the program for
which you wish DB2 interface code to be generated. Otherwise, a
compile error occurs.

9.5 DB2 INIT Directive
In previous versions of Micro Focus products, Micro Focus included a
SQLINIT or SQLINI2 module to perform the CONNECT function. These
routines are no longer provided as IBM supports the EXEC SQL
CONNECT statement which provides more options than available with
the SQLINIT modules.

The INIT directive has the additional option of ensuring that the
database connection is correctly closed down even if the application is
abnormally terminated, to avoid possible database corruption. If the
application is abnormally terminated, all changes since the last COMMIT
are rolled back. This database protection can be selected by specifying
the option INIT=PROT on the DB2 Compiler directive.

The INIT=PROT option must only be set once for an application. SQL
programs called by other SQL programs should not have the INIT=PROT
option set. Alternatively, you can specify the INIT=PROT option for the
first SQL program to be executed in a run unit. Compiling more than
one module in an application with the INIT=PROT option may cause
your program to terminate abnormally.

9.6 Compiling
Compiling your SQL program with the COBOL Compiler is logically
equivalent to two steps: precompiling to change SQL lines into host
language statements, and then compiling the resulting source. These
two steps actually occur in a single process, which is performed by the
COBOL Compiler in conjunction with the DB2 ECM.
Database Access

150 Chapter 9 DB2

dbpubb.book Page 150 Wednesday, April 17, 2002 4:10 PM
Before you can compile a SQL program, you must have been granted
authorization. This is usually done by the DB2 Database Administrator.
You must have one of the following:

• sysadm or dbadm authority

• BINDADD privilege if a package does not exist, and one of the
following:

• IMPLICIT_SCHEMA authority on database if the schema name of
the package does not exist

• CREATIN privilege on the schema if the schema name of the
package exists

• ALTERIN privilege on the schema if the package exists

• BIND privilege on the package if it exists

The user also needs all table privileges required to compile any static
SQL statement in the application. Note that privileges granted to
groups are not used for authorization checking of static SQL
statements. If a program fails to compile because of lack of authority on
an SQL object, please contact your company’s DB2 Database
Administrator.

You use the DB2 Compiler directive to give the DB2 ECM information
such as the fact that you are using SQL, and which database you are
using. See the section DB2 Compiler Directive below.

Normally, programs containing embedded SQL are compiled in the
same way as non-SQL programs, except that the DB2 Compiler directive
is required. Special action is required only when creating an executable
(binary) file when additional modules need to be linked in. Programs
containing SQL code can be animated like any other program. You can
examine host variables inside SQL statements as they are regular COBOL
data items.
Database Access

9.6 Compiling 151

dbpubb.book Page 151 Wednesday, April 17, 2002 4:10 PM
9.6.1 Compiling Programs that use a
Remote DB2 Server
To compile a program that uses a remote DB2 server, you must first
connect to that remote server. The DB2 ECM first attempts to connect to
the database using the default values for the client workstation you
logged on with. If the logon fails, the DB2 ECM will invoke the Micro
Focus SQL Logon dialog in which you can then enter a logon ID and
password for the database you are trying to compile your program
against. The dialog box is shown below.

Figure 9-1. Micro Focus SQL Logon Dialog Box.

There is an option to save your logon ID and password in memory so
that you do not need to be prompted the next time you try to compile a
program using the same database. This information goes away the next
time you re-boot your client machine or if you type the following
command from a Net Express command prompt:

MFDAEMON CLOSE

9.6.1.1 Automated Compiles

Having the graphical logon dialog appear might not be acceptable for
automating compiles from a background process such as a command
file. There is a way to supply the logon information by setting an
environment variable and pointing the variable at a text file that
contains the logon ID and password. To do this, set the environment
Database Access

152 Chapter 9 DB2

dbpubb.book Page 152 Wednesday, April 17, 2002 4:10 PM
variable SQLPASS.TXT to the name of the text file that contains the
logon ID and password. For example:

SET SQLPASS.TXT=D:\BATCH.TXT

Then in the file batch.txt, specify the logon ID and password in the
format id.password. For example:

MyId.Mypassword

If the security system used to validate your logon ID and password is
case sensitive, you need to specify id.password in the correct case in this
text file.

Note: Specifying the logon and password in a text file does raise security
concerns, so care should be used when implementing this facility.

9.6.2 DB2 Compiler Directive
You can specify options for the DB2 Compiler directive using the $SET
statement in your program.

For example:

$SET DB2(INIT=PROT BIND COLLECTION=MYSCHEMA)

Compiler directives have a default value which is used if no other value
is specified. This also applies to all existing DB2 directive options. Many
of the options are passed straight to DB2 at compilation time and the
Compiler default is used when no other value is specified. In these cases,
however, the suitability of, and default values for these options is
dependent on the DB2 configuration, notably whether it is connected
to a DRDA server via DDCS. Because of this, the default Compiler setting
of these options is "not set". This means that no value is passed to DB2
and the default value (if applicable) is determined by DB2 itself. Consult
your IBM DB2 reference documentation for these values.
Database Access

9.6 Compiling 153

dbpubb.book Page 153 Wednesday, April 17, 2002 4:10 PM
The table below lists the DB2 Compiler directive options. The default
value is highlighted and underlined.

Option Description

ACCESS=package
name,ACCESS,
NOACCESS

Specifies the name of the package to be created and stored in the
database. If ACCESS is specified without a parameter, the package
name defaults to the program name (without the .CBL extension).

Synonym is PACKAGE.

ACTION={ADD |
REPLACE }, NOACTION

ACTION indicates whether the package can be added or replaced.
This DRDA precompile/bind option is not supported by DB2.

ADD Indicates that the named package does not
exist, and that a new package is to be created. If
the package already exists, execution stops, and
a diagnostic error message is returned.

REPLACE Indicates that the old package is to be replaced
by a new one with the same location, collection,
and package name.

BIND=bindfile, BIND,
NOBIND

Specifies the name of the bind file to be created. When BIND is
specified without a parameter, the bind file defaults to the
program name with the filename extension replaced by .BND.

Synonym is BINDFILE.

BLOCK={UNAMBIG | ALL
| NO}

Specifies the record blocking mode to be used on package
creation. For information about row blocking, see the IBM DB2
Administration Guide or the Application Programming Guide.

ALL Specifies blocking for read-only cursors or
cursors not specified as FOR UPDATE OF.
Ambiguous cursors are treated as read-only.

NO Specifies no blocking of any cursors. Ambiguous
cursors are treated as updateable.

UNAMBIG Specifies blocking for read-only cursors or
cursors not specified as FOR UPDATE OF.
Ambiguous cursors are treated as updateable.

Synonym is BLOCKING.
Database Access

154 Chapter 9 DB2

dbpubb.book Page 154 Wednesday, April 17, 2002 4:10 PM
CCSIDG=double-ccsid ,
NOCCSIDG

An integer specifying the coded character set identifier (CCSID) to
be used for double byte characters in character column
definitions (without a specific CCSID clause) in CREATE and ALTER
TABLE SQL statements. This DRDA precompile/bind option is not
supported by DB2. The DRDA server will use a system defined
default value if this option is not specified.

CCSIDM=mixed-ccsid ,
NOCCSIDM

An integer specifying the coded character set identifier (CCSID) to
be used for mixed byte characters in character column definitions
(without a specific CCSID clause) in CREATE and ALTER TABLE SQL
statements. This DRDA precompile/bind option is not supported
by DB2. The DRDA server will use a system defined default value if
this option is not specified.

CCSIDS=sbcs-ccsid,
NOCCSIDS

An integer specifying the coded character set identifier (CCSID) to
be used for single byte characters in character column definitions
(without a specific CCSID clause) in CREATE and ALTER TABLE SQL
statements. This DRDA precompile/bind option is not supported
by DB2. The DRDA server will use a system defined default value if
this option is not specified.

CHARSUB={DEFAULT |
BIT | SBCS | MIXED},
NOCHARSUB

Designates the default character sub-type that is to be used for
column definitions in CREATE and ALTER TABLE SQL statements.
This DRDA precompile/bind option is not supported by DB2.

BIT Use the FOR BIT DATA SQL character sub-type in
all new character columns for which an explicit
sub-type is not specified.

DEFAULT Use the target system defined default in all new
character columns for which an explicit sub-type
is not specified.

MIXED Use the FOR MIXED DATA SQL character sub-
type in all new character columns for which an
explicit sub-type is not specified.

SBCS Use the FOR SBCS DATA SQL character sub-type
in all new character columns for which an
explicit sub-type is not specified.

COLLECTION=schema
name, NOCOLLECTION

Specifies a 30-character collection identifier for the package. If
this is not specified, the authorization identifier for the user
processing the package is used.

Option Description
Database Access

9.6 Compiling 155

dbpubb.book Page 155 Wednesday, April 17, 2002 4:10 PM
COMMIT={1 | 2 | 3 | 4} Specifies where implicit COMMIT statements should be
generated.

1 No COMMIT statements implicitly generated

2 COMMIT statements are implicitly generated on STOP
RUN statements and at the end of the program

3 COMMIT statements are implicitly generated on STOP
RUN and EXIT PROGRAM statements and at the end of
the program

4 COMMIT statements are implicitly generated after every
SQL statement

CONCAT=(ascii character
code | 33 }

Specifies the ASCII character code to use for the CONCAT symbol
(|).

CONNECT={1 | 2},
NOCONNECT

Specifies that a CONNECT statement is to be processed as either a
type 1 CONNECT or a type 2 CONNECT.

CTRACE, NOCTRACE Creates a trace file for submission to technical support if
requested. The filename of the file that is created is sqltrace.txt.

DB=database name, DB Specifies the name of the database that the program accesses. If
DB is specified without a parameter, the database specified in the
environment variable DB2DBDFT is used.

DEC={31 | 15} , NODEC Specifies the maximum precision to be used in decimal arithmetic
operations. This DRDA precompile/bind option is not supported
by DB2. The DRDA server will use a system defined default value if
this option is not specified.

Use 15 to specify 15-digit precision is used in decimal arithmetic
operations.

Use 31 to specify 31-digit precision is used in decimal arithmetic
operations.

DECDEL={PERIOD |
COMMA}, NODECDEL

Designates whether a period (.) or a comma (,) will be used as the
decimal point indicator in decimal and floating point literals. This
DRDA precompile/bind option is not supported by DB2. The DRDA
server will use a system defined default value if this option is not
specified.

COMMA Use a comma (,) as the decimal point indicator.

PERIOD Use a period (.) as the decimal point indicator.

Option Description
Database Access

156 Chapter 9 DB2

dbpubb.book Page 156 Wednesday, April 17, 2002 4:10 PM
DEFERRED_PREPARE={N
O | YES | ALL},
NODEFERRED_PREPARE

Provides a performance enhancement when accessing DB2
common server databases or DRDA databases. This option
combines the SQL PREPARE statement flow with the associated
OPEN, DESCRIBE, or EXECUTE statement flow to minimize inter-
process or network flow.

NO The PREPARE statement will be executed at the time it is
issued.

YES Execution of the PREPARE statement will be deferred
until the corresponding OPEN, DESCRIBE, or EXECUTE
statement is issued. The PREPARE statement will not be
deferred if it uses the INTO clause, which requires an
SQLDA to be returned immediately. However, if the
PREPARE INTO statement is issued for a cursor that does
not use any parameter markers, the processing will be
optimized by pre-OPENing the cursor when the PREPARE
is executed.

ALL Same as YES, except that a PREPARE INTO statement
which contains parameter markers is deferred. If a
PREPARE INTO statement does not contain parameter
markers, pre-OPENing of the cursor will still be
performed. If the PREPARE statement uses the INTO
clause to return an SQLDA, the application must not
reference the content of this SQLDA until the OPEN,
DESCRIBE, or EXECUTE statement is issued and returned.

DEGREE={1 | degree-of-
parallelism | ANY},
NODEGREE

Specifies whether or not the query is to be executed using I/O
parallel processing.

1 Prohibits parallel I/O operations

degree-of-I/O-
parallelism

Specifies the degree of parallel I/O operations, a
value between 2 and 32767 (inclusive)

ANY Allows parallel I/O operations.

Option Description
Database Access

9.6 Compiling 157

dbpubb.book Page 157 Wednesday, April 17, 2002 4:10 PM
DISCONNECT={EXPLICIT |
CONDITIONAL |
AUTOMATIC},
NODISCONNECT

AUTOMATIC Specifies that all database connections are to be
disconnected at commit.

CONDITIONAL Specifies that the database connections that
have been marked RELEASE or have no open
WITH HOLD cursors are to be disconnected at
commit.

EXPLICIT Specifies that only database connections that
have been explicitly marked for release by the
RELEASE statement are to be disconnected at
commit.

DYNAMICRULES={BIND |
RUN | DEFINE | INVOKE},
NODYNAMICRULES

Specifies which authorization identifier to use when dynamic SQL
in a package is executed.

BIND Indicates that the authorization identifier used
for the execution of dynamic SQL is the package
owner.

RUN Indicates that the authorization identifier used
for the execution of dynamic SQL is the authid
of the person executing the package.

DEFINE Indicates that the authorization identifier used
for execution of dynamic SQL is the definer of
the UDF or stored procedure. This option is not
supported by DB2.

INVOKE Indicates that the authorization identifier used
for the execution of dynamic SQL is the invoker
of the UDF or stored procedure. This option is
not supported by DB2.

Option Description
Database Access

158 Chapter 9 DB2

dbpubb.book Page 158 Wednesday, April 17, 2002 4:10 PM
EXPLAIN={NO | YES |
ALL}, NOEXPLAIN

Stores information in the Explain tables about the access plans
chosen for each SQL statement in the package. DRDA does not
support the ALL value for this option.

NO Explain information will not be captured.

YES Explain tables will be populated with information about
the chosen access plan.

ALL Explain information for each eligible static SQL statement
will be placed in the Explain tables. In addition, Explain
information will be gathered for eligible dynamic SQL
statements at run time, even if the CURRENT EXPLAIN
SNAPSHOT register is set to NO. For more information
about special registers, see the IBM DB2 SQL Reference.

EXPLSNAP={NO | YES |
ALL}, NOEXPLSNAP

Stores Explain Snapshot information in the Explain tables. This
DB2 precompile/bind option is not supported by DRDA.

NO An Explain Snapshot will not be captured.

YES An Explain Snapshot for each eligible static SQL statement
will be placed in the Explain tables.

ALL An Explain Snapshot for each eligible static SQL statement
will be placed in the Explain tables. In addition, Explain
Snapshot information will be gathered for eligible
dynamic SQL statements at run time, even if the CURRENT
EXPLAIN SNAPSHOT register is set to NO. For more
information about special registers, see the IBM DB2 SQL
Reference.

FEDERATED={NO|YES} Specifies whether a static SQL statement references a nickname or
a federated view. SQL errors are returned if the package does not
refer to a federated view or nickname and this option is specified,
or if the package does refer to a federated view or nickname and
the option is not specified.

NO The program will connect to a DB2 Universal Database.
This is the default value.

YES The program will access a DB2 federated system.

Option Description
Database Access

9.6 Compiling 159

dbpubb.book Page 159 Wednesday, April 17, 2002 4:10 PM
FORMAT={DEF | USA |
EUR | ISO | JIS | LOC}

Specifies the date and time format when date/time fields are
assigned to string representations in host variables. DEF is a date
and time format associated with the country code of the
database.

EUR is the IBM standard for European date and time format.

ISO is the date and time format of the International Standards
Organization.

JIS is the date and time format of the Japanese Industrial
Standard.

LOC is the date and time format in local form associated with
the country code of the database.

USA is the IBM standard for U.S. date and time format.

Synonym is DATETIME.

FUNCPATH=schema-
name , NOFUNCPATH

Specifies the function path to be used in resolving user-defined
distinct types and functions in static SQL. If this option is not
specified, the default function path is:

"SYSIBM","SYS FUN",USER

where USER is the value of the USER special register. This DB2
precompile/bind option is not supported by DRDA.

schema-name is a short SQL identifier, either ordinary or
delimited, which identifies a schema that exists
at the application server. No validation that the
schema exists is made at precompile or at bind
time. The same schema cannot appear more
than once in the function path. The number of
schemas that can be specified is limited by the
length of the resulting function path, which
cannot exceed 254 bytes. The schema SYSIBM
does not need to be explicitly specified; it is
implicitly assumed to be the first schema if it is
not included in the function path. For more
information, see the IBM DB2 SQL Reference.

GENERIC=string Provides a means of passing new bind options to a target DRDA
database. Each option must be separated by one or more spaces
and enclosed in double quotes. For example:
DB2(GENERIC="keepdynamic yes")

Option Description
Database Access

160 Chapter 9 DB2

dbpubb.book Page 160 Wednesday, April 17, 2002 4:10 PM
IGNORE-
NESTED=program-id,
IGNORE-NESTED,
NOIGNORE-NESTED

In nested programs, specifies the program-id at which to start
generating DB2 interface code. Any nested program encountered
before the program-id is ignored and no DB2 interface code is
generated. You must specify a program-id in the COBOL source
code; otherwise, a compile error results. If you specify IGNORE-
NESTED without a parameter, the program-id defaults to the
program name with the filename extension replaced by .CBL.

INIT={PROT }, NOINIT Makes the program initialize SQL. This option is disabled if it is
used within an OO program.

PROT For SQL programs that need to protect the database on
STOP RUN but do not want to initialize.

INSERT={DEF | BUF},
NOINSERT

Allows a program being precompiled or bound from a DB2 V2.1
client to a DATABASE 2 Parallel Edition server to request that data
inserts be buffered to increase performance.

BUF Specifies that inserts from an application should be
buffered.

DEF Specifies that inserts from an application should not be
buffered.

ISOLATION={CS | RR | UR
| RS | NC}

Determines how far a program bound to this package can be
isolated from the effect of other executing programs. For more
information about isolation levels, see the IBM DB2 SQL
Reference.

CS specifies Cursor Stability as the isolation level.

NC (No Commit) specifies that commitment control is not to
be used. This isolation level is not supported by DB2.

RR specifies Repeatable Read as the isolation level.

RS specifies Read Stability as the isolation level. Read
Stability ensures that the execution of SQL statements in
the package is isolated from other application processes
for rows read and changed by the application.

UR specifies Uncommitted Read as the isolation level.

Option Description
Database Access

9.6 Compiling 161

dbpubb.book Page 161 Wednesday, April 17, 2002 4:10 PM
LANGLEVEL={SAA1 |
NONE | MIA|SQL92E}

For more information about this option, see the IBM DB2
Application Programming Guide.

MIA The FOR UPDATE clause is optional for
positioned updates. C null-terminated strings
are padded with blank characters, and always
include the null-terminating character. This
option is not supported by DB2 CONNECT.

SAA1 Requires the FOR UPDATE clause for all columns
that are updated in a positioned update. C null-
terminated strings are not padded with blank
characters, and do not include a null-
terminating character if truncation occurs.

NONE Synonym for SAA1.

SQL92E Similar to MIA. See the manual for the
differences.

Synonym is STDLVL.

LEVEL=consistency-
token, NOLEVEL

Defines the level of a module using the consistency token. The
consistency token is any alphanumeric value up to 8 characters in
length. The RDB package consistency token verifies that the
requester’s application and the relational database package are
synchronized. This DRDA precompile option is not supported by
DB2.

Note: This option is not recommended for general use.

MSGAREA={data-item-
name |
MFSQLMESSAGETEXT
},NOMSGAREA)

Specifies the name of an alphanumeric data item. If this item is
present in the program source it will automatically contain a
description of a DB2 error condition (when SQLCODE is non zero).

NOT={ascii character
code | 170 }

Specifies the ASCII character code to use for NOT character (¬).

OWNER=authorization-
id, NOOWNER

Designates a 30-character authorization identifier for the
package owner. The owner must have the privileges required to
execute the SQL statements in the package. The default is the
primary authorization ID of the precompile/bind process if this
option has not been explicitly specified.

Synonym is SCHEMA.

Option Description
Database Access

162 Chapter 9 DB2

dbpubb.book Page 162 Wednesday, April 17, 2002 4:10 PM
QUALFIX, NOQUALFIX Causes the DB2 ECM to append three characters to the name of
the host variables when declaring them to DB2. This ensures
problems caused by qualification (where two or more host
variables have identical names when not qualified) are avoided
but has the side-effect that

(1) host variable names have a maximum length of 27
characters unless you are using DB2 Universal Database
5.0 or later.

(2) DB2 error messages will sometimes display the names of
host variables with the three additional characters
appended to them.

QUALIFIER=qualifier-
name, NOQUALIFIER

Provides a 30-character implicit qualifier for unqualified table
names, views, indexes, and aliases contained in the package. The
default is the owner’s authorization ID.

QUERYOPT=
optimization-level,
NOQUERYOPT

Indicates the desired level of optimization for all static SQL
statements contained in the package. The default value is 5. For
the complete range of optimization levels available, see the SET
CURRENT QUERY OPTIMIZATION statement in the SQL Reference.
This DB2 precompile/bind option is not supported by DRDA.

RELEASE={COMMIT |
DEALLOCATE},
NORELEASE

Indicates whether resources are released at each COMMIT point,
or when the application terminates. This DRDA precompile/bind
option is not supported by DB2.

COMMIT Release resources at each COMMIT point. Used
for dynamic SQL statements.

DEALLOCATE Release resources only when the application
terminates.

REPLVER=version-id,
NOREPLVER

Replaces a specific version of a package. The version identifier
specifies which version of the package is to be replaced.
Maximum length is 254 characters.

Option Description
Database Access

9.6 Compiling 163

dbpubb.book Page 163 Wednesday, April 17, 2002 4:10 PM
RETAIN={YES | NO} ,
NORETAIN

RETAIN indicates whether EXECUTE authorities are to be
preserved when a package is replaced. If ownership of the
package changes, the new owner grants the BIND and EXECUTE
authority to the previous package owner.

NO does not preserve EXECUTE authorities when a package is
replaced.

YES preserves EXECUTE authorities when a package is
replaced.

SQLERROR={NOPACKAG
E | CHECK | CONTINUE},
NOSQLERROR

Indicates whether to create a package or a bind file if an error is
encountered.

CHECK Specifies that the target system performs all
syntax and semantic checks on the SQL
statements being bound. A package will not be
created as part of this process. If, while creating
a package, an existing package with the same
name and version is encountered, the existing
package is neither dropped nor replaced if
action replace was specified.

CONTINUE A package or a bind file is created even when
SQL errors are encountered. This option is not
supported by DB2.

NOPACKAGE A package or a bind file is not created if an
error is encountered.

If syntax is used together with the package option, package is
ignored.

Synonym is ERROR.

Option Description
Database Access

164 Chapter 9 DB2

dbpubb.book Page 164 Wednesday, April 17, 2002 4:10 PM
SQLFLAG={MVSDB2V23 |
MVSDB2V31 |
MVSDB2V41|SQL92E}-
SYNTAX, NOSQLFLAG

Identifies and reports on deviations from the SQL language
syntax specified.

A bind file or a package is created only if the bindfile or the
package option is specified in addition to the sqlflag option.

Local syntax checking is performed only if one of the following
options is specified: bindfile, package, sqlerror check, syntax.

If sqlflag is not specified, the flagger function is not invoked, and
the bind file or the package is not affected.

MVSDB2V23-
SYNTAX

The SQL statements will be checked against
MVS DB2 Version 2.3 SQL language syntax. Any
deviation from the syntax is reported in the
precompiler listing.

MVSDB2V31-
SYNTAX

The SQL statements will be checked against
MVS DB2 Version 3.1 SQL language syntax. Any
deviation from the syntax is reported in the
precompiler listing.

MVSDB2V41-
SYNTAX

The SQL statements will be checked against
MVS DB2 Version 4.1 SQL language syntax. Any
deviation from the syntax is reported in the
precompiler listing.

SQL92E-
SYNTAX

The SQL statements will be checked against
ANSI or ISO SQL92 SQL language syntax. Any
deviation from the syntax is reported in the
compiler listing.

Synonym is FLAG.

SQLRULES={DB2 | STD},
NOSQLRULES

Specifies whether type 2 CONNECTs are to be processed according
to the DB2 rules or the Standard (STD) rules based on ISO/ANS
SQL92.

DB2 Allow the use of the SQL CONNECT statement to switch
the current connection to another established (dormant)
connection.

STD Allow the use of the SQL CONNECT statement to establish
a new connection only. The SQL SET CONNECTION
statement must be used to switch to a dormant
connection.

Synonym is RULES.

Option Description
Database Access

9.6 Compiling 165

dbpubb.book Page 165 Wednesday, April 17, 2002 4:10 PM
SQLWARN={YES | NO},
NOSQLWARN

Indicates whether warnings will be returned from the
compilation of dynamic SQL statements (via PREPARE or EXECUTE
IMMEDIATE), or from describe processing (via PREPARE...INTO or
DESCRIBE). This DB2 precompile/bind option is not supported by
DRDA.

NO Warnings will not be returned from the SQL compiler.

YES Warnings will be returned from the SQL compiler.

Note: SQLCODE +238 is an exception. It is returned regardless of
the sqlwarn option value.

Synonym is WARN.

STRDEL={APOSTROPHE |
QUOTE}, NOSTRDEL

Designates whether an apostrophe (’) or double quotation marks
(") will be used as the string delimiter within SQL statements. This
DRDA precompile/bind option is not supported by DB2. The DRDA
server will use a system defined default value if this option is not
specified.

Specify APOSTROPHE to use an apostrophe (’) as the string
delimiter.

Specify QUOTE to use double quotation marks (") as the string
delimiter.

SYNCPOINT={ONEPHASE
| TWOPHASE | NONE},
NOSYNCPOINT

Specifies how commits or rollbacks are to be coordinated among
multiple database connections.

NONE Specifies that no Transaction Manager (TM) is to
be used to perform a two-phase commit, and
does not enforce single updater, multiple
reader. A COMMIT is sent to each participating
database. The application is responsible for
recovery if any of the commits fail.

ONEPHASE Specifies that no TM is to be used to perform a
two-phase commit. A one-phase commit is to be
used to commit the work done by each
database in multiple database transactions.

TWOPHASE Specifies that the TM is required to coordinate
two-phase commits among those databases that
support this protocol.

Option Description
Database Access

166 Chapter 9 DB2

dbpubb.book Page 166 Wednesday, April 17, 2002 4:10 PM
9.7 Error Codes
Error conditions are returned at compilation time as a number and
explanation. Further details of these messages are given in the
documentation supplied with your database system. Messages
referencing host variables show slightly modified names: hyphens are

SYNTAX A synonym for directive SQLERROR=CHECK.

TEXT=label, NOTEXT The description of a package. Maximum length is 255 characters.
The default value is blanks. This DRDA precompile/bind option is
not supported by DB2.

TRANSFORM-
GROUP=identifier.
NOTRANSFORM-GROUP

Specifies the transform group name to be used for static SQL. This
is a SQL identifier up to 18 characters in length. This DRDA
precompile/bind option is not supported by DB2.

VALIDATE={RUN | BIND},
NOVALIDATE

Determines when the database manager checks for authorization
errors and object not found errors. The package owner
authorization ID is used for validity checking.

BIND Validation is performed at precompile/bind time. If all
objects do not exist, or all authority is not held, error
messages are produced. If sqlerror continue is specified, a
package/bind file is produced despite the error message,
but the statements in error are not executable.

RUN Validation is attempted at bind time. If all objects exist,
and all authority is held, no further checking is performed
at execution time.

If all objects do not exist, or all authority is not held at
precompile/bind time, warning messages are produced,
and the package is successfully bound, regardless of the
sqlerror continue option setting. However, authority
checking and existence checking for SQL statements that
failed these checks during the precompile/bind process
may be redone at execution time.

VERSION=version-id,
NOVERSION

Defines the version identifier for a package. The version identifier
is any alphanumeric value, $, #, @, _, -, or ., up to 254 characters in
length. This DRDA precompile option is not supported by DB2.

Option Description
Database Access

9.8 Creating Debug Files 167

dbpubb.book Page 167 Wednesday, April 17, 2002 4:10 PM
shown as underscores (_), and there are up to three additional
characters at the end of the name which can be ignored. These changes
are side effects of modifications made by the DB2 ECM to the SQL code.

Error conditions at run time are indicated by non-zero values in
SQLCODE. Explanatory text is placed in the MFSQLMESSAGETEXT data
item if defined; see the section SQL Communications Area for further
details about this data item.

For example:

801-S
** External Compiler Module message
** SQ0100 SQL1032N No start database manager command was
issued.
** SQLSTATE=57019

9.8 Creating Debug Files
If an error occurs when compiling a program that requires technical
support, your support representative might ask you to provide
additional debug files to help in determining the cause of the problem.
The support representative might ask you to provide one or more of
three debug files, to recreate the problem, in addition to source and
data files. You might want to specifiy some of these directives to help in
your own debugging efforts. The directives are:

Directive File created Information within file

CHKECM(CTRACE) ecmtrace.txt This file contains pseudo
COBOL code that shows the
code generated to replace the
EXEC SQL statements. This file
is equivalent to output out of
the IBM DB2 COBOL
precompiler.
Database Access

168 Chapter 9 DB2

dbpubb.book Page 168 Wednesday, April 17, 2002 4:10 PM
9.9 Linking
To link an application:

1 Open the Net Express project and set the Type of Build to Generic
Release Build.

2 Right click on the .exe or .dll file.

3 Select Build Settings ... and then click on the Link tab.

4 Set the Category to Advanced.

5 In the Link with these LIB’s edit box enter:

db2api.lib

CHKECM(TRACE) ecmtrace.txt This file contains detailed
information as to what
information is passed between
the DB2 ECM and the Compiler.
If an error occurs that
generates invalid syntax, this
file will be needed to help
isolate where the problem
occurred.

DB2(CTRACE) sqltrace.txt This file contains a detailed list
of information passed to IBM
Precompiler Services, and the
results. This file is very useful if
an error might involve a bug in
the DB2 system software as
well as the DB2 ECM.

Directive File created Information within file
Database Access

9.10 Binding 169

dbpubb.book Page 169 Wednesday, April 17, 2002 4:10 PM
9.10 Binding
If you use the NOACCESS option of the DB2 Compiler directive or intend
to execute the application on a machine other than the one it was
compiled on, bind the application to a particular database before
execution. In this case, you should use the BIND option to create a bind
file that can then be used to bind the program to the database using
the DB2 BIND command. For details on doing this, see the
documentation supplied with your SQL system.

9.11 Publishing your DB2 Applications on
UNIX

If you want to publish your DB2 application on UNIX you must:

1 Configure your login environment to set the COBOPT environment
variable to the name of the database parameter file:

COBOPT=/usr/lpp/db2_vv_rr_mmmm/lib/db2mkrts.args
export COBOPT

where the values of vv, rr and mmmm represent the version, release
and modification level of the DB2/6000 system installed on your
machine.

2 Edit the file named in the COBOPT environment variable by
removing the -vdd option from the initial line of the file.

3 From the directory $COBDIR/src/sql enter:

mkrts sqlinit.o
cp rts32 $COBDIR
Database Access

170 Chapter 9 DB2

dbpubb.book Page 170 Wednesday, April 17, 2002 4:10 PM
Database Access

171

dbpubb.book Page 171 Wednesday, April 17, 2002 4:10 PM
10 SQL Option for DB2

This chapter explains how you can use Net Express to create and
maintain DB2 applications on your PC.

10.1 Overview
With SQL Option, you can compile, debug and run programs that
contain Embedded SQL statements from the Net Express IDE without
requiring access to a mainframe or LAN-based database system.

SQL Option allows the EBCDIC environment on the PC to be fully
compatible with your mainframe’s EBCDIC environment. Refer to the
section SQL Option NLS Environment for details

SQL Option uses the same technology as the popular XDB database
system. An XDB database behaves exactly like a mainframe DB2
database but it runs on the PC. A personal XDB Server is installed on
your PC, providing you with a completely self-contained development
and test environment for DB2 applications.

If you are developing in a workgrouping environment, your system
administrator can configure SQL Option so that you can access one or
more shared, LAN-based XDB Servers in addition to your personal XDB
Server. This two-tier configuration provides you with several further
options for testing your application. For example, you can:

• Maintain a complete copy or a subset of your mainframe test data
on a shared XDB Server. Members of your workgroup can test
against this directly or import the necessary tables into their
personal XDB Server in situations where data needs to be isolated
from other users.

• Duplicate test data on the shared XDB Server and workgroup
members’ personal XDB Servers. The shared XDB Server can then be
used for integration testing, with workgroup members performing
development and unit tests against their personal XDB Servers.
Database Access

172 Chapter 10 SQL Option for DB2

dbpubb.book Page 172 Wednesday, April 17, 2002 4:10 PM
• Distribute data across a shared XDB Server and personal XDB
Servers. For example, larger, more static tables can be left on the
shared XDB Server, with smaller, more volatile tables being exported
to the PC.

In addition, with appropriate configuration, you can access mainframe
DB2 databases seamlessly with SQL Option’s connectivity features. With
this third tier configured, you have access to the full range of
development and test options, giving you complete freedom to devise
an effective workflow customized to your environment. For example,
you can:

• Use the mainframe DB2 test environment for all testing

• Use the mainframe for integration testing, with workgroup
members performing development and unit tests against either
their personal XDB Servers or a shared XDB Server

• Distribute test data across all three tiers, keeping very large tables
on the mainframe and providing others on a shared XDB Server.
Workgroup members can then download specific data to their
personal XDB Server where necessary for isolation purposes.

10.2 SQL Option Components
SQL Option for DB2 consists of an embedded SQL precompiler and a
number of configuration tools and graphical data utilities:

• XDB Server

• Server Configuration utility

• Server administration options

• SQL Wizard

• Migrate utility

• Execute SQL option

• Declaration Generator utility

• Options utility
Database Access

10.3 XDB Server 173

dbpubb.book Page 173 Wednesday, April 17, 2002 4:10 PM
• Bind utility

• Gateway Profile utility

• SQL Option Preprocessor

You can access all these components except for the Options utility on
the Tools menu of the Net Express IDE. Help for SQL Option tools is
available from the components or on the IDE Help menu. From this
menu you can also access Error Messages help and a full SQL Reference.

You can find the Options utility by selecting SQL on the Options menu.

10.3 XDB Server
XDB Server is the server component that performs all database
operations and emulates a DB2 system. A personal XDB Server is
installed on your machine when you install SQL Option for DB2. This
local copy of XDB Server is the default server. It must be running before
you can debug or run client applications against a local XDB database.
You can start it manually on the Tools menu or you can configure your
project to start it automatically (if it isn’t already running) when the
project is loaded.

If you want to access mainframe DB2 data directly, your system
administrator must first install and configure a number of SQL
connectivity components. Once this is done, your system administrator
can advise you how to connect to mainframe data. Detailed
information on the DB2 Link feature is available by clicking SQL For
DB2 Help > Link To DB2 on the IDE Help menu.

10.3.1 Server Configuration Utility
The Server Configuration utility enables you to change the
configuration of your personal XDB Server. For example, you can
change the following:

• The XDB Server name

• Whether XDB Server security is enabled or not
Database Access

174 Chapter 10 SQL Option for DB2

dbpubb.book Page 174 Wednesday, April 17, 2002 4:10 PM
• Which protocol is used to access the XDB Server

• Whether other people can use the XDB Server

• The amount of system resources available to XDB Server

10.3.2 Server Administration Options
The SQL for DB2 option on the Net Express IDE Tools menu enables you
to control your connection to an XDB Server.

You can use Start Server to run your personal XDB Server.

Log On enables you to log on interactively to an XDB Server when client
security is switched on. Client security is controlled from the Security tab
of the Options utility. Client security must be switched on to access an
XDB Server that has security switched on.

You would typically use Log On if your XDB Server has security switched
on and you want to use a number of the SQL Option utilities without
having to log on separately for each one. You do not need to log on
explicitly if your XDB Server does not have security switched on.

Log Off enables you to undo a previous log on. If, for example, you log
on to an XDB Server that has security switched on and then log off, the
next time you try to access the XDB Server, you have to enter an AuthID
and password to gain access. You do not need to log off explicitly if
your XDB Server does not have security switched on.

10.4 SQL Wizard
SQL Wizard is a graphical utility that makes it easy to create, maintain
and query XDB and DB2 databases. You can use SQL Wizard to:

• Manage system security and priorities

• Manage locations, tables and queries

• Create and run queries

• Enter data directly into a table
Database Access

10.4 SQL Wizard 175

dbpubb.book Page 175 Wednesday, April 17, 2002 4:10 PM
• Import and export data

• Run batch scripts

10.4.1 Managing System Security and
Priorities

SQL Option is provided with the security and administration features
you would expect of a database system. Depending on how you intend
to use it, however, you might not need to enable the security features.
For this reason, your personal XDB Server and its client tools and
utilities are initally installed with security switched off.

Security is controlled separately at the server and at the client. If you
switch security on for an XDB Server, it can only be accessed by clients
that also have security switched on. (In this context, a client is one of
the XDB configuration tools or graphical data utilities. The client
applications that you develop are expected to handle authorization in
the usual way by means of CONNECT statements). If you are
developing a DB2 application that handles passwords, you may want to
work with a test environment that has security switched on to enable
user authentication.

Use the Admin menu of SQL Wizard to manage system security. You
can control security at three levels:

• All users

• Named groups of users

• Individual users

When security is switched off for an XDB Server, all users are effectively
superusers because:

• No passwords are required

• All users share a common AuthID, specified on the Connect tab of
the Options utility

• All users have access to both client and server utilities
Database Access

176 Chapter 10 SQL Option for DB2

dbpubb.book Page 176 Wednesday, April 17, 2002 4:10 PM
Server security status is set using the Server Configuration utility on the
IDE Tools menu. Once security has been enabled, users must log on with
a valid AuthID and, if required, password. The user’s actual AuthID
replaces the shared one, which means that a user cannot access a
database unless they have been granted the appropriate access
privileges by the database owner using GRANT and REVOKE statements.

An AuthID that has been assigned superuser status can change user,
group and priority settings that affect all databases on an XDB Server.
Initially an AuthID called INSTALL is set as the superuser. If you log on
with this AuthID, you can create further superusers as required by
clicking Users on the Admin menu and giving each user the appropriate
status.

Ordinary users can use the Admin menu only to change their password.
Ordinary users who want to change access privileges for specific
databases and tables that they own should click New > SQL on the File
menu and use the SQL statements GRANT and REVOKE to change access
privileges. The AuthID of the creator of a table is deemed to be its
owner.

As well as managing system security, a superuser can assign priorities to
individual users or groups of users. Priorities control how much
processing resource is available to the user or group, depending on
criteria set by the superuser.

Note: When you install SQL Option, the default AuthID is set to
TUTORIAL. This AuthID has user privileges and is not authorized to
access system tables. This means that, if you switch security on for your
personal XDB Server, you cannot use this AuthID to log on to the client
utilities.

You should log on using the default superuser AuthID, INSTALL. You can
then either set the TUTORIAL AuthID to have superuser status or you
can grant it suitable authority on system tables, as appropriate. The
INSTALL superuser AuthID has no password assigned initially: you
should allocate one to it as soon as possible after switching XDB Server
security on.

Database Access

10.4 SQL Wizard 177

dbpubb.book Page 177 Wednesday, April 17, 2002 4:10 PM
10.4.2 Managing Locations, Tables and
Queries
SQL Wizard’s Catalog Browser window provides an easy way to
manage locations, tables and queries, including XDB Server system
tables (providing your AuthID has suitable authority). You can open it
by clicking any entry on the View menu of SQL Wizard or by clicking
on the toolbar. The Catalog Browser has three tabs: Locations, Table
and Query.

If you are a superuser, you can use the Locations tab to manage
locations. A superuser can create, alter and drop locations, as well as
set the currently active location. Other users can only view a list of
available locations.

The Table tab displays the hierarchy of locations, AuthIDs, tables and
columns. From this page you can create, open, alter and drop tables, as
well as view table definitions and indexes, primary keys, foreign keys,
views, aliases and synonyms. Note that only a superuser can edit system
tables.

The Query tab displays all stored queries accessible to the current
server under the Location, AuthID and Query hierarchy. From this page
you can create, open, run and delete queries.

10.4.3 Creating and Running SQL
Queries
You can create SQL queries either by entering SQL statements directly
into an SQL window (click on the SQL Wizard toolbar), or by using a
prompted query in the Query Design window (click on the toolbar).
You do not need to understand SQL to create a prompted query. The
Query Design window is split into two areas:

• A schema view that shows the tables involved in your query and
any relationships between them. This area of the window is called
the table display area.

• A query-by-example view, which shows the columns resulting from
your query with any filters that you have applied to them. This area
of the window is called the query conditions grid.
Database Access

178 Chapter 10 SQL Option for DB2

dbpubb.book Page 178 Wednesday, April 17, 2002 4:10 PM
When you create a prompted query, you first select the table and
columns. Then you apply conditions and sort criteria to the columns to
achieve the final result set. Further choices are available from the
menus, including joins, the creation of computed columns and the use
of built-in functions such as minimum, maximum and average.

As you create a prompted query, the equivalent SQL statements are
built up by SQL Wizard. To see them, click . You can edit the SQL
statements directly but the changes you make do not appear in the
Query Design window. To go back to the Query Design window, click .
It’s a good idea to save your prompted query before you try editing it in
the SQL window. You can run your query and see the results at any time
by clicking .

10.4.4 Entering Data Directly into a
Table
SQL Wizard provides both a spreadsheet-like table view and a form
view that enable you to enter and edit data directly. Use the table view
to see many records at once and the form view to see one record at a
time.

You must have appropriate access privileges to edit tables. Only a
superuser can edit system tables. Ordinary users can edit tables created
using either their own AuthID or a GroupID to which they belong. They
can also edit tables to which they have specifically been given access
using the GRANT statement. In all cases, you must select Allow Editing
on the Record menu before editing is enabled.

You can open or create a table at any time from the Catalog Browser.
See the section Managing Locations, Tables and Queries for more
information. The Table view opens automatically to show the result of a
query.
Database Access

10.4 SQL Wizard 179

dbpubb.book Page 179 Wednesday, April 17, 2002 4:10 PM
10.4.5 Importing and Exporting Data
SQL Option can import and export data in a variety of formats. You can
specify import and export settings by clicking New > Import or New >
Export on the File menu of SQL Wizard. You can optionally save these
settings in an .imp or .exp file that you can subsequently run as a batch
file for routine data conversions.

Use SQL Option’s import capabilities to run programs against test data
prepared in another file format. For example, you could export suitable
test data held in a Microsoft Access database, or a Microsoft Excel or
Lotus 1-2-3 spreadsheet, to delimited or fixed-field ASCII files. You
could then import these files into XDB Server.

You can import data into an XDB database from any of the following
sources:

• Free ASCII files (Delimited)

Imports data from delimited (free-format) ASCII files.

• Fixed-format ASCII files (Columnar)

Imports data from columnar (fixed-format) ASCII files.

• dBASE files

Imports data from dBASE II, III and III+ files. dBASE IV files with the
same format as dBASE III files can be imported using the dBASE III
option.

• DBMAUI

Imports data downloaded from IBM’s DB2 using IBM’s DBMAUI
facilities.

• DSNTIAUL

Imports data downloaded from IBM’s DB2 using IBM’s DSNTIAUL
facilities.

Use SQL Option’s export capabilities to transfer data from an XDB
database to a mainframe DB2 database if you do not have gateway
connectivity, or to create the DDL commands required to create a table.
Database Access

180 Chapter 10 SQL Option for DB2

dbpubb.book Page 180 Wednesday, April 17, 2002 4:10 PM
You can export data from an XDB database into any of the following
targets:

• Free ASCII files (Delimited)

Exports data to delimited (free-format) ASCII files.

• Fixed width ASCII files (Columnar)

Exports data to columnar (fixed-format) ASCII files.

• dBASE files

Exports data to dBASE II and dBASE III files.

• DBMAUI

Exports data to DBMAUI files. DBMAUI files can be read into DB2
systems.

• DSNTIAUL

Exports data to DSNTIAUL files. DSNTIAUL files can be read into DB2
systems.

• WordPerfect Mail Merge file

Exports data to WordPerfect 4.2 and 5.0 secondary merge files.

• SQL statements

Generates DDL commands that can be used to re-create a table,
insert data into it and create indexes on the table. COMMENT,
WHERE and SYNONYM statements can be included.

10.4.5.1 Import/Export NLS Considerations

You need to be aware of character set conversion issues when importing
or exporting data, especially if:

• Your data contains diacritical (accented) or other characters that lie
outside the first half of the ASCII character set

• Your data was created using a variety of EBCDIC code pages

If you are importing or exporting EBCDIC data using SQL Wizard, we
recommend using the DSNTIAUL data format as this enables you to
specify an appropriate EBCDIC to ANSI or ANSI to EBCDIC conversion.
Database Access

10.5 Migrate Utility 181

dbpubb.book Page 181 Wednesday, April 17, 2002 4:10 PM
You specify the appropriate conversion by picking an entry in the code
page window. For example, suppose you want to export a Swedish
EBCDIC table. During the export, you would pick the ANSI to EBCDIC
translation 1252 - 278. Or, to import a Spanish EBCDIC table, you would
pick the EBCDIC to ANSI translation 284 - 1252.

10.4.6 Running Batch Scripts

You can use SQL Wizard to run the following kinds of batch scripts:

• Prompted queries

• SQL scripts, including DDL and DML

• Import files

• Export files

To run a batch script, click Run Batch on the File menu in SQL Wizard.

Several other SQL Option utilities can create batch files; you can also
run these from the appropriate utility. For example:

• Use the Migrate utility to create and run .mig files

• Use the Declaration Generator to create and run .dge files

10.5 Migrate Utility
If your system administrator has configured the mainframe
connectivity facilities of SQL Option, you can use the Migrate utility to
import or export data between XDB locations, or between an XDB
location and a DB2 subsystem.

The Migrate utility simplifies the process of copying data from one
location to another by eliminating intermediate file transfers and the
hand-editing of indexes and foreign keys. Using the Migrate utility, you
can copy keys, indexes and tables in a single step. You can also copy a
subset of a table (selected columns or rows) by extracting data with a
SELECT statement.
Database Access

182 Chapter 10 SQL Option for DB2

dbpubb.book Page 182 Wednesday, April 17, 2002 4:10 PM
You can use the Migrate utility’s referential-integrity feature to detect
data dependencies automatically and copy tables in the correct order.
You can also produce a preliminary "impact analysis" report, which
describes the effect of a migration before it is performed. If you copy
certain tables regularly, you can save the specification in a .mig file. You
can then run this file in batch mode, enabling you to perform a
migration without respecifying it manually.

For more information about the Migrate utility, click SQL For DB2 Help
> Migrate on the IDE Help menu.

10.6 Execute SQL Option
You can use Execute SQL to execute an SQL file that is part of the
currently open project. To use it, click on the file in the Project
Workspace then click Execute SQL on the IDE Tools menu. The file must
have an .sql extension.

10.7 Declaration Generator Utility
In order to access DB2 data from an application program, you need to
create host variables that are common data items between the SQL
statements in your query and in your program. A data item declaration
in the program must have the same name as that used in your SQL
statement and must conform to the relevant DB2 data type for the
column concerned.

The Declaration Generator utility automates the process of creating
copybooks to declare host variables. You specify the table for which you
want to generate a copybook and the Declaration Generator creates a
copybook with data declarations that match the data-names and types
used in the XDB system. The Declaration Generator can be used
interactively or in batch mode and can create a separate copybook for
each table or one copybook containing declarations for many tables.

To open the Declaration Generator, click SQL For DB2 > Declaration
Generator on the Tools menu.
Database Access

10.8 Options Utility 183

dbpubb.book Page 183 Wednesday, April 17, 2002 4:10 PM
10.8 Options Utility
Use the Options utility for configuring SQL Option for DB2 and its
connectivity with XDB and DB2 database servers. The settings that you
can change fall into the following categories:

• Connect

For configuring the connection between a client application (for
example, SQL Wizard or a program that you have developed) and
the XDB or DB2 database that it uses.

• Paths

For specifying where SQL Wizard and other SQL Option files are to
be found or written.

• Format

For specifying formats for dates, times and numeric fields.

• Multi-user

For specifying options for a multi-user XDB Server in a networked
environment. For example, you can control isolation levels and
autocommit.

• Browser

For specifying which database objects are shown in the Catalog
Browser window.

• Query

For specifying default options for working with queries. For
example, you can specify whether unqualified table-names can be
used and whether Cartesian products are permitted. These options
can be overridden for a particular query when you are editing the
query.

• Query run

For specifying options for running queries with SQL Wizard. For
example, you can control whether the result is displayed in table or
form view and limit the number of rows returned.
Database Access

184 Chapter 10 SQL Option for DB2

dbpubb.book Page 184 Wednesday, April 17, 2002 4:10 PM
• SQL

For specifying defaults for various SQL operational parameters,
including compatibility and sort sequence. For example, you can set
DB2 or SQL/DS compatibility and whether to use ASCII or EBCDIC
sort sequences. You can also set the escape character and SysAuthID.

• Security

For specifying security options. You can switch on client security
(required if you want to use an XDB Server that has security
switched on), as well as controlling the enforcement criteria for user
passwords.

The Options utility has a Summary page that enables you to obtain a list
of all the current configuration settings. You cannot make changes to
any of the options from the Summary tab but you can print it for
reference purposes.

10.9 Bind Utility
The Bind utility enables you to create static SQL packages in a remote
DB2 location accessed using DRDA, providing that the target location is
registered appropriately at the DB2 Link gateway and that your AuthID
has Bind authority at the target location.

The Bind utility creates a static SQL package on the remote system by
processing database request modules (DBRM) stored in .dbr files that
are created by the SQL precompiler. The precompiler creates a separate
.dbr file for each program, with a separate DBRM entry in the file for
each Embedded SQL statement in the program.

You do not need to bind your application if you use the default SQL
precompiler settings, as these enable Embedded SQL statements in your
programs to be run dynamically against the remote system. Running
Embedded SQL dynamically is useful in situations where you want to
access remote DB2 data but do not want to keep rebinding your
application as it changes; for example, while debugging the application.
You can optionally change the precompiler settings to produce static
SQL database request modules to bind the application for deployment
purposes. For more information on the relevant directives (DBRM,
LOCATION, COLLECTION-ID and AUTOBIND), click SQL For DB2 Help >
Database Access

10.9 Bind Utility 185

dbpubb.book Page 185 Wednesday, April 17, 2002 4:10 PM
COBOL Precompiler > SQL Option Preprocessor > SQL Option
Preprocessor Directives on the IDE Help menu.

A package at a location is identified by a collection identifier, a
program identifier, a version label and a consistency token. Typically,
you would use the collection identifier as a way of grouping the
packages used in a single application consisting of one or more
programs. The precompiler creates a program identifier for a package
from the root of the program filename. You can specify a version label
or accept the default value (01). You do not have to specify a version
label, because the current package can be identified from its
consistency token, generated from a timestamp at the start of
precompilation. Note that each time you recompile a DB2 application,
the timestamp changes and you must rebind the application to the DB2
host location if you are using static SQL packages. An alternative
approach to avoid having to rebind your application each time you
compile it is to debug against data stored in an EBCDIC location on
your personal XDB Server. You can then test it against mainframe data
when you have achieved a satisfactory level of stability.

The Bind utility enables you to specify a number of options for an
application, including a version number and the isolation level of the
application. These options can be stored in a file for future use.

For more information about the Bind utility, click SQL For DB2 Help >
Bind on the IDE Help menu.

Note: The Bind utility does not appear on the SQL For DB2 submenu of
the IDE Tools menu by default but you can add it to a submenu of the
Tools menu yourself. See Bind in the online help index for more
information.

Database Access

186 Chapter 10 SQL Option for DB2

dbpubb.book Page 186 Wednesday, April 17, 2002 4:10 PM
10.10 Gateway Profile Utility
Before you can run any application that accesses the mainframe, you
must configure the XDB Link using the Gateway Profile utility. This
utility:

• Defines connections between your workstation and the mainframe
data source

• Configures settings needed to translate data correctly and to
control client conversations.

To open the Gateway Profile utility, click SQL For DB2 > XDB Link on the
Options menu. For more information about this utility, click SQL For
DB2 Help > XDB Link on the IDE Help menu.

10.11 SQL Option Preprocessor
The SQL Precompiler allows COBOL programmers to develop
applications containing embedded SQL and test them against a full-
featured, relational database system.

There are certain requirements your COBOL programs must meet before
they can be compiled and debugged. Chapters 1 through 6 of the Data
Access guide and the SQL Option Preprocessor User’s Guide explain
what these requirements are.

10.11.1 SQL Communications Area
(SQLCA)
Every COBOL program containing embedded SQL must have an SQL
Communications Area (SQLCA) or the field SQLCODE defined in its
working storage section. This definition is normally accomplished by
including the SQLCA copybook provided with Net Express. A complete
description of the SQLCA structure is provided in the SQL Option SQL
Reference.
Database Access

10.11 SQL Option Preprocessor 187

dbpubb.book Page 187 Wednesday, April 17, 2002 4:10 PM
10.11.2 SQL Descriptor Area (SQLDA)
COBOL programs that include dynamic SQL must have an SQL
Descriptor Area (SQLDA) defined. This definition is usually
accomplished by including the SQLDA copybook provided with Net
Express. However, the SQLDA copybook included with Net Express may
not match the structure you normally use, in which case you may need
to create an alternate copybook.

The SQLDA holds information about dynamic SQL queries, and is
required for allocating the proper amount of space for the query.

For more information about dynamic SQL see the chapter Dynamic SQL
. For a complete description of the SQLDA structure, see the SQL
Option SQL Reference.

10.11.3 Support for Object Oriented
COBOL Syntax
The SQL Option preprocessor has been enhanced to work with Object
Oriented COBOL syntax (OO programs). There is, however, one
restriction that you should be aware of:

• If you use an EXEC SQL WHENEVER statement within a METHOD,
any additional METHODs coded in the same CLASS that have SQL
statements in them need to have the section that is referenced in
the preceding WHENEVER statement defined. Not doing this
results in a compilation error indicating that the section has not
been defined. You can get around this restriction by defining
another EXEC SQL WHENEVER statement.
Database Access

188 Chapter 10 SQL Option for DB2

dbpubb.book Page 188 Wednesday, April 17, 2002 4:10 PM
10.11.4 Security
SQL Option security measures control access to the system and protect
data stored in table objects. If the security option is turned on at both
the server and on the client, you will be prompted for a user ID and
password when you compile using the VALIDATE preprocessor directive
or execute a program containing embedded SQL. For more information
on setting up security and authority, see the following SQL Option
manuals:

• Administrator’s Guide

• SQL Wizard User’s Guide

• Options User’s Guide

10.11.5 DSNTIAR Facility
The SQL Option DSNTIAR facility converts an SQL return code into a
character string error message (similar to the IBM DSNTIAR facility on
the mainframe). See the SQL Option Preprocessor User’s Guide for
details on how to invoke this facility.

10.11.6 Migration Considerations
In this version of Net Express, the SQL Option Preprocessor has changed
from using the old type of preprocessor architecture to use a new type
of preprocessor interface called an External Compiler Module (ECM)
interface, which is more tightly integrated with the Net Express
Compiler and Debugger.

The main difference is that the new preprocessor only gets passed
statements that begin with EXEC SQL. The old preprocessor had to look
at every line of code in a program.

Another difference is the number of preprocessor directives have been
reduced because of tighter integration with the compiler and the fact
that programs being compiled target mainframe DB2 compatibility by
default.
Database Access

10.11 SQL Option Preprocessor 189

dbpubb.book Page 189 Wednesday, April 17, 2002 4:10 PM
10.11.6.1 Invoking the Preprocessor

If you are migrating from either the Classic Workbench product or
Mainframe Express version 1.1, the syntax for invoking the SQL Option
Preprocessor has changed from:

p($xdbdir\xdb) any additional preprocessor directives end-p

to:

XDB(any additional preprocessor directives)

For example, the following command to compile program TEST1 with
preprocessor directives VALIDATE and FILLSYSCAT changes from:

Cobol test1 p($xdbdir\xdb) validate fillsyscat endp gnt;

to:

Cobol test1 xdb(validate fillsyscat) gnt;

This change will affect all users who compile programs using batch
files.

10.11.6.2 Directives in Comments

With early versions of XDB software, you could also place precompiler
directives in comments by coding $$XDB. This is still supported but you
need to specify the COMPILER directive DIRECTIVES-IN-COMMENTS for
them to be picked up by the new SQL Option preprocessor.

10.11.6.3 Ambiguous References

If you define a COBOL variable with the same name more than once,
and do not fully qualify the host variable name, the new preprocessor
will flag the ambiguous reference with the following message:

SQ0408S <variable-name> is non-unique and should be qualified
Database Access

190 Chapter 10 SQL Option for DB2

dbpubb.book Page 190 Wednesday, April 17, 2002 4:10 PM
10.11.6.4 Debug Files

The old preprocessor had a directive DEBUG which generated a text file
XDB.$$$ that listed the changes to convert EXEC SQL statements to SQL
Option CALL statements. This file was very useful when trying to
pinpoint problems. This preprocessor directive no longer does this.
Instead, the ECM interface uses the following COMPILER and
preprocessor directives to produce debug files that you may be asked to
produce to aid in resolving problems:

Directive File created Function

XDB(CTRACE) sqltrace.txt Before/after information about the
SQL statement and any tasks the
EXEC SQL statement should
generate, as well as SQLCA
information. Precompiler errors are
returned as a positive SQLCODE.
SQL Option server errors (when
VALIDATE is used) are returned in
SQLCODE field unchanged from
what server set.

CHKECM(CTRACE) ecmtrace.txt COBOL code generated by ECM to
replace EXEC SQL calls. Major
difference in this file from the old
DEBUG file is that you need to
cut/paste statements if you want to
execute code into a COBOL file and
this file only includes EXEC SQL
statements plus variables generated
by ECM.

CHKECM(TRACE) ecmtrace.txt Very detailed file that lists all
information that flows from the
ECM to/from the Compiler. If the
Compiler generates an error
message indicating ECM generated
the problem, look for literal ECM-
FATAL in text file. This will usually
pinpoint statement that produced
the error.
Database Access

10.11 SQL Option Preprocessor 191

dbpubb.book Page 191 Wednesday, April 17, 2002 4:10 PM
In the example given earlier, to compile the same program and
generate all three of the debug files, the command line entry would
be:

Cobol test1 xdb(validate fillsyscat ctrace) chkecm(ctrace)
 omf(gnt);

10.11.6.5 Maximum number of SQL statements

The new preprocessor is a one pass precompiler. The old preprocessor
was also a one pass precompiler, but it could read ahead. This allowed
the old preprocessor to define variables for each EXEC SQL statement
in WORKING-STORAGE since it knew how many EXEC SQL statements
were in the program. The new preprocessor always pre-allocates
storage for 750 EXEC SQL statements. If your program gets the
following error:

SQ0299s Internal EXEC SQL statement table overflow - use
directive MAXSQL to override default.

use the preprocessor directive MAXSQL to increase the maximum
number of SQL statements the program can handle.

10.11.6.6 Setting Additional Directives under
IDE

When you create a new project or add a new program to an existing
project, you can set SQL Option preprocessor directives by clicking Build
Settings for that program, clicking the Compile tab, and then clicking
Advanced. Select XDB from the ESQL Preprocessor drop-down list and
then select the directives you want to add from the Directives drop-
down list. A short description of the directive option is displayed.
Database Access

192 Chapter 10 SQL Option for DB2

dbpubb.book Page 192 Wednesday, April 17, 2002 4:10 PM
10.11.7 XDB Directive
The compiler directive XDB has the following options:

The SQL Option Preprocessor User’s Guide describes in detail the syntax
and options for each directive and which directives are obsolete. Some
options, such as DB2, are a default value. Most options have an
alternate (or negative) syntax whereby the condition established by the
option can be turned off. The default syntax for each option is
underlined. SQL Option directive options are not case sensitive.

10.11.8 Error Messages
All error messages generated by the SQL Option preprocessor have the
format of SQnnnnl where "nnnn" is the error message number and "l"
is the severity.

The SQL Option Preprocessor User’s Guide describes each error message
and possible causes.

10.11.9 Linking
To link an application:

1 Open the Net Express project and set the Type of Build to Generic
Release Build

2 Right click on the .exe or .dll file

AUTHID AUTOBIND AUTOCLOSE

COLLECTION-ID CONCAT CTRACE

DB2 DB2CLOSE DBERROR

DBRM DECLARE DIRECTIVES

FILLSYSCAT GENSQLCA HYPHEN-IN-CURSOR

LOCATION MAXSQL NEVERCLOSE

NOT PKGSET SAVE-RETURN-CODE

SQLDS STRICT-DB2 VALIDATE

VALIDATE-ERR_LVL VALIDATE-LOGIN XDBFUNCS
Database Access

10.11 SQL Option Preprocessor 193

dbpubb.book Page 193 Wednesday, April 17, 2002 4:10 PM
3 If you get an unresolved symbol _XDBINTRF error, try doing this:

a Select Build Settings ... and then click the Link tab

b Set the Category to Advanced

c In the Link with these LIB’s edit box enter:

xdbintrf.lib

d Then try re-linking the object

e If the problem persists, check to make sure the LIB environment
variable has the SQL Option directory included. You can
determine this by selecting the Project menu, clicking
Properties, clicking IDE and then clicking Import . Scroll down
the list box displayed until you find the LIB environment
variable.

10.11.10 Distributing Your Application
If you distribute your application to other machines using .exe or .dll
files that include SQL Option access logic, you may need to include the
following .dll files:

• xdbintrf.dll

• xdbcrun.dll
Database Access

194 Chapter 10 SQL Option for DB2

dbpubb.book Page 194 Wednesday, April 17, 2002 4:10 PM
10.12 SQL Option NLS Environment
SQL Option allows you to create XDB locations that emulate all the
various mainframe EBCDIC code pages. When you access these locations
with SQL Wizard or a COBOL program, your data in these locations
appears identical to the data on the mainframe.

The five steps necessary to ensure complete compatibility with the
mainframe and/or Net Express’ IDE are as follows:

1 Decide which EBCDIC code page you want to emulate.

Typically, you would use the mainframe’s code page. (If you do not
know what it is, you may be able to use XDB Link to find out.) If you
do not have a mainframe, you can choose whichever code page you
prefer.

2 Create a local EBCDIC location for this code page.

Use SQL Wizard’s Create Location dialog box. Pick the EBCDIC code
page you want in the Sort Sequence box. For more information,
click SQL For DB2 Help > SQLWizard on the IDE Help menu.

3 Ensure that your project’s national language support (NLS) setting is
the same as your EBCDIC location.

When you compile a COBOL program with Net Express, it can be
associated with a particular EBCDIC code page. For information on
how to do this, click Help Topics on the Help menu, click the
Contents tab, and select Development Environment, Working with
Data Files, Configurable Codesets, How to.

4 If you have XDB Link, configure it to access the mainframe.

Use the Gateway Profile utility to define your DB/2 locations to the
PC software, then specify the single Workstation Code Page as 911
(in the local Workstation Configuration). Next, use SQL Wizard to
access the DB/2 location on the mainframe. A file named
cpg_info.txt is created in your mfsql\bin folder, identifying the
EBCDIC code page of the DB/2 location on the mainframe.
Database Access

10.12 SQL Option NLS Environment 195

dbpubb.book Page 195 Wednesday, April 17, 2002 4:10 PM
The following table defines this EBCDIC code page number:

5 Populate your local EBCDIC location with data from the mainframe.

If you have XDB Link for the mainframe, there are two ways to do
this: using Migrate or using SQL Wizard.

• To use Migrate, all you need to do is point to the DB/2 location
on your mainframe as the source location, and point to the
local EBCDIC location as the destination location.

• To use SQL Wizard, first export your mainframe’s data in
DSNTIAUL format, then import it into SQL Wizard. When you
use the DSNTIAUL format, you need to specify a code page
translation for both exports and imports: for exports, use the
PC’s ANSI code page to EBCDIC code page translation; for
imports, use the reverse translation. For example, suppose you
want to extract from a Swedish EBCDIC DB/2 location. For the
export, you would pick the ANSI to EBCDIC translation 1252 -
278, for the import, 278 - 1252.

If you don’t have XDB Link for the mainframe, extract the data
from the mainframe into a file with DSNTIAUL format, then import
the data into your local EBCDIC location using SQL Wizard’s import

Net Express NLS Setting Code Page Number

31 Dutch 37

33 French 297

34 Spanish 284

39 Italian 280

43 Austrian German 273

44 English (UK) 285

45 Danish 277

46 Swedish 278

47 Norwegian 277

49 German 273

351 Portugese 37

358 Finnish 278

437 English (US) 37

500 International 500
Database Access

196 Chapter 10 SQL Option for DB2

dbpubb.book Page 196 Wednesday, April 17, 2002 4:10 PM
function, citing the appropriate EBCDIC to ANSI code page
translation.

XDB EBCDIC databases are stored using the default OEM character set
for your machine (typically, code page 437 in the United States, or code
page 850 almost everywhere else). The names of database objects such
as tables and indexes are also validated using this character set. You can
optionally specify that database object-names should be validated using
any of the following character sets if, for example, you want to use
accented characters in the names:

To specify that an XDB Server should use one of the supported code
pages for name validation, you must add two lines to the xdb.ini file in
your \mfuser\config folder:

[SERVER]
XDBCP=codepage

where codepage is the three-digit number of the code page you
require.

Where a location has been created as an EBCDIC location (for example,
the default location, MAINTAIN), data is automatically converted to
EBCDIC before it is passed to the client application. Conversion between
ASCII data on the PC and EBCDIC data on the mainframe is handled by
the DB2 Link gateway if you are using the Migrate utility. If you are
using the data import and export facilities in SQL Wizard, you can
control the conversion used by choosing the DSNTIAUL data format and
selecting an appropriate code page conversion. See the section
Import/Export NLS Considerations for more information.

MS-DOS Code Page Character Set

437 US Latin 1

850 International Latin 1

857 Turkish

863 French Canada

865 Nordic

860 Portuguese
Database Access

10.13 Using Existing XDB Data 197

dbpubb.book Page 197 Wednesday, April 17, 2002 4:10 PM
10.13 Using Existing XDB Data
If you already use XDB databases, you might be able to access them
using SQL Option for DB2, providing that the locations in which they
were created are compatible.

10.14 Tips
• Use the Query Design window in SQL Wizard when you want to

add new DML commands to your program but are not sure of the
correct syntax. Create your query and run it until you are happy
that results are correct. Then open the SQL window and copy the
SQL statements into your program, between the EXEC SQL and the
end-of-procedure statements.

• If you are writing a program that needs to create a table and you
have a test table with the correct structure, use SQL Wizard’s
Export capabilities to generate the DDL commands for your
program.

• If you create date columns in a test table using the WITH DEFAULT
constraint, you can use the Date Warp feature of the IDE to change
the system date on a row-by-row basis, without having to restart
the XDB Server.

• SQL Option automatically commits changes to a database when the
end of a program procedure is reached with no errors. If an error
occurs or if you stop debugging prior to reaching the end of a
procedure, a rollback is performed instead. You do not need to use
the LOGOFF directive when running a COBOL application.
Database Access

198 Chapter 10 SQL Option for DB2

dbpubb.book Page 198 Wednesday, April 17, 2002 4:10 PM
Database Access

199

dbpubb.book Page 199 Wednesday, April 17, 2002 4:10 PM
11 Stored Procedures

This chapter introduces stored procedures, and describes how they
work under OpenESQL and DB2.

A stored procedure is a compiled program that can execute SQL
statements.

You need to use stored procedures if your application program
operates in a client/server environment, and if either of the following
two problems apply:

• The application accesses host variables for which you want to
guarantee security and integrity.

• The application executes a series of SQL statements, creating many
network send and receive operations, which significantly increase
CPU and elapsed time costs.

11.1 OpenESQL Stored Procedures
OpenESQL supports two statements that are used with stored
procedures:

• CALL

Provides generic support for ODBC stored procedure calls.

• EXECSP

Provides backwards compatibility with the Micro Focus Embedded
SQL Toolkit for Microsoft SQL Server.

A stored procedure can:

• Accept input parameters

• Return output parameters

• Accept and return input/output parameters
Database Access

200 Chapter 11 Stored Procedures

dbpubb.book Page 200 Wednesday, April 17, 2002 4:10 PM
• Use positional or keyword parameters

• Return a result

• Return result sets

• Be called with parameter arrays

Note: The features provided by different database vendors vary
considerably, and any given vendor will offer only a subset of the
features listed above. For this reason, stored procedure calls are much
less portable between data sources than other OpenESQL statements.

When a stored procedure is called, any parameters are passed as a
comma separated list, optionally enclosed in parentheses. A parameter
can be a host variable or a literal, or the keyword CURSOR. The keyword
CURSOR causes the parameter to be unbound, and should only be used
with Oracle 8 stored procedures which return result sets.

If the parameter is a host variable it can be followed by one of the
following words, which indicate the parameter type: IN, INPUT, INOUT,
OUT, OUTPUT. If no parameter type is specified, INPUT is assumed.

Host variable parameters can be passed as keyword parameters, by
preceding the host variable with the formal parameter name and an
equals sign:

 EXEC SQL CALL myProc (keyWordParam = :hostVar) END-EXEC

For maximum portability, literal parameters should be avoided and only
host variable parameters should be used, and a given call should use
either only normal, positional parameters or keyword parameters, but
not both. Some servers support a mixture, but keyword parameters
should occur after all positional parameters. Keyword parameters are
useful as an aid to readability and where the server supports default
parameter values and optional parameters.

If a stored procedure call returns a result set, it must be used in a cursor
declaration, thus:

 EXEC SQL
 DECLARE cursorName CURSOR FOR storedProcecureCall

The stored procedure is then called by OPENing the cursor and
FETCHing result set rows, like any other type of cursor.
Database Access

11.2 DB2 Stored Procedures 201

dbpubb.book Page 201 Wednesday, April 17, 2002 4:10 PM
Currently OpenESQL supports only a single result set.

ODBC parameters differ fom Oracle array parameters. The effect of
using a parameter array is the same as repeating the statement for each
element of the array. On a stored procedure call, if one parameter is
passed as an array, then all parameters must be arrays with the same
number of elements. The stored procedure will "see" one call for each
"row" of parameters. The number of rows passed can be limited to less
than the full array size by preceding the call with the phrase FOR :hvar
where :hvar is an integer host variable containing a count of the numer
of rows to be passed.

Note: The Net Express online help provides the structure and examples
for both the CALL and EXECSP statements. (Click Help Topics on the
Help menu. Then, on the Index tab, click CALL or click EXECSP.)

11.2 DB2 Stored Procedures
As we have seen above, a stored procedure is a compiled program that
can execute SQL statements. Stored procedures are stored at a local or
remote DB2 Universal Database Server. Local DB2 Universal Database
Server applications or remote DRDA applications can use the SQL
statement CALL to invoke a stored procedure.

Use stored procedures to combine many of your application’s SQL
statements into a single message to the DB2 subsystem or DB2 Universal
Database Server, reducing network traffic to a single send and receive
operation for a series of SQL statements.

Note: If you are running your stored procedure on DB2 for OS/390,
through the DB2 Connect product, see your IBM DB2 documentation for
other steps necessary to run the stored procedure.

Database Access

202 Chapter 11 Stored Procedures

dbpubb.book Page 202 Wednesday, April 17, 2002 4:10 PM
11.2.1 Working with Stored Procedures

To get a stored procedure up and running:

1 Either add the Net Express executable directory (base\bin) to the
PATH statement

orcopy the COBOL run-time .dll (cblrtss.dll if using single threaded
run-time) to the directory from where the stored procedure will be
executed. You need to do this for DB2 to be able to execute a
COBOL stored procedure.

2 Code and prepare a stored procedure. See the section Writing and
Preparing Stored Procedures for instructions.

3 Code and prepare an application that calls the stored procedure. An
SQL statement, CALL, in that application must use the same
parameter list and linkage convention as the stored procedure that
it invokes. See the section Writing and Preparing Applications to
Use Stored Procedures for instructions.

4 Define your stored procedure to the DB2 Universal Database Server
by issuing a CREATE PROCEDURE command, which will place a row
in the appropriate system table(s). See the section Defining Stored
Procedures under DB2 Universal Database for additional details.

5 Compile your stored procedure. See the section Compiling Stored
Procedures under DB2 Universal Database for additional details.

6 Debug and test your stored procedure. See the section Debugging
Stored Procedures under DB2 Universal Database for additional
details.

11.2.2 Writing and Preparing Stored
Procedures
A stored procedure is an application program that runs in the DB2
Universal Database Server’s address space. It can contain most
statements that an application program normally contains. It can consist
of more than one program. Your stored procedure can call other
programs as well as nested stored procedures but there are restrictions.
See the DB2 Universal Database Application Development Guide for
details.
Database Access

11.2 DB2 Stored Procedures 203

dbpubb.book Page 203 Wednesday, April 17, 2002 4:10 PM
The application program that invokes the stored procedure can be in
any language that supports SQL statements. You can write a stored
procedure using many languages such as C, JAVA, COBOL or now SQL
Procedure Language which is consistent with the Persistent Stored
Module definition of the ANSI SQL99 standard.

The store procedure can be written in one language, for example JAVA,
with the client written in another language, for example COBOL. When
the languages differ, DB2 transparently passes the values between the
client and the stored procedure so each program gets the values in the
expected format defined by the CREATE PROCEDURE statement.

11.2.2.1 Features of a Stored Procedure

A stored procedure is similar to any other SQL application.

The following restrictions apply to stored procedures:

• A C or COBOL stored procedure must be a dynamic link library (DLL)
when built to run under Windows server.

• To use SQL Procedure Language, you need to have a C compiler
installed since the SQL statements generate a C program.

• The following SQL statements are not allowed in a stored
procedure:

• CONNECT

• DISCONNECT

• SET CONNECTION

See the DB2 Universal Database Application Development Guide for a
complete list.

11.2.2.2 Preparing Stored Procedures

The following are tasks which must be completed before a stored
procedure can be run on an DB2 Universal Database Server:

1 Prepare the application according to your embedded SQL
documentation for creating stored procedure.
Database Access

204 Chapter 11 Stored Procedures

dbpubb.book Page 204 Wednesday, April 17, 2002 4:10 PM
2 Define the stored procedure to the DB2 Universal Database Server.
See Defining Stored Procedures under DB2 Universal Database.

3 Place the stored procedure DLL or JAVA routine on the DB2
Universal Database Server machine in a location specified in the
CREATE PROCEDURE. If not specified, the default location is the
sqllib\function subdirectory where DB2 Universal Database is
installed. See the DB2 Universal Database Application Development
Guide and DB2 Universal Database SQL Reference for additional
options.

11.2.2.3 How an Application Works with a
Stored Procedure

A typical stored procedure contains two or more SQL statements, and
some manipulative or logical processing. In this example, your
application, CALLSTPR, runs on a workstation client and calls a stored
procedure, GETEMPSVR. The following process occurs:

1 The workstation application establishes a connection to the DB2
Universal Database Server.

2 The SQL statement CALL tells the DB2 Universal Database Server
that the application is going to run the stored procedure,
GETEMPSVR. The calling application provides the necessary
parameters.

3 The DB2 Universal Database Server searches the system tables for
rows associated with stored procedure GETEMPSVR.

4 The DB2 Universal Database Server passes information about the
request to the stored procedure.

5 The stored procedure executes SQL statements.

6 The stored procedure assigns values to the output parameters and
then exits.

7 Control returns to the calling application, which receives the output
parameters.

The application can call more stored procedures or it can execute more
SQL statements. The application designer determines whether to
COMMIT work in the stored procedure that runs on the server, or in the
client as a single transaction.
Database Access

11.2 DB2 Stored Procedures 205

dbpubb.book Page 205 Wednesday, April 17, 2002 4:10 PM
11.2.3 Writing and Preparing
Applications to Use Stored Procedures
To invoke a stored procedure and to pass a list of parameters to the
procedure, use the SQL statement CALL. Your application program can
call several stored procedures.

After connecting to its server, an application can mix calls to stored
procedures with SQL statements sent to the server.

11.2.3.1 Executing the SQL Statement CALL

Use the CALL statement to execute each series of SQL statements in
your application.

11.2.3.1.1 Example 1:

To call the stored procedure described in How an Application Works
with a Stored Procedure, your application might use this statement:

EXEC SQL
 CALL GETEMPSVR (:V1, :V2)
END-EXEC

If you use host variables in the CALL statement, you must declare them
before using them.

11.2.3.1.2 Example 2:

The example above is based on the assumption that none of the input
parameters can have null values. To allow null values, code a statement
like this:

EXEC SQL
 CALL GETEMPSVR (:V1 :IV1, :V2 :IV2)
END-EXEC

where :IV1 and :IV2 are indicator variables for the parameters.
Database Access

206 Chapter 11 Stored Procedures

dbpubb.book Page 206 Wednesday, April 17, 2002 4:10 PM
11.2.3.1.3 Example 3:

To pass integer or character string constants or the null value to the
stored procedure, code a statement like this:

EXEC SQL
 CALL GETEMPSVR (2, NULL)
END-EXEC

11.2.3.1.4 Example 4:

To use a host variable for the name of the stored procedure, code a
statement like this:

EXEC SQL
 CALL :PROCNAME (:V1, :V2)
END-EXEC

11.2.3.1.5 Example 5:

Assume that the stored procedure name is GETEMPSVR. The host
variable PROCNAME is a character variable of length 254 or less that
contains the value GETEMPSVR. You should use this technique if you do
not know in advance the name of the stored procedure, but you do
know the parameter list convention.

To pass your parameters in a single structure, rather than as separate
host variables, code a statement like this:

EXEC SQL
 CALL GETEMPSVR USING DESCRIPTOR :ADDVALS
END-EXEC

where ADDVALS is the name of an SQLDA.

11.2.3.1.6 Example 6:

To use a host variable name for the stored procedure with an SQLDA,
code a statement like this:

EXEC SQL
 CALL :PROCNAME USING DESCRIPTOR :ADDVALS
END-EXEC
Database Access

11.2 DB2 Stored Procedures 207

dbpubb.book Page 207 Wednesday, April 17, 2002 4:10 PM
This form gives you extra flexibility because you can use the same CALL
statement to invoke different stored procedures with different
parameter lists.

Your client program must assign a stored procedure name to the host
variable PROCNAME and load the SQLDA ADDVALS with the parameter
information before making the SQL CALL statement.

Each of the above CALL statement examples uses an SQLDA. If you do
not explicitly provide an SQLDA, the precompiler generates the SQLDA
based on the variables in the parameter list.

You can execute the CALL statement only from an application program.
You cannot use the CALL statement dynamically.

11.2.3.2 Parameter Conventions

When an application executes the CALL statement, the DB2 Universal
Database Server builds a parameter list for the stored procedure, using
the parameters and values provided in the statement. The DB2
Universal Database Server obtains information about parameters from
the system tables. See the section Defining Stored Procedures under
DB2 Universal Database for more information. Parameters are defined
as one of these types:

• IN

Input-only parameters, which provide values to the stored
procedure.

• OUT

Output-only parameters, which return values from the stored
procedure to the calling program.

• INOUT

Input/output parameters, which provide values to or return values
from the stored procedure.

If a stored procedure fails to set one or more of the output-only
parameters, the DB2 Universal Database Server simply returns the
output parameters to the calling program, with the values established
on entry to the stored procedure. COBOL supports three parameter list
conventions. Other languages support other conventions. The
Database Access

208 Chapter 11 Stored Procedures

dbpubb.book Page 208 Wednesday, April 17, 2002 4:10 PM
parameter list convention is chosen based on the parameter style
defined in the CREATE PROCEDURE statement.

Parameter Style Description

SIMPLE Use SIMPLE (or GENERAL) to prevent the calling
program passing null values for input parameters (IN
or INOUT) to the stored procedure. The stored
procedure must declare a variable for each
parameter passed in the CALL statement.

SIMPLE WITH NULLS Use SIMPLE WITH NULLS (or GENERAL WITH NULLS)
to allow the calling program to supply a null value
for any parameter passed to the stored procedure.
The following rules apply:

• An indicator variable must follow each
parameter in the calling program’s CALL
statement, using one of the following two forms:

• host variable :indicator variable

or:

• host variable INDICATOR :indicator variable

• The stored procedure must declare a variable for
each parameter passed in the CALL statement.

• The stored procedure must declare a null
indicator structure containing an indicator
variable for each parameter passed in the CALL
statement.

• On entry, the stored procedure must examine all
indicator variables associated with input
parameters to determine which parameters
contain null values.

• On exit, the stored procedure must assign values
to all indicator variables associated with output
variables. An indicator variable for an output
variable that returns a null value to the caller
must be assigned a negative number. Otherwise,
the indicator variable must be assigned the value
zero (0).
Database Access

11.2 DB2 Stored Procedures 209

dbpubb.book Page 209 Wednesday, April 17, 2002 4:10 PM
11.2.3.3 Using Indicator Variables to Speed
Processing

If any of your output parameters require a lot of storage, do not pass
the entire storage areas to your stored procedure, but declare an
indicator variable for every large output parameter in your SQL
statement CALL. Indicator variables are used in the calling program to
pass only a two-byte area to the stored procedure and to receive the
entire area from the stored procedure.

Note: If you are using the SIMPLE WITH NULLS linkage convention, you
must declare indicator variables for all of your parameters, so you do
not need to declare another indicator variable for the large output
parameters.

Assign a negative value to each indicator value associated with a large
output variable. Then include the indicator variables in the CALL
statement. This technique can be used whether the stored procedure
linkage is SIMPLE or SIMPLE WITH NULLS.

For example, suppose that a stored procedure, STPROC2 defined with
the SIMPLE linkage convention takes one integer input parameter and
one character output parameter of length 5000. It is wasteful to pass
the 5000 byte storage area to the stored procedure. Instead, a COBOL
program containing these statements passes only two bytes to the

DB2SQL In addition to the parameters on the CALL statement,
the following arguments are passed to the stored
procedure:

• a NULL indicator for each input parameter on the
CALL statement.

• the SQLSTATE to be returned to DB2.

• the qualified name of the stored procedure.

• the specific name of the stored procedure.

• the SQL diagnostic string to be returned to DB2.

Parameter Style Description
Database Access

210 Chapter 11 Stored Procedures

dbpubb.book Page 210 Wednesday, April 17, 2002 4:10 PM
stored procedure for the output variable and receives all 5000 bytes
from the stored procedure:

INNUM PIC S9(9) COMP
OUTCHAR PIC X(5000)
IND PIC S9(4) COMP
.
.
.
MOVE -1 TO IND
EXEC SQL CALL STPROC2(:INNUM, :OUTCHAR :IND) END-EXEC

11.2.3.4 Declaring Data Types for Passed
Parameters

A stored procedure must declare each parameter passed to it1 . In
addition, the PARMLIST column in the DECLARE PROCEDURE must
contain a compatible SQL data type declaration for each parameter. For
PARMLIST string and corresponding language declarations, see the SQL
data types table in the Net Express Database Access manual.

For example:

CREATE PROCEDURE GETEMPSVR
 (IN EMPNO CHAR(6),
 INOUT SQLCD INT ,
 OUT FIRSTNME CHAR(12),
 OUT LASTNAME CHAR(12),
 OUT HIREDATE CHAR(10),
 OUT SALARY DEC(9,2))
 LANGUAGE COBOL
 EXTERNAL NAME ’GETEMPSVR!GETEMPSVR’
 PARAMETER STYLE DB2SQL;

11.2.3.5 Limitations

IBM has not implemented the same support for all SQL syntax related to
stored procedures in every supported language. For example, you
cannot create COBOL stored procedures that use result sets or the EXEC
SQL syntax that supports that functionality with the workstation version
of DB2 Universal Database. This might change in the future. See the
DB2 Universal Database SQL Reference and the DB2 Application
Development Guide for details of which functions are supported and by
what language.
Database Access

11.2 DB2 Stored Procedures 211

dbpubb.book Page 211 Wednesday, April 17, 2002 4:10 PM
There is no support for structure, array, or vector parameters using the
DB2 native precompiler. However, there is much more flexibility when
using the OpenESQL precompiler and a ODBC connection. See the Net
Express Database Access manual for more details.

11.2.4 Defining Stored Procedures
under DB2 Universal Database
A stored procedure is unusable until it is defined1 - use the CREATE
PROCEDURE command to do this. You can either use the DB2 command
prompt or place the command in a program and compile and run it. If
you use the DB2 command prompt, you first connect to the DB2
Universal Database Server where the stored procedure will be executed.

For example:

C:> db2 connect to sample

You can type in the command at the DB2 command prompt making sure
you include continuation characters and command delimiters, or you
can place the CREATE PROCEDURE in an ANSI text file. For example, if
we placed the previous command in text file creproc.sql, the command
that you would enter would be:

C:> db2 -td; -vf creproc.sql

where:

• the "-td" option indicates the next character is the delimiter to end
the command. In our example, it is a semicolon (;).

• the "-vf" option indicates that the next token is the file to process
that contains the SQL command script.

The create procedure statement must uniquely identify a stored procedure.
If you want to change the stored procedure to either add or drop
parameters or change functionality, you must use the DROP PROCEDURE
command and then re-add it with the CREATE PROCEDURE command.

1 When DB2/2 was originally developed, DB2/2 did not support the
CREATE PROCEDURE function, and it is possible to write COBOL stored
procedures without doing a CREATE PROCEDURE. Examples of this
method and the parmlist that is required are included in the DB2
Universal Database Application Development Client.
Database Access

212 Chapter 11 Stored Procedures

dbpubb.book Page 212 Wednesday, April 17, 2002 4:10 PM
11.2.5 Compiling Stored Procedures
under DB2 Universal Database
To compile a COBOL stored procedure using Net Express and DB2
Universal Database, follow the steps below:

1 Compile the program which is to be used as a stored procedure with
the DB2 directive, just like any DB2 Universal Database program.
This can be done by adding a $SET statement to your program. See
the Net Express Database Access manual for more details on DB2
directive options.

2 After the program has been added to the Net Express project, select
the program and package it as a Dynamic Link Library (.dll).
Database Access

11.2 DB2 Stored Procedures 213

dbpubb.book Page 213 Wednesday, April 17, 2002 4:10 PM
3 In the build setting for the program, select the Link tab and select
the Advanced category from the drop-down list box. In the "Link
with these Libs" entry field, add db2api.lib and then click the Close
button.
Database Access

214 Chapter 11 Stored Procedures

dbpubb.book Page 214 Wednesday, April 17, 2002 4:10 PM
4 To compile and link the stored procedure, you can then select the
.dll file and select "Rebuild object" from the context menu.

5 Depending upon how you defined your CREATE PROCEDURE, you
are now ready to either test your stored procedure or copy it to the
sqllib\function subdirectory. From the "Rebuild object" command,
select "Deployment" from the Project menu and select the file and
specify where to copy it to.
Database Access

11.2 DB2 Stored Procedures 215

dbpubb.book Page 215 Wednesday, April 17, 2002 4:10 PM
11.2.6 Debugging Stored Procedures
under DB2 Universal Database
Because debugging a stored procedure by its very nature implies
stopping the server and stepping through the server code, it is
imperative that the programmer debugging the stored procedure code
is the only person using the database server. You should therefore
debug DB2 Universal Database stored procedures using a database on
your own workstation if possible.

You can test a COBOL stored procedure without coding a client program
by using:

• the IBM Stored Procedure Builder to run a stored procedure. You
connect to the database where the stored procedure is located, and
then select the stored procedure you want to run. The Store
Procedure Builder then prompts you for INPUT and INOUT values.
The results and any errors are then displayed.

• the DB2 command prompt.

If you don’t get the expected results, you might want to debug the
COBOL stored procedure. If you are running Net Express under
Windows 9x, you can just add a call to CBL_DEBUGBREAK to your stored
procedure and the Net Express debugger will display when the
statement is executed.

If you are running under Windows NT / 2000, DB2 stored procedures are
executed under the db2dari process which means that a call to
CBL_DEBUGBREAK will not work. You need to compile the stored
procedure with a "sleep" function. To do this, define a variable in
Working-Storage that will define how long to put the variable to sleep.

For example:

01 ws-wait pic 9(8) comp-5 value 30000.

Then in the program add this statement so that it executes before you
want to start animating:

call DB2API ’Sleep’ using by value ws-wait

where DB2API is defined as call-convention 74 in a Special Names
paragraph.
Database Access

216 Chapter 11 Stored Procedures

dbpubb.book Page 216 Wednesday, April 17, 2002 4:10 PM
To animate the stored procedure:

1 Invoke the stored procedure by using the IBM Stored Procedure
Builder or running a client program.

2 Start Net Express and click the Step button to display the Start
Animating window.

You must have Administrator authority to attach a debugger to a
running process.

3 Click the Options button.

4 Check the "attach to running process" check box and then click the
OK button.

5 Select the process associated with db2dari.exe and then click the
Debug button. If the db2dari process is not listed yet, click the
Refresh button.
Database Access

11.2 DB2 Stored Procedures 217

dbpubb.book Page 217 Wednesday, April 17, 2002 4:10 PM
6 Click the Break button. The debugger is displayed.

7 Set a break point on the COBOL statement you want to start
animating and then click the Run button. Modify the value of the
wait time to "1" so that you do not have to wait for the sleep timer
to expire.
Database Access

218 Chapter 11 Stored Procedures

dbpubb.book Page 218 Wednesday, April 17, 2002 4:10 PM
When you have completed debugging the stored procedure, just exit
from the Animator.

Tip: If the stored procedure is not working as expected, make sure the
parameters passed to the stored procedure are getting passed in the
expected format by examining each parameter in the Linkage Section.
Database Access

219

dbpubb.book Page 219 Wednesday, April 17, 2002 4:10 PM
Part 4: COBSQL
This part contains the following chapters:

• Chapter 11, “COBSQL”
Database Access

220 Part 4: COBSQL

dbpubb.book Page 220 Wednesday, April 17, 2002 4:10 PM
Database Access

221

dbpubb.book Page 221 Wednesday, April 17, 2002 4:10 PM
12 COBSQL

COBSQL is an integrated preprocessor designed to work with COBOL
precompilers supplied by relational database vendors. It is intended for
use with:

• Oracle Pro*COBOL Version 1.8

• Oracle Pro*COBOL Version 8.04

• Informix Embedded SQL/COBOL Version 9.x

• Sybase Open Client Embedded SQL/COBOL Version 11.5

You should use COBSQL if you are already using either of these
precompilers with an earlier version of a Micro Focus COBOL product
and want to migrate your application(s) to Net Express, or if you are
creating applications that will be deployed on UNIX platforms and
need to access either Oracle or Sybase relational databases.

For any other type of embedded SQL application development, we
recommend that you use OpenESQL.

Note: The Oracle Version 1.8 precompiler does not support nested
programs. COBSQL does not support Object Oriented COBOL syntax
(OO COBOL). If you want to use OO COBOL, therefore, you must use
OpenESQL.

11.1 Overview
You can access the SQL functions offered by the Oracle, Sybase or
Informix Database Management System (DBMS) by embedding SQL
statements within your COBOL program in the form:

EXEC SQL
 SQL statement
END-EXEC
Database Access

222 Chapter 12 COBSQL

dbpubb.book Page 222 Wednesday, April 17, 2002 4:10 PM
and then using the Oracle, Sybase or Informix precompiler to process
the embedded SQL before passing the program to the COBOL Compiler.
The database precompiler replaces embedded SQL statements with the
appropriate calls to database services. Other additions are made to the
source code to bind COBOL host variables to the SQL variable names
known to the database system.

The advantage of embedding SQL in this way is that you do not need to
know the format of individual database routine calls. The disadvantage
is that the source code that you see when you animate your program is
that output by the precompiler and not the original embedded SQL.
You can overcome this disadvantage by using COBSQL.

COBSQL provides an integrated interface between Micro Focus COBOL
and the third-party standalone precompiler, enabling you to animate a
program containing EXEC SQL statements and display your original
source code rather than the code produced by the precompiler.

This chapter shows you how you can use COBSQL in conjunction with
either the Oracle, Sybase or Informix precompiler to compile and
animate your programs.

11.2 Operation
To use COBSQL, specify the PREPROCESS"COBSQL" Compiler directive
when you compile your program. All directives following it are passed
from the Compiler to COBSQL. You can specify Compiler directives by
using $SET statements in your program or via the Net Express Build
Settings screen.

To terminate the directives to be passed to COBSQL, you must use the
ENDP COBOL directive. You can do this by adding the following line
either to the project settings or to the end of the Net Express Build
settings:

Preprocess(Cobsql) csqltype=database_product end-c
 comp5=yes endp;

where database_product is one of Oracle, Sybase or Informix. For
example, for Oracle:

Preprocess(Cobsql) csqltype=oracle end-c comp5=yes endp;
Database Access

11.2 Operation 223

dbpubb.book Page 223 Wednesday, April 17, 2002 4:10 PM
Note: Net Express ignores any directives placed after the semi-colon (;)
in the Build settings. Therefore, if you add the above line to the Build
settings, you must position the line at the end of the settings.

Since the system sets extra default Cobol directives, the above line is
required when putting directives into the Build Settings dialog from
within Net Express.

For both project settings and Net Express Build settings, END-C and
ENDP have the following effect:

• Directives placed before END-C pass to COBSQL

• Directives placed between END-C and ENDP pass via COBSQL to the
precompiler

• Directives placed after ENDP pass to the COBOL compiler.
Therefore, without the ENDP directive, compiler directives continue
to pass to COBSQL rather than to the COBOL compiler.

11.2.1 Specifying Directives
You specify directives to COBSQL as if they were Compiler directives,
but you must put them after the directive PREPROCESS"COBSQL".

It is also possible to add the Cobsql directives to the standard Net
Express directives file cobol.dir.

Notes:

• Each line in the cobol.dir file may contain one or more compiler
directives

• Avoid splitting a compiler directive across multiple lines in the
cobol.dir file

• When the compiler encounters either P(COBSQL) or
PREPROCESS(COBSQL) in the cobol.dir file, the compiler passes the
rest of the line to the pre-processor until it reaches an ENDP

• The compiler treats the pre-process statement and all the options
that follow, up to the ENDP, as a single compiler directive.
Database Access

224 Chapter 12 COBSQL

dbpubb.book Page 224 Wednesday, April 17, 2002 4:10 PM
Therefore, the pre-process statement and all the options must all
appear on a single line in the cobol.dir file.

Alternatively, you can put COBSQL and precompiler directives in a file,
cobsql.dir. This file should reside either in the current directory or in a
directory specified in $COBDIR. COBSQL searches the current directory
and then along the COBDIR path for a cobsql.dir file. Once COBSQL
finds a cobsql.dir file, it stops searching. So, if you have a cobsql.dir file
in the current directory, the COBDIR path is not searched.

Notes:

• Each line in the file cobsql.dir can contain one or more COBSQL
directives

• Since COBOL does not read the file cobsql.dir, avoid putting COBOL
compiler directives into the file

• Avoid splitting a COBSQL directive across multiple lines in the file
cobsql.dir

• When COBSQL encounters either END-C, END or END-COBSQL in the
cobsql.dir file, the rest of the line passes to the database
precompiler

• The options to be passed to the database precompiler must all
appear on a single line in the file cobsql.dir

COBSQL processes cobsql.dir first and then any directives specified via
the Build Settings screen.

A number of the directives can be reversed by placing NO in front of
them, for example, DISPLAY can be reversed using NODISPLAY. All the
directives in the lists below that can have NO placed in front of them
are marked with an asterisk. By default, the NO version of a directive is
set.

You can specify shortened versions of some of the directives. If
applicable, the shortened version of a directive is shown in the lists
below, immediately after the full length version.

Some directives can be passed to COBSQL by the COBOL Compiler (see
the section COBOL Directives), removing the need to specify common
Database Access

11.2 Operation 225

dbpubb.book Page 225 Wednesday, April 17, 2002 4:10 PM
directives more than once. Directives that can be retrieved from the
COBOL Compiler are processed before COBSQL directives.

For example, in the following command line:

cobol testprog p(cobsql) csqlt=ora makesyn end-c
 comp5=yes mode=ansi endp omf(gnt) list();

• The COBSQL directives, terminated by end-c, are csqlt=ora and
makesyn

• The precompiler directives (in this case, Pro*COBOL), terminated by
endp, are comp5=yes and mode=ansi

• The Compiler directives are omf(gnt) and list()

11.2.2 COBSQL Directives
The following is a list of the COBSQL directives:

Directive Description

COBSQLTYPE
CSQLT

Specifies which precompiler to use (ORACLE, SYBASE
or INFORMIX-NEW); for example,
COBSQLTYPE=ORACLE .

CSTART*
CST

Forces COBSQL to load the database support
modules at execution time

CSTOP*
CSP

Forces COBSQL to load the stop run module that
performs a rollback if the application terminates
abnormally

DEBUGFILE*
DEB

Creates a debug (.deb) file

DISPLAY*
DIS

Displays precompiler statistics. Should only be used
when initially verifying that COBSQL is correctly
calling the standalone precompiler.

END-COBSQL
END-C
END

Signals the end of COBSQL directives; remaining
directives, if any, are passed to the precompiler

KEEPCBL Saves precompiled source file (.cbl)
Database Access

226 Chapter 12 COBSQL

dbpubb.book Page 226 Wednesday, April 17, 2002 4:10 PM
11.2.3 COBOL Directives
The following is a list of the COBOL directives:

MAKESYN Converts all COMP host variables to COMP-5 host
variables. The default situation, if MAKESYN is not
set, is that all variables (not just host variables) are
converted from COMP to COMP-5.

NOMAKESYN No conversion of COMP-5 variables or host variables
is carried out

SQLDEBUG Creates a number of files that can be used by Micro
Focus to debug COBSQL. These files include the
output file from the precompiler (normally this has a
.cbl extension), the listing file produced by the
precompiler (this has a .lis extension), plus a COBSQL
debug file which has a .sdb extension. SQLDEBUG
will also turn on KEEPCBL and TRACE.

TRACE* Creates a trace file (.trc)

VERBOSE Displays all precompiler messages and gives status
updates as the program is processed. You should only
use this when initially verifying that COBSQL is
calling the standalone precompiler correctly.

Directive Description

Directive Description

BELL* Controls whether COBSQL sounds the bell when an
error occurs.

BRIEF* Controls whether COBSQL shows SQL error text as
well as the error number.

CONFIRM* Displays accepted/rejected COBSQL directives.

LIST* Saves the precompiler listing file (.lis).

WARNING* Determines the lowest severity of SQL errors to
report.
Database Access

11.3 Building COBSQL Applications 227

dbpubb.book Page 227 Wednesday, April 17, 2002 4:10 PM
11.3 Building COBSQL Applications
It is beyond the scope of this document to list the database support
modules that are required when shipping on a COBSQL application. It
is assumed that the end-user machine already has all the required
support modules installed and that it is correctly configured to
communicate with the database server.

When linking COBSQL applications, use the import library csqlsupp.lib.
This resolves the calls inserted by COBSQL to the COBSQL init and stop
run modules. The calls are actually handled by the module csqlsupp.dll
which needs to be shipped with the application. This general support
module is required for both Oracle and Sybase applications.

Specify the library csqlsupp.lib as one of the libraries to use when
linking the application. The library csqlsupp.lib resides in the directory
Net Express\base\lib. The module csqlsupp.dll resides in the directory
Net Express\base\bin.

If you split the application into a main exe and a number of sub DLL’s,
then you only need to link csqlsupp.lib into the modules that you have
compiled with the COBSQL directives CSTART or CSTOP.

If you compile all programs with CSTART or CSTOP, then you must link
csqlsupp.lib into all the modules. Linking csqlsupp.lib to each module
causes each module to be slightly larger than required. Only one
version of csqlsupp.dll is loaded when the application runs.

If you compile the main program only with CSTART and CSTOP, then
you need to link in the library csqlsupp.lib with the main program only.
Any program that you compile with either the CSTART or the CSTOP
COBSQL directive, you then need to link csqlsupp.lib with the module
for that program.
Database Access

228 Chapter 12 COBSQL

dbpubb.book Page 228 Wednesday, April 17, 2002 4:10 PM
11.4 Using the CP Preprocessor to Expand
Copyfiles

The complete set of methods used within COBOL to manipulate
copyfiles is not available with database precompilers and COBSQL itself
cannot handle included copyfiles. These problems can be overcome,
however, by using the Micro Focus Copyfile Preprocessor (CP).

CP is a preprocessor that has been written to provide other
preprocessors, such as COBSQL, with a mechanism for handling
copyfiles. CP follows the same rules as the COBOL Compiler for handling
copyfiles so any copyfile-related Compiler directives are automatically
picked up and copyfiles are searched for using the COBCPY
environment variable. CP will also expand:

EXEC SQL
 INCLUDE ...
END-EXEC

statements. For more information on CP, refer to the Net Express online
help (look under "CP" in the help file index).

Oracle uses .pco and .cob extensions, Sybase uses .pco and .cbl
extensions and Informix uses .eco, .cob and .mf2 extensions.

Oracle and
Sybase:

For CP to resolve copyfiles and include statements correctly, use the
following COBOL Compiler directives for Sybase and Oracle:

copyext (pco,cbl,cpy,cob) osext(pco)

Informix: For Informix, use:

copyext (eco,mf2,cbl,cpy,cob) osext(eco)

COBSQL can call CP to expand copyfiles before the database
precompiler is invoked. This means that all the copy-related commands
are already resolved so that it appears to the database precompiler that
a single source file is being used.

The other advantage of using CP is that it makes copyfiles visible when
animating.
Database Access

11.4 Using the CP Preprocessor to Expand Copyfiles 229

dbpubb.book Page 229 Wednesday, April 17, 2002 4:10 PM
When CP sees an INCLUDE SQLCA statement, it does the following:

• Searches for a file called sqlca.ext in the current directory where
ext is any copyfile extension as set up by the OSEXT and COPYEXT
Compiler directives. By default these are .cbl and .cpy.

• Searches for sqlca.ext along the COBCPY path.

• An example sqlca.cpy file is provided in the source directory under
your Net Express base installation directory. If the SQLCA file
supplied by the database vendor is not located on the COBCPY
path, this Micro Focus demonstration version of the SQLCA will be
used.

Note: Using the file sqlca.cpy can result in errors when the program
is run.

You can specify the CP preprocessor’s SY directive to prevent CP
expanding the SQLCA include file, for example:

preprocess"cobsql" preprocess"cp" sy endp

You should always use CP’s SY directive when processing Sybase code
because Sybase expects to expand the SQLCA itself.

As Oracle can produce code with either COMP or COMP-5 variables, it
has two sets of copyfiles. The standard sqlca.cob, oraca.cob and
sqlda.cob all have COMP data items. The sqlca5.cob, oraca5.cob and
sqlda5.cob files have COMP-5 data items. If you are using the
comp5=yes Oracle directive, you must set the COBSQL directive
MAKESYN to convert the COMP items in the SQLCA to COMP-5.

If CP produces errors when attempting to locate copyfiles, check to
make sure that the OSEXT and COPYEXT Compiler directives are set up
correctly. COPYEXT should be set first and should include as its first
entry the extension used for source files (.pco or .eco, for example).

If these are set correctly, ensure that the copyfile is either in the current
directory or in a directory on the COBCPY path.

When using CP in conjunction with COBSQL, SQL errors inside included
copyfiles will be reported correctly. Without CP, the line counts will be
wrong, and the error will either go unreported or will appear on the
wrong line.
Database Access

230 Chapter 12 COBSQL

dbpubb.book Page 230 Wednesday, April 17, 2002 4:10 PM
11.5 National Language Support (NLS)
COBSQL error messages can be displayed in different languages
depending on the setting of the LANG environment variable. For full
details on NLS and how to set the LANG environment variable, look up
NLS and LANG in the help file index.

Most database clients include some NLS capability but their
requirements for the setting of the LANG environment variable differ
from those of this COBOL system. We recommend, therefore, that you
use the alternative environment variable, COBLANG.

The setting of COBLANG only affects this COBOL system, allowing the
LANG environment variable to be used by the database client. Note that
for COBLANG to work correctly, mflangnn.lbr, where nn is the setting of
COBLANG, must be available in the Net Express \bin directory. So if
COBLANG=05 (UK NLS messages), the file mflang05.lbr must be present
in Net Express\Base\Bin.

The setting of COBLANG only affects the COBSQL error messages; error
messages produced by the database precompiler are not translated by
COBSQL.

11.6 Examples
The following examples show, for the Oracle, Sybase and Informix
precompilers, command lines which can be entered at the Net Express
Command Prompt to compile a program using COBSQL.

11.6.1 Oracle
cobol sample.pco anim nognt preprocess(cobsql)
 cstart cstop CSQLT=ORA end-c comp5=yes endp;

UNIX: cob -a -v -k sample.pco
 -C "p(cobsql) cstop cobsqltype==ORACLE"
Database Access

11.7 Troubleshooting 231

dbpubb.book Page 231 Wednesday, April 17, 2002 4:10 PM
11.6.2 Sybase
cobol example1.pco confirm preprocess(cobsql)
 cstop csp cobsqltype=sybase preprocess(cp) sy endp;

UNIX: cob -a -v -P -k example1.pco
 -C "p(cobsql) csp CSQLT==syb"

11.6.3 Informix

UNIX: cob -a -k demo1.eco
 -C "p(cobsql) cobsqltype==informix-new"

11.7 Troubleshooting
Initially, you should check each of the items outlined below.

• Basic network connectivity

Forget SQL, and determine whether the client and server are
communicating. For TCP/IP, check whether you can ping the server
from the workstation and vice versa. If host names don’t work, try
raw IP addresses. For PC protocols, try mounting a network drive or
sending messages.

• SQL networking software

Check that the SQL networking software is "talking" correctly to
the network software. Many SQL vendors supply a ping utility
which will show whether the SQL network is set up correctly.

• Interactive SQL

If the SQL network is okay, try some interactive SQL. Most vendors
supply a simple utility that allows you to enter SQL from the
keyboard and view the results. Most vendors also supply a sample
database that is useful for this purpose.
Database Access

232 Chapter 12 COBSQL

dbpubb.book Page 232 Wednesday, April 17, 2002 4:10 PM
• Standalone Precompiler

Verify that the standalone precompiler works. There may be an icon
or a command line for the precompiler. Verify that it can produce
COBOL code correctly. It is normal for some sample applications to
be supplied with the precompiler.

• Preprocessed application

Check that a preprocessed application runs okay. Pass the expanded
program through the COBOL Compiler and then try to run it.

• COBSQL with minimal directives

Try COBSQL with minimal directives. Set up a project in Net Express,
place the SQLCA copyfile into the directory with the sample
program (prior to running the precompiler), and see if this works.

If you continue to have problems, please contact Micro Focus Support.
To help Technical Support locate the cause of the problem:

• Use the COBSQL directive SQLDEBUG

• Send a zip file containing the following to Technical Support:

• The original source

• The expanded source (as produced by the database precompiler)

• The trace file (which will have the extension .trc)

• The database list file (which will normally have the extension
.lis)

• The command line debug file (which will have the extension
.sdb)

• The project file (which has the same name as the project but
with the extension .app)

• The COBSQL directive settings used
Database Access

11.7 Troubleshooting 233

dbpubb.book Page 233 Wednesday, April 17, 2002 4:10 PM
11.7.1 Common Problem Areas
If you cannot locate the source of the problem, check each of the
following:

• Latest versions

Ensure that you are using the latest version of all the products
involved.

• COMP/COMP-5 Conflicts

Check the vendor’s documentation and example applications.

• Configuration

Check that environment variables, PATH and configuration file
settings are set up correctly.

• Directives

By default, COBSQL does not display the command line it passes to
the database precompiler. Setting the SQLDEBUG directive enables
the command line to be displayed (you will need to do this if the
precompiler gives command line errors). Possible causes of
command line errors are that the directives to be passed to the
precompiler are incorrect or that the length of the precompiler
command line has been exceeded.

• Memory

COBSQL may display the following error because the database
precompiler has terminated unexpectedly:

* CSQL-F-021: Precompiler did not complete -- Terminating

This may be because the Operating System has run out of memory
attempting to execute the database precompiler.

• Missing output files

COBSQL may display the following errors because it cannot find the
precompiler’s output file. This may be because the precompiler did
not produce an output file. The normal reason for this is that the
precompiler hit a fatal error which meant it could not create the
output file.

* CSQL-E-024: Encountered an I/O on file filename
* CSQL-E-023: File Status 3 / 5
Database Access

234 Chapter 12 COBSQL

dbpubb.book Page 234 Wednesday, April 17, 2002 4:10 PM
where filename is the name of the file produced by the database
precompiler.

• Premature end of expanded source

If COBSQL reports the error "Premature end of expanded source"
and the precompiler runs correctly, this indicates that COBSQL has
not been able to match the original source lines with the lines
produced by the database precompiler.

Another possible reason for COBSQL reporting this error is that the
program does not contain any SQL. Generally, if the database
precompiler does not come across any SQL it will abort the creation
of its output file part way through, causing this error to be
displayed.

11.7.2 Oracle Considerations
You can use Oracle Pro*COBOL 1.8 or Oracle Pro*COBOL 8.x. The
following sections describe the items to consider for each of these
versions.

11.7.2.1 Oracle Pro*COBOL 1.8 Considerations
• The following Oracle precompiler options can have a marked effect

on the behaviour and the memory requirements of an Oracle
application. We recommend that you take time to review your
Oracle documentation before changing the setting of these
directives.

DBMS
HOLD_CURSOR
MAXOPENCURSORS
MODE
RELEASE_CURSOR

• Within an Oracle program it is possible to use the ALTER SESSION
command to change the OPTIMIZER_GOAL. This can have a
profound effect on the performance of the application. Before
using this syntax, we recommend that you consider what is the best
optimisation for an application in the general case rather than for a
particular SQL statement. If you need to change the performance of
one particular statement, it is probably better to use HINTS. Consult
Database Access

11.7 Troubleshooting 235

dbpubb.book Page 235 Wednesday, April 17, 2002 4:10 PM
your Oracle documentation for further information on ALTER
SESSION, OPTIMIZER_GOAL and HINTS.

• Oracle provides a method of reducing network access by using
arrays within Embedded SQL statements. This enables the
application to perform ’batch’ SQL commands, in that more than
one row can be acted upon in a single SQL statement. See the
section Host Arrays in the chapter Host Variables for more details.

The use of arrays enables an application, for example, to fetch ten
rows at a time instead of one at a time. Oracle supply an example
program (normally called sample3.pco) that uses an array to fetch
multiple rows. Arrays are documented in the Pro*Cobol
Supplement to the ORACLE Precompilers Guide.

• Pro*Cobol treats BINARY host variables as though they had been
defined with a picture clause of COMP. This means that BINARY
items will also be converted to COMP-5 when the Pro*Cobol
comp5=yes option is used.

• Pro*Cobol always needs to be supplied with an include directive,
unless the SQLCA copyfile is in the current directory, because it
needs to know the location of the SQLCA copyfile. If this is not
supplied, Pro*Cobol gives an error on filename.pco, where
filename can be any string of eight characters.

• When Pro*Cobol runs, it can generate useful information. When
the COBSQL VERBOSE directive is used, COBSQL displays as much of
this information as it can.

To get the maximum information from Pro*Cobol, set the
Pro*Cobol directive xref=yes. You can add this directive to the
Pro*Cobol configuration file $ORACLE_HOME\PROxx\pcbcfg.cfg
where:

• By using the COBSQL DISPLAY directive, the current Pro*Cobol
directives can be seen on the screen. This will be followed by the
statistical information created by Pro*Cobol.

xx is the Pro*COBOL version (for example, for
Oracle 8.0 this is PRO80)

$ORACLE_HOME is the root directory for the Oracle
installation on your machine
Database Access

236 Chapter 12 COBSQL

dbpubb.book Page 236 Wednesday, April 17, 2002 4:10 PM
• If the COBOL LIST directive is used, COBSQL passes any information
it has collected from the precompiler to the COBOL checker for
inclusion at the the bottom of the COBOL listing.

11.7.3 Oracle Pro*COBOL 8.x
Considerations
Support for Pro*COBOL 8.0 has been added to COBSQL which now
works correctly with the Pro*COBOL 8.0 4.0 precompiler.

11.7.3.1 Directives

To use COBSQL with Oracle 8, you should use the following directives:

11.7.3.2 Directives

If you are migrating programs from Pro*COBOL 1.x to 8.x, you should
be aware of the following:

• Within the Data Division:

• You should terminate all SQL statements with a period

• Only ANSI comments are supported. Comments starting with *>
in any column are not supported

• Support for nested programs

Define all inserted variables as GLOBAL including the data items
inserted by COBSQL that support the EBCDIC to ASCII conversions.

Directive Description

CBL2ORA8
C28

This puts calls into the Oracle 8 specific support
modules ora8prot and ora8lib. Both of these
modules are built into csqlsupp.dll.

COBSQLTYPE
CSQLT

EXEC SQL preprocessor. Use the options ORACLE8
and ORA8 to use Pro*COBOL 8.x with COBSQL.
Database Access

11.7 Troubleshooting 237

dbpubb.book Page 237 Wednesday, April 17, 2002 4:10 PM
• Oracle 8 no longer requires a declare section as this can cause
problems with the Oracle COMP to COMP-5 conversion.

If the Oracle directive DECLARE_SECTION=NO is set (the default),
Oracle converts all COMP, BINARY or COMP-4 data items to COMP-5.

To limit the conversion of items to the declare section, set:

• DECLARE_SECTION=YES or MODE=ANSI

or

• The Pro*COBOL directive COMP5=NO and the COBSQL
directive MAKESYN

• Extra data types supported by Pro*COBOL 8.x are:

• PACKED-DECIMAL

These data items are treated in the same way as COMP-3 data
items.

• COMP-4

• PIC 9(4) COMP / COMP-4 / BINARY / COMP-5

• PIC 9(4) USAGE DISPLAY

• PIC s9(4) USAGE DISPLAY SIGN TRAILING

• PIC s9(4) USAGE DISPLAY SIGN TRAILING SEPARATE

• PIC s9(4) USAGE DISPLAY SIGN LEADING

• PIC s9(4) USAGE DISPLAY SIGN LEADING SEPARATE

This type was previously supported as the Oracle DISPLAY
datatype.

11.7.3.3 Micro Focus COBOL

Some Micro Focus COBOL language extensions, data definitions and
section headings are rejected by Pro*COBOL 8.x:

• All pointer data types

• 88 level variables

• Constants in a Value clause
Database Access

238 Chapter 12 COBSQL

dbpubb.book Page 238 Wednesday, April 17, 2002 4:10 PM
• Items defined as external-form

• Local-Storage Section

• Thread-Local-Storage Section

To overcome this you need to put these items into copybooks which are
not opened by Pro*COBOL. However, this does not work if you use CP
which expands copybooks before Pro*COBOL is invoked. This could
cause a problem if you are using htmlpp which calls CP to expand
copybooks. You must therefore invoke htmlpp before COBSQL.

For example, the following compile line works:

COBOL PROG P(HTMLPP) PREPROCESS(COBSQL) CSQLT=ORACLE8

whereas this line does not:

COBOL PROG PREPROCESS(COBSQL) CSQLT=ORACLE8 P(HTMLPP)

You must define at least one variable within the Working-Storage
Section for Pro*COBOL 8.0.4 to add its variables to the generated .cbl
file.

11.7.4 Sybase Considerations
• If CP is not used with COBSQL to locate copyfiles, the copyfile to be

brought in by the Sybase precompiler needs to be fully qualified.
The Sybase precompiler does not search for any extensions.

• If the Sybase precompiler has problems locating the correct
language to use to report messages on the client, check that the
Sybase file, locales.dat is configured correctly.

If the default setting for the client Operating System has been
configured, but Sybase still reports national language support
errors, use the LANG environment variable to override the setting in
the locales.dat file.
Database Access

11.7 Troubleshooting 239

dbpubb.book Page 239 Wednesday, April 17, 2002 4:10 PM
For example if the Windows NT client was causing problems and
the locales.dat file contained the following setting for
Windows NT:

[NT]
locale = default, us_english, iso_1
locale = enu, us_english, iso_1
locale = fra, french, iso_1
locale = deu, german, iso_1

then the LANG setting for English would be:

LANG=enu

• It can be difficult to identify Sybase error messages. To help
COBSQL identify them, you can modify the esql.loc file. Use a text
editor to edit the esql.loc file to change the layout of the messages
to the following:

SYB-number-type-text

where the parameters are:

For example, a typical entry in the esql.loc file might be:

9 = M_PRECLINE, "Warning(s) during check of query on line
%1!."

and this would be changed to read:

9 = M_PRECLINE, "SYB-W-2009 Warning(s) during check of
query on line %1!."

It is recommended that you make a copy of esql.loc before altering
it. Using the modified version, COBSQL can detect the full range of
Sybase error messages.

SYB- A string which indicates to COBSQL that this is a
modified Sybase error message.

number- A unique, four digit error number assigned to the
Sybase error.

type- Indicates the severity of the errror; some of the
Sybase messages are only warnings rather than
normal or fatal errors.

text The original Sybase error message.
Database Access

240 Chapter 12 COBSQL

dbpubb.book Page 240 Wednesday, April 17, 2002 4:10 PM
The location of esql.loc is dependent on the language and code
page used. This is defined in the locales.dat file. If the definition of
the default language for the AIX platform was as follows:

[aix]
locale = C, us_english, iso_1
locale = En_US, us_english, iso_1
locale = en_US, us_english, iso_1
locale = default, us_english, iso_1

The default langauge would be us_english, using the iso_1 code
page, so the copy of esql.loc that is to be used is:

/sybase home/locales/messages/us_english/iso_1/esql.loc

where sybase home is the directory that the Sybase client is installed
into.

For more information on how Sybase uses and locates the different
error message files, refer to your Sybase Client Reference Manual.

• To use Sybping with different Sybase servers, each server should
have a service defined. The Sybase product sqledit shows you how
to enter the required information.

• If the name of the server is not specified when connecting to
Sybase, Sybase searches for an environment variable called
DSQUERY. This can be set within the environment variable section of
a project. Doing this enables different projects to connect to
different Sybase servers.

• When the Sybase precompiler runs, it can generate useful
information. If the COBSQL directive VERBOSE is set, COBSQL
displays as much of this information as it can.

• By using the COBSQL DISPLAY directive, the statistical information
created by the Sybase precompiler can be seen on the screen.

• If the COBOL LIST directive is set, COBSQL passes any information it
has collected from the precompiler to the COBOL checker for
inclusion at the end of the COBOL listing.

• The Sybase precompiler accepts programs that do not contain any
SQL statements, and produces an output file. This means that all of
the programs in a project can be compiled successfully. However, it
also means that the Sybase precompiler inserts all the Working-
Storage items and COBOL support code that it would insert for a
program that contains Sybase SQL statements into a non-Sybase
Database Access

11.7 Troubleshooting 241

dbpubb.book Page 241 Wednesday, April 17, 2002 4:10 PM
program. This makes the program larger, and may effect its
performance.

• With Sybase System 11 on Windows NT, the Sybase COBOL
precompiler can be supplied separately to the Sybase System 11
Server. If this is the case, care must be taken when installing the
Sybase COBOL precompiler as it is supplied with its own version of
the Open Client support files and problems can arise if the two
products have different versions of these files. In this situation, we
strongly recommend that you contact Sybase support before
proceeding with the installation of the Sybase System 11 COBOL
precompiler.

• You should take particular care if you are installing the Sybase
client onto a machine that has the Server installed onto it (or vice
versa). Installing the Sybase client only does not cause any
problems.

11.7.5 Informix Considerations
• Informix uses the eco, cob and mf2 file extensions. For CP to resolve

copybooks and include statements correctly, use the following
COBOL Compiler directives:

copyext(eco,mf2,cob,cpy,cbl) osext(eco)

• Under UNIX, because COBSQL invokes the Informix precompiler,
the INFORMIXCOB, INFORMIXCOBTYPE and INFORMIXCOBDIR
environment variables all need to be setup before using COBSQL.
For more information about these environment variables, refer to
the Informix COBOL/ESQL Programmers Guide.

• Informix only produces error messages in its list files. Normally the
error message will contain the line the error occured on. If COBSQL
cannot locate the line number from the error message, it will not
report the error.

• To run COBSQL correctly with Informix, the INFORMIXDIR
environment variable should be set before using COBSQL.
Database Access

242 Chapter 12 COBSQL

dbpubb.book Page 242 Wednesday, April 17, 2002 4:10 PM
Database Access

243

Index

dbpubb.book Page 243 Wednesday, April 17, 2002 4:10 PM
A

Array
indicator arrays 33

Arrays
host arrays 27

AuthID
XDB Server 175

B
Batch

script 181
bigint data type 40
binary data type 48

COBSQL - Informix 50
Bind utility 184
Binding

DB2 169
Building an application 89

C
CALL embedded SQL statement 199
Catalog Browser 177
char data type 41
Character data types 41
CHKECM directive 167
CHKECM(TRACE) directive 167
COBSQL 221

and Informix 241

and Oracle 234
and Sybase 238
building applications 227
CP 228
directives 223
END-C 222
ENDP 222
examples 230
operation 222
Oracle 8 236
Oracle 8 Directives 236
Oracle and Micro Focus COBOL 237
Oracle migrating versions 236
overview 221
shipping applications 227
troubleshooting 231

Codepage
and SQL Option 194

Compiler
remote DB2 server 151

Compiler directive
DB2 152

Compiling 89
DB2 149

Compound SQL
DB2 141

Concat operator
DB2 147

CONCURRENCY 56
Configuration

SQL Option 183
CONNECT 88
Connecting to a database 88
Converting data types 35

COBSQL 35
Copybook 182
Database Access

244

dbpubb.book Page 244 Wednesday, April 17, 2002 4:10 PM
Copyfiles
odbc.cpy 35

Cursors 51
closing 56
CONCURRENCY 56
declaring 52
dynamic SQL 76
opening 54
positioned DELETE 57
positioned UPDATE 57
retrieving data 55
SCROLLOPTION 56
using 51

D
Data

importing and exporting 179
Data truncation 33
Data types 35

bigint 40
binary 48
char 41
character 41
converting 35
date 46
decimal 45
double 44
float 44
int 39
integers 37
numeric 45
real 44
smallint 38
time 46
timestamp 46
tinyint 37
varbinary 48
varchar 41

Database
location 177
request module 184

security 175
date data type 46

COBSQL - Informix 48
DB2 139, 199

Binding 169
Compiler directive 152
Compiling 149
error codes 166
INIT directive 149
Linking 168
Nested COBOL programs 148
Object oriented COBOL 139, 199
SQL Option 171
SQLCA 147
UNIX 169

DB2(CTRACE) directive 167
.dbr file 184
Debug files

creating 167
decimal data type 45
Declaration Generator utility 182
DECLARE CURSOR 52
DECLARE TABLE statement

DB2 145
Default

XDB Server 173
Demonstration applications 90
DESCRIBE 69
double data type 44
DSNTIAR facility 188
DSNTIAUL utility 179
Dynamic SQL 71

CALL statements 77
cursors 76
EXECUTE IMMEDIATE 75
executing 75
FREE 76
preparing statements 73
types of statement 71
variable information 66
Database Access

245

dbpubb.book Page 245 Wednesday, April 17, 2002 4:10 PM
E
EBCDIC codepage

and SQL Option 194
ECM 139, 199
Embedded SQL 139, 171, 199
Error codes

DB2 166
EXECSP embedded SQL statement 199
EXECUTE 68
EXECUTE IMMEDIATE 75
External Checker Module 139, 199

F
FETCH 55, 68
float data type 44
FREE 76

G
Gateway Profile utility 186

H
Host variable 182
Host variables

data truncation 33
declaring 26
groups and indicator arrays 146
host arrays 27
indicator variables 31
integer 145
null values 32
overview 25
qualified 145

I
INCLUDE statement

DB2 144
Indicator variables 31
INIT directive

DB2 149
int data type 39

COBSQL 39, 40
OpenESQL 39

Integer data types 37

L
Linking

DB2 168
SQL option 192

Location 177

M
Migrate utility

SQL Option 181
Migration

SQL preprocessor 188

N
National Language Support 230
National language support

and SQL Option 180, 194
Nested COBOL programs

DB2 148
NLS 230
NOT operator

DB2 147
Null value 32
Database Access

246

dbpubb.book Page 246 Wednesday, April 17, 2002 4:10 PM
numeric data type 45

O
Object Oriented COBOL

DB2 139, 199
Object-oriented COBOL

SQL option 187
OCI support 82
ODBC

data source name 81
drivers 81
DSN 81

ODBC data source
OpenESQL Assistant 117

odbcrw32.dll 89
OPEN 68
OpenESQL Assistant 111

column 119, 124
connecting 117
create new query 125
de-selecting table 122
options 112
ORDER BY clause 134
query 119
starting 116
table 119

ORACLE OCI support 82

P
Positioned

DELETE 57
UPDATE 57

positioned update 96
PREPARE 68, 71, 73
Preprocessor

SQL option 186

Q
Query 177

R
real data type 44
Referential integrity 181
Remote

database package 184
Remote DB2 server

compiling 151

S
SCROLLOPTION 56
SELECT Query

OpenESQL Assistant 126
SELECT search criteria

OpenESQL Assistant 130
smallint data type 38

COBSQL 38, 39
OpenESQL 38

SQL
query 177
script 181
SQL Communications Area 147
SQLCA 147

SQL Communications Area 61
SQL Descriptor Area 66
SQL Option 171

NLS considerations 180
NLS environment 194

SQL option
codepage 194
DSNTIAR facility 188
Gateway Profile utility 186
linking 192
object-oriented COBOL 187
Database Access

247

dbpubb.book Page 247 Wednesday, April 17, 2002 4:10 PM
preprocessor 186
security 188

SQL preprocessor
migration 188
XDB directive 192

SQL statements
case 18
overview 18

SQL Wizard 174
SQLCA 61, 186

DB2 147
using 95

sqlca.cpy 89, 95
sqlcode 61, 62
SQLDA 66, 187

using 67
sqlda.cpy 66, 89
sqlstate 61, 63
Stored procedures 199
Superuser 175

T
Table

in SQL Option 177, 178
time data type 46

COBSQL - Informix 48
timestamp data type 46
tinyint data type 37

COBSQL 37
Transaction 92
Truncation 33

U
UNIX

DB2 169
User Defined Functions

DB2 142

V
varbinary data type 48

COBSQL - Informix 50
varchar data type 41

COBSQL 42
COBSQL - Informix 43
DB2 41
OpenESQL 41

Variables
host arrays 27
host variables 25
indicator variables 32

W
Warning flags 63
WHENEVER 64
Wizard

SQL 174

X
XDB

database 171
system catalog 177
version compatibility 197

XDB directive
SQL preprocessor 192

XDB Server 173
security 175
starting 174

XML
convert information 108

XML support 108
Database Access

248

dbpubb.book Page 248 Wednesday, April 17, 2002 4:10 PM
Database Access

	Database Access
	Table of Contents
	Preface
	Audience
	Notation

	Part 1: Introduction
	1 Introduction
	1.1 Overview
	1.2 Embedded SQL
	1.2.1 Case
	1.2.2 OpenESQL Assistant

	1.3 Building your Application
	1.3.1 Internet Application Wizard

	1.4 Multiple Program Modules

	2 Host Variables
	2.1 Declaring Host Variables
	2.1.1 OpenESQL and DB2 Preprocessors

	2.2 Host Arrays
	2.2.1 The FOR Clause
	2.2.2 Determining the Number of Rows Processed
	2.2.2.1 The DB2 Preprocessor

	2.3 Indicator Variables
	2.3.1 Null Values
	2.3.2 Data Truncation
	2.3.3 Indicator Arrays

	3 Data Types
	3.1 Converting Data Types
	3.1.1 COBSQL Preprocessor
	3.1.1.1 Oracle
	3.1.1.2 Sybase
	3.1.1.3 Informix

	3.2 Integer Data Types
	3.2.1 Tiny Integer
	3.2.1.1 COBSQL Preprocessor

	3.2.2 Small Integer
	3.2.2.1 OpenESQL Preprocessor
	3.2.2.2 COBSQL Preprocessor - Oracle
	3.2.2.3 COBSQL Preprocessor - Sybase
	3.2.2.4 COBSQL Preprocessor - Informix

	3.2.3 Integer
	3.2.3.1 OpenESQL Preprocessor
	3.2.3.2 COBSQL Preprocessor - Oracle
	3.2.3.3 COBSQL Preprocessor - Sybase
	3.2.3.4 COBSQL Preprocessor - Informix

	3.2.4 Big Integer

	3.3 Character Data Types
	3.3.1 Fixed-length Character Strings
	3.3.2 Variable-length Character Strings
	3.3.2.1 OpenESQL and DB2 Preprocessors
	3.3.2.2 COBSQL Preprocessor
	3.3.2.3 COBSQL - Informix

	3.4 Approximate Numeric Data Types
	3.4.1 OpenESQL Preprocessor
	3.4.2 DB2 Preprocessor
	3.4.3 COBSQL Preprocessor

	3.5 Exact Numeric Data Types
	3.5.1 COBSQL Preprocessor

	3.6 Date and Time Data Types
	3.6.1 DB2 Preprocessor
	3.6.2 COBSQL Preprocessor
	3.6.2.1 Oracle
	3.6.2.2 Sybase
	3.6.2.3 Informix

	3.7 Binary Data Types
	3.7.1 OpenESQL Preprocessor
	3.7.2 DB2 Preprocessor
	3.7.3 COBSQL Preprocessor
	3.7.3.1 Oracle
	3.7.3.2 Sybase
	3.7.3.3 Informix

	4 Cursors
	4.1 Declaring a Cursor
	4.1.1 Object Oriented COBOL Syntax

	4.2 Opening a Cursor
	4.3 Using a Cursor to Retrieve Data
	4.4 Closing a Cursor
	4.5 Cursor Options
	4.6 Positioned UPDATE and DELETE Statements
	4.7 Using Cursors

	5 Data Structures
	5.1 SQL Communications Area (SQLCA)
	5.1.1 The SQLCODE Variable
	5.1.2 The SQLSTATE Variable
	5.1.3 The Warning Flags
	5.1.4 The WHENEVER Statement
	5.1.5 SQLERRM
	5.1.6 SQLERRD

	5.2 The SQL Descriptor Area (SQLDA)
	5.2.1 Using the SQLDA
	5.2.1.1 The PREPARE and DESCRIBE Statements
	5.2.1.2 The FETCH Statement
	5.2.1.3 The OPEN or EXECUTE Statements

	5.2.2 The DESCRIBE Statement

	6 Dynamic SQL
	6.1 Dynamic SQL Statement Types
	6.1.1 Execute a Statement Once
	6.1.2 Execute the Same Statement More than Once
	6.1.3 Select a Given List of Data
	6.1.4 Select any Amount of Data

	6.2 Preparing Dynamic SQL Statements
	6.3 Executing Dynamic SQL Statements
	6.3.1 Execute Immediate
	6.3.2 FREE Statement (COBSQL Informix)

	6.4 Dynamic SQL Statements and Cursors
	6.5 CALL Statements

	Part 2: OpenESQL
	7 OpenESQL
	7.1 ODBC Drivers and Data Source Names
	7.1.1 Installing ODBC Drivers
	7.1.2 Setting up a Data Source Name

	7.2 ORACLE OCI Support
	7.3 SQL Compiler Directive
	7.4 Data Sources
	7.5 Database Connections
	7.6 Keywords
	7.7 Building an Application
	7.8 Demonstration Applications
	7.9 Managing Transactions
	7.10 Data Types
	7.11 Using the SQLCA
	7.12 Dynamic SQL
	7.13 Positioned Update
	7.13.1 Limitations

	7.14 Using OpenESQL with Web and Application Servers
	7.14.1 Thread Safety
	7.14.2 Connection Management
	7.14.3 Transactions
	7.14.4 User Accounts, Schemas and Authentication
	7.14.5 Transaction Wrapper Sample

	7.15 XML Support
	7.15.1 PERSIST Statement

	8 OpenESQL Assistant
	8.1 Setting OpenESQL Assistant Options
	8.2 Starting the OpenESQL Assistant
	8.3 Connecting to a Data Source
	8.4 Selecting a Table
	8.4.1 Selecting a Column
	8.4.2 De-selecting a Column
	8.4.3 Selecting all the Columns in a Table

	8.5 De-selecting a Table
	8.6 Displaying Column Details
	8.7 Creating a New Query
	8.7.1 Selecting a Different Table
	8.7.2 Changing the Query Type
	8.7.3 Connecting to a Different Data Source

	8.8 Running a Select Query
	8.9 Specifying Search Criteria
	8.10 Specifying Order Data is Retrieved

	Part 3: DB2
	9 DB2
	9.1 Data Types
	9.1.1 Decimal
	9.1.2 Additional Data Types

	9.2 Compound SQL
	9.3 User Defined Functions
	9.4 Extensions to Embedded SQL Support
	9.4.1 The INCLUDE Statement
	9.4.2 The DECLARE TABLE Statement
	9.4.3 Integer Host Variables
	9.4.4 Qualified Host Variables
	9.4.5 Host Variable Groups and Indicator Arrays
	9.4.6 The NOT Operator
	9.4.7 The Concat Operator (|)
	9.4.8 SQL Communications Area
	9.4.9 Support for Object Oriented COBOL Syntax
	9.4.10 Support for Nested COBOL programs

	9.5 DB2 INIT Directive
	9.6 Compiling
	9.6.1 Compiling Programs that use a Remote DB2 Server
	9.6.1.1 Automated Compiles

	9.6.2 DB2 Compiler Directive

	9.7 Error Codes
	9.8 Creating Debug Files
	9.9 Linking
	9.10 Binding
	9.11 Publishing your DB2 Applications on UNIX

	10 SQL Option for DB2
	10.1 Overview
	10.2 SQL Option Components
	10.3 XDB Server
	10.3.1 Server Configuration Utility
	10.3.2 Server Administration Options

	10.4 SQL Wizard
	10.4.1 Managing System Security and Priorities
	10.4.2 Managing Locations, Tables and Queries
	10.4.3 Creating and Running SQL Queries
	10.4.4 Entering Data Directly into a Table
	10.4.5 Importing and Exporting Data
	10.4.5.1 Import/Export NLS Considerations

	10.4.6 Running Batch Scripts

	10.5 Migrate Utility
	10.6 Execute SQL Option
	10.7 Declaration Generator Utility
	10.8 Options Utility
	10.9 Bind Utility
	10.10 Gateway Profile Utility
	10.11 SQL Option Preprocessor
	10.11.1 SQL Communications Area (SQLCA)
	10.11.2 SQL Descriptor Area (SQLDA)
	10.11.3 Support for Object Oriented COBOL Syntax
	10.11.4 Security
	10.11.5 DSNTIAR Facility
	10.11.6 Migration Considerations
	10.11.6.1 Invoking the Preprocessor
	10.11.6.2 Directives in Comments
	10.11.6.3 Ambiguous References
	10.11.6.4 Debug Files
	10.11.6.5 Maximum number of SQL statements
	10.11.6.6 Setting Additional Directives under IDE

	10.11.7 XDB Directive
	10.11.8 Error Messages
	10.11.9 Linking
	10.11.10 Distributing Your Application

	10.12 SQL Option NLS Environment
	10.13 Using Existing XDB Data
	10.14 Tips

	11 Stored Procedures
	11.1 OpenESQL Stored Procedures
	11.2 DB2 Stored Procedures
	11.2.1 Working with Stored Procedures
	11.2.2 Writing and Preparing Stored Procedures
	11.2.2.1 Features of a Stored Procedure
	11.2.2.2 Preparing Stored Procedures
	11.2.2.3 How an Application Works with a Stored Procedure

	11.2.3 Writing and Preparing Applications to Use Stored Procedures
	11.2.3.1 Executing the SQL Statement CALL
	11.2.3.2 Parameter Conventions
	11.2.3.3 Using Indicator Variables to Speed Processing
	11.2.3.4 Declaring Data Types for Passed Parameters
	11.2.3.5 Limitations

	11.2.4 Defining Stored Procedures under DB2 Universal Database
	11.2.5 Compiling Stored Procedures under DB2 Universal Database
	11.2.6 Debugging Stored Procedures under DB2 Universal Database

	Part 4: COBSQL
	12 COBSQL
	11.1 Overview
	11.2 Operation
	11.2.1 Specifying Directives
	11.2.2 COBSQL Directives
	11.2.3 COBOL Directives

	11.3 Building COBSQL Applications
	11.4 Using the CP Preprocessor to Expand Copyfiles
	11.5 National Language Support (NLS)
	11.6 Examples
	11.6.1 Oracle
	11.6.2 Sybase
	11.6.3 Informix

	11.7 Troubleshooting
	11.7.1 Common Problem Areas
	11.7.2 Oracle Considerations
	11.7.2.1 Oracle Pro*COBOL 1.8 Considerations

	11.7.3 Oracle Pro*COBOL 8.x Considerations
	11.7.3.1 Directives
	11.7.3.2 Directives
	11.7.3.3 Micro Focus COBOL

	11.7.4 Sybase Considerations
	11.7.5 Informix Considerations

	Index

