{VERSION 5 0 "IBM INTEL NT" "5.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 1 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 1 }{CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 1 } {PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Maple Output" -1 11 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }3 3 0 0 0 0 1 0 1 0 2 2 0 1 }{PSTYLE "Maple Plot" 0 13 1 {CSTYLE "" -1 -1 " " 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }} {SECT 0 {EXCHG {PARA 0 "" 0 "" {TEXT -1 1 " " }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "f:= x-> (x+2)^2 * (x-1);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"fGf*6#%\"xG6\"6$%)operatorG%&arrowGF(*&),&9$\"\"\" \"\"#F0F1F0,&F/F0F0!\"\"F0F(F(F(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "expand(f(x));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,(*$ )%\"xG\"\"$\"\"\"F(*&F'F()F&\"\"#F(F(\"\"%!\"\"" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 34 "Limit(f(x),x=infinity):%=value(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/-%&LimitG6$*&),&%\"xG\"\"\"\"\"#F+F,F+,&F*F +F+!\"\"F+/F*%)infinityGF0" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 35 "Limit(f(x),x=-infinity):%=value(%);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#/-%&LimitG6$*&),&%\"xG\"\"\"\"\"#F+F,F+,&F*F+F+!\"\"F+/F*,$%)inf inityGF.F0" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 36 "diff(f(x),x); # de eerste afgeleide " }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,&*(\"\"#\" \"\",&%\"xGF&F%F&F&,&F(F&F&!\"\"F&F&*$)F'F%F&F&" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 58 "expand(diff(f(x),x)); # uitrekenen van de eers te afgeleide" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,&*&\"\"$\"\"\")%\"xG \"\"#F&F&*&\"\"'F&F(F&F&" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 81 "factor(%); # percent slaat op vorige bewerking en factor : ontbinden \+ in factoren " }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,$*(\"\"$\"\"\"%\"xGF& ,&F'F&\"\"#F&F&F&" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 44 "diff(f (x),x,x); # de 2de afgeleide berekenen" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,&*&\"\"'\"\"\"%\"xGF&F&F%F&" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "f:= x-> (x+2)^2*(x-1);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"fGf*6#%\"xG6\"6 $%)operatorG%&arrowGF(*&),&9$\"\"\"\"\"#F0F1F0,&F/F0F0!\"\"F0F(F(F(" } }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 31 "plot (f(x),x= -4..2,y=-10. .10);" }}{PARA 13 "" 1 "" {GLPLOT2D 495 495 495 {PLOTDATA 2 "6%-%'CURV ESG6$7S7$$!\"%\"\"!$!#?F*7$$!3!******\\2<#pQ!#<$!3)ywSF/\"H,`1QXuD&F07$$!3***** \\7;)=,IF0$!3%eH!HB>q5SF07$$!3!)***\\i83V(GF0$!3SP*zz:y:'HF07$$!3:+++N kzVFF0$!3+s8(\\C#>r?F07$$!3w****\\d;%)GEF0$!3piWd'y&*\\V\"F07$$!37+++0 )H%*\\#F0$!3e%Q^hJK'G()!#=7$$!3#)*****\\d'[pBF0$!3SelMhT.+YFeo7$$!38++ +&>iUC#F0$!3*yqM=Cdc$>Feo7$$!3!)***\\7YY08#F0$!3'>C,Xy&>N`!#>7$$!3)*** ***\\XF`*>F0$!3'pYOmh,'Rl!#A7$$!3)*******>#z2)=F0$!3K'RQUtAY4%Fep7$$!3 /++D\"RKvu\"F0$!3Ay*z\">UF^F07$$!3[++]7'pnq)Feo$!31ixwfi!eQ#F07$$ !3'3++v[G_b(Feo$!30QS&*z#>)=FF07$$!3t)****\\_K:J'Feo$!31\">X&3%fj0$F07 $$!36-+++HnE]Feo$!3wYB#[%z)*oLF07$$!3y,++D%)opPFeo$!3a5wHCGDFOF07$$!3G ++]78\\`DFeo$!3'Hiy&Q+/@QF07$$!3)3++]x6J?\"Feo$!3MRJYRrJeRF07$$\"3_y&* *****Hk-\"F,$!3ghHCQo****RF07$$\"30,++]A!eI\"Feo$!3#))>;c')>m%RF07$$\" 3E(***\\(=_(zCFeo$!3A'yQEXw-!QF07$$\"3W.++]&*=jPFeo$!3U4/zj$f=_$F07$$ \"3#f***\\(3/3(\\Feo$!3ZL`,M,\"f8$F07$$\"3z++]P#4JB'Feo$!3_(H;P*QG#f#F 07$$\"3W(*****\\KCnuFeo$!3#HWl9%p$3\">F07$$\"3A(***\\(=n#f()Feo$!3lQZ% GY/i-\"F07$$\"3P+++!)RO+5F0$\"3mnj'o$\\hwKF,7$$\"30++]_!>w7\"F0$\"3yYc ?\"pp$[7F07$$\"3O++v)Q?QD\"F0$\"3)\\Z*RiXG(o#F07$$\"3G+++5jyp8F0$\"3%[ 8u&oN4*>%F07$$\"3<++]Ujp-:F0$\"33,(\\4%>_nhF07$$\"3++++gEd@;F0$\"3%[2@ cc:C:)F07$$\"39++v3'>$[-8F37$$\"\"#F*$\"#;F*-%'COLOURG6&%$RGBG$\"#5!\"\"$F*F*Fc[l-%+AXESLA BELSG6$Q\"x6\"Q\"yFh[l-%%VIEWG6$;F(Fhz;$!#5F*$Fa[lF*" 1 2 0 1 10 0 2 9 1 4 2 1.000000 45.000000 45.000000 0 0 "Curve 1" }}}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}}{MARK "10 1" 1 }{VIEWOPTS 1 1 0 1 1 1803 1 1 1 1 }{PAGENUMBERS 0 1 2 33 1 1 }